Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (792)

Search Parameters:
Keywords = practical adhesion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 524 KB  
Review
Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context
by Felipe Gaia de Sousa, Rosely Maria Luzia Fraga, Ana Cristina Ribeiro Mendes, Rogério Carvalho Souza and Suzane Lilian Beier
Microorganisms 2025, 13(10), 2280; https://doi.org/10.3390/microorganisms13102280 - 30 Sep 2025
Abstract
Foodborne diseases (FBDs) represent significant public health concerns as they are conditions associated with deficient manufacturing practices. They comprise important diseases with acute or chronic courses, frequently occurring in outbreak form and associated with significant gastrointestinal disorders. FBDs are related to infrastructure and [...] Read more.
Foodborne diseases (FBDs) represent significant public health concerns as they are conditions associated with deficient manufacturing practices. They comprise important diseases with acute or chronic courses, frequently occurring in outbreak form and associated with significant gastrointestinal disorders. FBDs are related to infrastructure and organizational issues in urban centers, such that contamination in food processing facilities, lack of access to basic sanitation, and social and financial vulnerability are some of the factors that favor their occurrence and the demand for health services. Among the agents associated with FBDs is Listeria sp., especially Listeria monocytogenes (L. monocytogenes). The objective of this article is to characterize L. monocytogenes and its potential impact on One Health, given its importance as a significant foodborne pathogen. A thorough scientific literature search was conducted to obtain information on the subject, aiming to assist in the verification and presentation of evidence. L. monocytogenes is a pathogen with specific characteristics that ensure its adhesion, adaptation, growth, and survival on various surfaces, such as biofilm formation ability and thermotolerance. Several diagnostic methods are available for detection of the agent, including enrichment media, molecular techniques, and subtyping evaluation. Its control represents a significant challenge, with critical implications due to bacterial perpetuation characteristics and the implementation/monitoring of sanitization programs and commercialization of animal-derived products (POAO). Thus, vulnerable and susceptible populations are more exposed to foodborne pathogens due to health-related determinants, such as inadequate sanitation, poor food safety control, and insufficient personal hygiene. The pathogen’s persistence and difficulty of control represent a significant public One Health threat. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes, Third Edition)
Show Figures

Graphical abstract

12 pages, 2676 KB  
Article
The Dual Effect of Hematite-Amended Constructed Wetlands: Reducing the Toxicity of SMX Degradation Products and Increasing the Dissemination of Antibiotic Resistance Genes
by Shiwen Zhang, Xin Zhang, Fengkai Sun, Chaoyu Li, Zhen Hu, Shuang Liang and Huijun Xie
Water 2025, 17(19), 2850; https://doi.org/10.3390/w17192850 - 30 Sep 2025
Abstract
Iron ore may enhance the treatment performance of antibiotics within constructed wetlands (CWs), but its effects on the toxicity of degradation products and antibiotic resistance genes require further investigation. This study investigated the sulfamethoxazole (SMX) removal efficiency, SMX degradation pathway, and dissemination of [...] Read more.
Iron ore may enhance the treatment performance of antibiotics within constructed wetlands (CWs), but its effects on the toxicity of degradation products and antibiotic resistance genes require further investigation. This study investigated the sulfamethoxazole (SMX) removal efficiency, SMX degradation pathway, and dissemination of antibiotic resistance genes (sul1 and sul2) linked to SMX in hematite-amended CW microcosms. Hematite, due to its large specific surface area and formation of high redox potential, promoted SMX removal (99.05–99.26%) by adsorption, thus enhancing microbial biodegradation. The addition of hematite increased SMX degradation pathways and simultaneously attenuated the ecotoxicity of intermediate products. However, hematite also stimulated the production of extracellular polymeric substances by microorganisms, enhancing cell–cell adhesion and increasing membrane permeability, ultimately leading to a rise in the abundance of sul1 and sul2. Therefore, although iron ore provides benefits in practical applications, the potential environmental risks it poses deserve serious consideration. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

18 pages, 2673 KB  
Article
Thermo-Mechanical Approach to Material Extrusion Process During Fused Filament Fabrication of Polymeric Samples
by Mahmoud M. Farh and Viktor Gribniak
Materials 2025, 18(19), 4537; https://doi.org/10.3390/ma18194537 - 29 Sep 2025
Abstract
While material extrusion via fused filament fabrication (FFF) offers design flexibility and rapid prototyping, its practical use in engineering is limited by mechanical challenges, including residual stresses, geometric distortions, and potential interlayer debonding. These issues arise from the dynamic thermal profiles during FFF, [...] Read more.
While material extrusion via fused filament fabrication (FFF) offers design flexibility and rapid prototyping, its practical use in engineering is limited by mechanical challenges, including residual stresses, geometric distortions, and potential interlayer debonding. These issues arise from the dynamic thermal profiles during FFF, including temperature gradients, non-uniform hardening, and rapid thermal cycling, which lead to uneven internal stress development depending on fabrication parameters and object topology. These problems can compromise the structural integrity and mechanical properties of FFF parts, especially when the load-bearing capacity and geometric accuracy are critical. This study focuses on polylactic acid (PLA) due to its widespread application in engineering. It introduces a computational framework for coupled thermo-mechanical simulations of the FFF process using ABAQUS (Version 2020) finite element software. A key innovation is an automated subroutine that converts G-code into a time-resolved event series for finite element activation. The simulation framework explicitly models the sequential stages of printing, cooling, and detachment, enabling prediction of adhesive loss and post-process warpage. A transient thermal model evaluates the temperature distribution during FFF, providing boundary conditions for a mechanical simulation that predicts residual stresses and warping. Uniquely, the proposed model incorporates the detachment stage, enabling a more realistic and experimentally validated prediction of warpage and residual stress release in FFF-fabricated components. Although the average deviation between predicted and measured displacements is about 10.6%, the simulation adequately reflects the spatial distribution and magnitude of warpage, confirming its practical usefulness for process optimization and design validation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

20 pages, 6706 KB  
Article
Effect of Warm-Mix Additive USP on the Performance of Rubberized Asphalt and Fiber-Reinforced Rubberized Asphalt RAP Interlayer
by Jianhang Han, Bin Ding, Yong Hua, Wenbo Liu and Jun Li
Polymers 2025, 17(19), 2616; https://doi.org/10.3390/polym17192616 - 27 Sep 2025
Abstract
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance [...] Read more.
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance of polymer-modified asphalt and fiber-reinforced RAP interlayers were systematically investigated. The results indicate that 5% USP optimally improves low-temperature flexibility (141.1% increase in ductility, 28.48% reduction in creep stiffness) while maintaining adequate high-temperature stability, and simultaneously achieves an 82.01% reduction in total VOC emissions at 150 °C. Microscopic analysis and DIC tests confirm that USP enhances polymer–asphalt–aggregate interactions, leading to improved adhesion, reduced water permeability, and extended fatigue life. This work provides a fundamental understanding of polymer–binder–aggregate synergy and offers a practical pathway toward greener, high-performance recycled asphalt pavement technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 4969 KB  
Article
Sustainable Approaches for Carbon Powder-Filled ABS: A Comparative Study of Injection Moulding and Fused Filament Fabrication Technologies
by Vojtech Senkerik, Ales Mizera, Pavel Stoklasek, Lucie Svacinova, Lovre Krstulovic-Opara, Michaela Karhankova, Lukas Miskarik, Petra Bagavac and Miroslav Manas
Polymers 2025, 17(19), 2593; https://doi.org/10.3390/polym17192593 - 25 Sep 2025
Abstract
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based [...] Read more.
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based experiments were conducted using ABS reinforced with 0.5, 1.0, and 1.5 wt.% CP to explore the tensile properties of mechanically recycled ABS+CP composites. The results indicate that CP addition positively influences tensile behaviour and that the ABS+CP composite maintains both tensile strength and stiffness after repeated processing. A concentration of 1.5 wt.% CP proved to be the optimal filler amount. The results for re-injection-moulded ABS + 1.5 wt.% CP demonstrate enhancements in tensile strength of approximately 3% and elastic modulus of approximately 15%, relative to virgin ABS. Similarly, such specimens reprocessed via FFF showed an average increase of 12% in tensile strength and of 27% in elastic modulus relative to virgin ABS across all three printing orientations (X, Y, and Z). These findings suggest improved interfacial adhesion and filler dispersion upon recycling. The study confirms the practical feasibility of ABS composite recycling and highlights their potential for structural and decorative use due to their appealing granite-like appearance. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

19 pages, 4987 KB  
Article
Development and Characterization of Sustainable Biocomposites from Wood Fibers, Spent Coffee Grounds, and Ammonium Lignosulfonate
by Viktor Savov, Petar Antov, Alexsandrina Kostadinova-Slaveva, Jansu Yusein, Viktoria Dudeva, Ekaterina Todorova and Stoyko Petrin
Polymers 2025, 17(19), 2589; https://doi.org/10.3390/polym17192589 - 24 Sep 2025
Viewed by 23
Abstract
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% [...] Read more.
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% of the market. Although formaldehyde emissions from these resins can be mitigated through strict hygiene standards and technological measures, concerns remain due to their classification as category 1B carcinogens under EU regulations. In this study, fiber-based biocomposites were fabricated from thermomechanical wood fibers, SCGs, and ammonium lignosulfonate (ALS). SCGs and ALS were mixed in a 1:1 ratio and incorporated at 40–75% of the oven-dry fiber mass. Hot pressing was performed at 150 °C under 1.1–1.8 MPa to produce panels with a nominal density of 750 kg m−3, and we subsequently tested them for their physical properties (density, water absorption (WA), and thickness swelling (TS)), mechanical properties (modulus of elasticity (MOE), modulus of rupture (MOR), and internal bond (IB) strength), and thermal behavior and biodegradation performance. A binder content of 50% yielded MOE ≈ 2707 N mm−2 and MOR ≈ 22.6 N mm−2, comparable to UF-bonded medium-density fiberboards (MDFs) for dry-use applications. Higher binder contents resulted in reduced strength and increased WA values. Thermogravimetric analysis (TGA/DTG) revealed an inorganic residue of 2.9–8.5% and slower burning compared to the UF-bonded panels. These results demonstrate that SCGs and ALS can be co-utilized as a renewable, formaldehyde-free adhesive system for manufacturing wood fiber composites, achieving adequate performance for value-added practical applications while advancing sustainable material development. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 4767 KB  
Article
Preparation and Characterization of a High-Performance Foam Extinguishing Agent with Sulfobetaine and Polyoxyethylene Ether for Solid Fires
by Huizhong Ma, Liang Cheng, Lan Zhang, Liyang Ma, Jia Deng, Ao Zhao, Xin Jiang and Fei Wang
Polymers 2025, 17(19), 2579; https://doi.org/10.3390/polym17192579 - 24 Sep 2025
Viewed by 122
Abstract
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires [...] Read more.
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires by focusing on both wettability and adhesion. First, the influence of chemical functional groups on foam wettability and adhesion was elucidated, and the contributions of individual components to foam properties were experimentally investigated. Second, adhesion and wettability tests revealed a negative correlation between these two properties, consistent with variations in foam solution viscosity and wetting time. Third, a novel adhesion evaluation method was proposed, defined as the time required for foam to flow a fixed distance on inclined wooden surfaces; longer flow times indicated stronger adhesion. Fourth, foaming and fire suppression experiments confirmed the practical performance of the optimized formulations. A composition containing 8 wt% Polyoxyethylene ether and 5 wt% Sulfobetaine yielded a wetting-type foam suitable for rapid cooling, whereas 8 wt% Polyoxyethylene ether combined with 9 wt% Sulfobetaine produced an adhesive-type foam capable of persistent attachment to combustibles. Microscopic observations further demonstrated that foams with superior extinguishing performance developed dense lamellae. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 4348 KB  
Article
Mechanical Performance and Failure Modes of High-Strength Adhesives in Aluminum Adherend Joints for Aerospace Applications
by Baojiang Hou, Lifeng Jia, Lisheng Zhang, Bo Xu and Jie Hou
Materials 2025, 18(19), 4445; https://doi.org/10.3390/ma18194445 - 23 Sep 2025
Viewed by 105
Abstract
Focusing on the practical application requirements of adhesive-bonded structures in aerospace engineering, this study aims to investigate the mechanical performance and failure mechanisms of adhesive interfaces. Adhesive bonding, valued for its uniform load distribution, low stress concentration, superior sealing, and lightweight properties, serves [...] Read more.
Focusing on the practical application requirements of adhesive-bonded structures in aerospace engineering, this study aims to investigate the mechanical performance and failure mechanisms of adhesive interfaces. Adhesive bonding, valued for its uniform load distribution, low stress concentration, superior sealing, and lightweight properties, serves as a critical joining technology in aerospace engineering. However, its reliable application is constrained by complex multimode failure issues, such as cohesive failure, interfacial debonding, and matrix damage. To address these challenges, a comprehensive evaluation of the novel high-strength epoxy adhesive Dq622JD-136 (Adhesive III) was conducted through systematic tests, including bulk tension, butt joint tension, single lap shear, compressive shear, and fracture toughness (TDCB/ENF) tests. These tests characterized its mechanical properties and fracture behavior under mode-I and mode-II loading, with comparative analyses against conventional adhesives HYJ-16 (Adhesive I) and HYJ-29 (Adhesive II). Key findings reveal that Adhesive III exhibits outstanding elastic modulus, significantly outperforming the comparative adhesives. While its normal and shear strengths are slightly lower than Adhesive I, they surpass Adhesive II. A common characteristic across all adhesives is that normal strength exceeds shear strength. In terms of fracture toughness, Adhesive III demonstrates superior mode-II toughness but relatively lower mode-I toughness. These results elucidate the brittle characteristics of such adhesives, mixed failure modes under normal loading, and cohesive failure behavior under shear loading. The innovation of this work lies in systematically correlating the macroscopic performance of adhesives with failure mechanisms through multi-dimensional testing. Its findings provide critical technical support for multiscale performance evaluation and adhesive selection in aerospace joints subjected to extreme thermomechanical loads. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

36 pages, 700 KB  
Review
Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review
by Alexandra Vrabie, Bogdan Obrișcă, Bogdan Marian Sorohan and Gener Ismail
Life 2025, 15(10), 1497; https://doi.org/10.3390/life15101497 - 23 Sep 2025
Viewed by 308
Abstract
Background and Objectives: Lupus nephritis (LN) is a major cause of mortality and morbidity in patients with systemic lupus erythematosus (SLE). Biomarkers derived from blood, urine, and multi-omics techniques are essential for enabling access to less invasive methods for LN evaluation and [...] Read more.
Background and Objectives: Lupus nephritis (LN) is a major cause of mortality and morbidity in patients with systemic lupus erythematosus (SLE). Biomarkers derived from blood, urine, and multi-omics techniques are essential for enabling access to less invasive methods for LN evaluation and personalized precision medicine. Materials and Methods: The purpose of this work was to review the studies that addressed the potential role of urinary and serological biomarkers for the diagnosis, disease activity, response to treatment, and renal outcome of adult patients with LN, published over the past decade, and summarize their results with a particular emphasis being directed towards the available traditional tools. Results: Traditional biomarkers used for the diagnosis and surveillance of LN are proteinuria, urinary sediment, estimated glomerular filtration rate (eGFR), anti-double-stranded deoxyribonucleic acid (anti-dsDNA), anti-C1q, and serum complement levels. Anti-dsDNA, serum C3, and proteinuria are the conventional biomarkers with the strongest clinical evidence, with overall moderate ability in predicting LN from non-renal SLE, disease activity, renal flares, response to therapy, and prognosis. The last decade has brought significant progress in our understanding regarding the pathogenesis of LN and, consequently, several molecules, either alone or in combination panels, have emerged as potential novel biomarkers, some of them outperforming conventional biomarkers. Promising results have been suggested for urinary activated leukocyte cell adhesion molecule (ALCAM), soluble cluster of differentiation 163 (CD163), C-X-C motif chemokine ligand 10 (CXCL10), monocyte chemoattractant protein 1 (MCP-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and vascular cell adhesion molecule 1 (VCAM-1). Conclusions: Despite the intensive research of the last decade, no novel biomarker has entered clinical practice, and we continue to rely on traditional biomarkers to assess non-invasively LN and guide its treatment. Novel biomarkers should be validated in multiple longitudinal independent cohorts, compared with conventional biomarkers, and integrated with renal histology information in order to optimize the management of LN patients. Full article
Show Figures

Figure 1

12 pages, 1334 KB  
Article
Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives
by William Cunha Brandt, Isaías Donizeti Silva, Andreia Carneiro Matos, Flávia Gonçalves and Leticia Boaro
Materials 2025, 18(19), 4433; https://doi.org/10.3390/ma18194433 - 23 Sep 2025
Viewed by 121
Abstract
Objective: This study aimed to evaluate the effect of incorporating bioactive particles (montmorillonite loaded with chlorhexidine, MMT/CHX) and different concentrations of silica nanoparticles (0%, 3%, 5%, 7%, 10%, and 15 wt%) into a universal dental adhesive on its degree of conversion, bond strength, [...] Read more.
Objective: This study aimed to evaluate the effect of incorporating bioactive particles (montmorillonite loaded with chlorhexidine, MMT/CHX) and different concentrations of silica nanoparticles (0%, 3%, 5%, 7%, 10%, and 15 wt%) into a universal dental adhesive on its degree of conversion, bond strength, water sorption, solubility, and antimicrobial activity. Materials and Methods: A universal adhesive was modified with 1 wt% MMT/CHX and varying amounts of silica nanoparticles. Degree of conversion was analyzed by Fourier transform infrared spectroscopy (FTIR), and microtensile bond strength was evaluated at 24 h, 6 months, and 12 months after water storage. Water sorption and solubility were measured according to ISO 4049, and antibacterial activity was tested against Streptococcus mutans using the agar diffusion method. Results: All experimental adhesives containing ≥7% silica showed significantly reduced water sorption and solubility. The presence of MMT/CHX imparted consistent antimicrobial activity across all experimental groups. Degree of conversion remained stable across all groups and storage periods. Notably, after 12 months, only the experimental groups maintained or improved bond strength, while the control group showed a significant reduction. Failure mode analysis indicated increased mechanical integrity with higher filler content. Conclusions: Incorporating 1 wt% MMT/CHX and ≥7 wt% silica into a universal adhesive improved long-term bond strength, reduced degradation, and introduced antibacterial properties without compromising polymer conversion. These findings support the potential of developing durable, bioactive adhesive systems for restorative dentistry. Clinical Significance: The incorporation of bioactive and reinforcing nanoparticles into universal adhesives enhances bond durability and introduces antibacterial properties without compromising polymerization. This innovation may lead to longer-lasting restorations and reduced risk of secondary caries in clinical practice. Full article
(This article belongs to the Special Issue Recent Research in Restorative Dental Materials)
Show Figures

Figure 1

14 pages, 3363 KB  
Article
Selective Etching of Multi-Stacked Epitaxial Si1-xGex on Si Using CF4/N2 and CF4/O2 Plasma Chemistries for 3D Device Applications
by Jihye Kim, Joosung Kang, Dongmin Yoon, U-in Chung and Dae-Hong Ko
Materials 2025, 18(18), 4417; https://doi.org/10.3390/ma18184417 - 22 Sep 2025
Viewed by 167
Abstract
The SiGe/Si multilayer is a critical component for fabricating stacked Si channel structures for next-generation three-dimensional (3D) logic and 3D dynamic random-access memory (3D-DRAM) devices. Achieving these structures necessitates highly selective SiGe etching. Herein, CF4/O2 and CF4/N2 [...] Read more.
The SiGe/Si multilayer is a critical component for fabricating stacked Si channel structures for next-generation three-dimensional (3D) logic and 3D dynamic random-access memory (3D-DRAM) devices. Achieving these structures necessitates highly selective SiGe etching. Herein, CF4/O2 and CF4/N2 gas chemistries were employed to elucidate and enhance the selective etching mechanism. To clarify the contribution of radicals to the etching process, a nonconducting plate (roof) was placed just above the samples in the plasma chamber to block ion bombardment on the sample surface. The CF4/N2 gas chemistries demonstrated superior etch selectivity and profile performance compared with the CF4/O2 gas chemistries. When etching was performed using CF4/O2 chemistry, the SiGe etch rate decreased compared to that obtained with pure CF4. This reduction is attributed to surface oxidation induced by O2, which suppressed the etch rate. By minimizing the ion collisions on the samples with the roof, higher selectivity, and a better etch profile were obtained even in the CF4/N2 gas chemistries. Under high-N2-flow conditions, X-ray photoelectron spectroscopy revealed increased surface concentrations of GeFx species and confirmed the presence of Si–N bond, which inhibited Si etching by fluorine radicals. A higher concentration of GeFx species enhanced SiGe layer etching, whereas Si–N bonds inhibited etching on the Si layer. The passivation of the Si layer and the promotion of adhesion of etching species such as F on the SiGe layer are crucial for highly selective etching in addition to etching with pure radicals. This study provides valuable insights into the mechanisms governing selective SiGe etching, offering practical guidance for optimizing fabrication processes of next-generation Si channel and complementary field-effect transistor (CFET) devices. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

20 pages, 336 KB  
Review
Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives
by Pin-Yu Lin, Li-Nai Chen, Chien-Fu Tseng, Yi-Shao Chen, Hung-Yu Lin, Thi Thuy Tien Vo, Tzu-Yu Peng and I-Ta Lee
Polymers 2025, 17(18), 2545; https://doi.org/10.3390/polym17182545 - 20 Sep 2025
Viewed by 281
Abstract
Tooth whitening is increasingly sought in both clinical and home settings, raising concerns about the efficacy and safety of various whitening agents and their delivery systems. This narrative review compares the whitening performance and biocompatibility of active ingredients, including hydrogen peroxide, carbamide peroxide, [...] Read more.
Tooth whitening is increasingly sought in both clinical and home settings, raising concerns about the efficacy and safety of various whitening agents and their delivery systems. This narrative review compares the whitening performance and biocompatibility of active ingredients, including hydrogen peroxide, carbamide peroxide, activated charcoal, sodium bicarbonate, fluoride compounds, and blue covarine, with particular emphasis on the role of polymer-based carriers in formulation strategies. Hydrogen peroxide and carbamide peroxide remain the most effective agents for intrinsic whitening, but are associated with risks of enamel surface alterations, microhardness reduction, and potential cytotoxicity, particularly at higher concentrations. Sodium bicarbonate provides moderate whitening effects through extrinsic stain removal, while fluoride compounds play a supportive role by reducing demineralization and tooth sensitivity, thereby preserving enamel integrity. These properties make them valuable adjuncts or alternatives for patients with high sensitivity risks. Blue covarine offers immediate optical effects without inducing intrinsic color changes, whereas activated charcoal poses risks of enamel abrasion and surface roughness with limited long-term efficacy. Polymer-based carriers such as Carbopol gels, polyvinylpyrrolidone, and hydroxypropyl methylcellulose are incorporated into whitening formulations to improve viscosity, adhesion, and modulate the release of active ingredients. These polymers might help minimize diffusion of bleaching agents into deeper dental tissues, potentially reducing cytotoxic effects, and may improve handling characteristics. However, dedicated studies evaluating the unique advantages of polymers in different whitening systems remain limited. A comprehensive understanding of both the active ingredients and delivery technologies is critical to balancing esthetic outcomes with long-term oral health. From a clinical perspective, polymer-based carriers might contribute to reducing whitening-related tooth sensitivity, improving patient comfort, and providing more predictable treatment outcomes. Continued research is needed to clarify optimal formulations and application protocols, ensuring safer and more effective tooth-whitening practices in both clinical and home-use scenarios. Full article
12 pages, 1720 KB  
Article
Study on Factors Affecting Toric Intraocular Lens Rotation Using Intraoperative OCT—Factors Influencing IOL Deployment and Proximity to Posterior Capsule After Insertion
by Kei Ichikawa, Seiji Tokiwa, Yoshiki Tanaka, Hiroto Toda, Yukihito Kato, Yukihiro Sakai, Kazuo Ichikawa and Naoki Yamamoto
J. Clin. Med. 2025, 14(18), 6599; https://doi.org/10.3390/jcm14186599 - 19 Sep 2025
Viewed by 196
Abstract
Background/Objectives: Cataract surgery often reveals preexisting corneal astigmatism, which can be corrected using a toric intraocular lens (T-IOL). However, postoperative T-IOL rotation may compromise correction. We investigated T-IOL rotation, focusing on deployment time and proximity to the posterior capsule (PC), using intraoperative [...] Read more.
Background/Objectives: Cataract surgery often reveals preexisting corneal astigmatism, which can be corrected using a toric intraocular lens (T-IOL). However, postoperative T-IOL rotation may compromise correction. We investigated T-IOL rotation, focusing on deployment time and proximity to the posterior capsule (PC), using intraoperative optical coherence tomography (iOCT). Methods: Six different T-IOL models were inserted into acrylic simulated lens capsule models under different tacking durations (5 s, 30 s, and 60 s) and temperature conditions (23 °C, 28 °C, and 32 °C). The selection criteria for porcine lenses for examination required that they match human lens dimensions, typical of those used to train cataract surgeons. T-IOL misalignment due to vibration was assessed. Additionally, the impact of temporary intraocular pressure (IOP) reduction on T-IOL proximity to the PC was measured using iOCT in porcine eyes. Results: Tacking time and temperature independently affected T-IOL deployment, with shorter tacking durations and higher temperatures leading to faster deployment. Among lenses tested under identical tacking time and temperature conditions, iSert Micro Toric Aspheric 1-Piece IOL (355T3) had the slowest expansion time, while Avansee™ Preload 1-Piece Toric (YP-T3) had the fastest. Porcine eyes with a corneal white-to-white major axis < 16.0 mm fell within the 95% confidence interval for matching human lens size. Temporarily reducing IOP during surgery improved T-IOL adhesion to the PC, reducing both the occurrence and degree (from 14.0° to nearly 0°) of postoperative rotation. Conclusions: Optimal T-IOL deployment, temporary IOP reduction during surgery, and enhanced adhesion to the PC can reduce the risk and degree of T-IOL rotation. Intraoperative iOCT aids in monitoring T-IOL positioning, which is essential to prevent rotation. Accumulated fluid between the T-IOL and PC may contribute to rotation, which requires further investigation. These findings provide practical strategies for enhancing T-IOL stability and improving the effectiveness of astigmatism correction in cataract surgery. Full article
Show Figures

Figure 1

42 pages, 21157 KB  
Article
A Revised Checklist and Identification Key for Acotylean Flatworms (Rhabditophora: Polycladida: Acotylea) from the Caribbean Coast of Colombia
by Jorge I. Merchán-Mayorga, D. Marcela Bolaños, Lyda R. Castro and Sigmer Quiroga
Taxonomy 2025, 5(3), 51; https://doi.org/10.3390/taxonomy5030051 - 19 Sep 2025
Viewed by 332
Abstract
The Order Polycladida comprises a diverse yet understudied group of free-living flatworms, traditionally divided into Cotylea and Acotylea based on the presence or absence of a ventral adhesive organ known as a cotyl. Species identification, particularly within Acotylea, is often challenging due to [...] Read more.
The Order Polycladida comprises a diverse yet understudied group of free-living flatworms, traditionally divided into Cotylea and Acotylea based on the presence or absence of a ventral adhesive organ known as a cotyl. Species identification, particularly within Acotylea, is often challenging due to the need for histological examination of reproductive structures and the scarcity of molecular data. The Tropical Western Atlantic, especially the Caribbean Sea, hosts high polyclad diversity but remains poorly surveyed. This study updates the checklist of Acotylea from the Colombian Caribbean, combining new collections from Santa Marta with the literature records. Field work yielded 22 acotylean species from 14 genera and 10 families, with DNA sequences (28S rDNA and/or COI mtDNA) obtained for 20 species. 11 species are new records for Colombia, and five for the Caribbean Sea: Latocestus brasiliensis Hyman, 1953, Notocomplana martae (Marcus, 1948), Interplana evelinae (Marcus, 1952), Triadomma curvum Marcus, 1949, and Adenoplana evelinae Marcus, 1950. In total, 29 species are now documented from the region. We provide photographs of live specimens, whole mounts, and histological sections; DNA barcodes for most species; and the first dichotomous key for Colombian Caribbean acotyleans, based primarily on external traits, providing a practical tool to support further taxonomic, ecological, and biodiversity research. Full article
Show Figures

Figure 1

22 pages, 4207 KB  
Article
Performance Assessment of a Vibratory-Enhanced Plowing System for Improved Energy Efficiency and Tillage Quality on Compacted Soils
by Laurentiu Constantin Vlădutoiu, Eugen Marin, Florin Nenciu, Daniel Lateș, Ioan Catalin Persu, Mario Cristea and Dragoș Manea
AgriEngineering 2025, 7(9), 304; https://doi.org/10.3390/agriengineering7090304 - 18 Sep 2025
Viewed by 273
Abstract
Compacted and degraded soils pose increasing challenges to agricultural practices, necessitating innovative approaches to soil tillage. This paper evaluates the performance of a vibratory-enhanced moldboard plowing system, designed to improve energy efficiency and tillage quality under compacted and moisture-deficient conditions, typical of low-moisture [...] Read more.
Compacted and degraded soils pose increasing challenges to agricultural practices, necessitating innovative approaches to soil tillage. This paper evaluates the performance of a vibratory-enhanced moldboard plowing system, designed to improve energy efficiency and tillage quality under compacted and moisture-deficient conditions, typical of low-moisture soils. Field experiments were conducted across four distinct Romanian regions with varying soil types and climatic conditions, all characterized by significant compaction and limited soil moisture. The vibratory system, mounted directly on each plow body, employed sinusoidal oscillations generated by a DC moto-vibrator, to reduce soil adhesion and traction force requirements, thereby lowering fuel consumption. Key parameters including fuel consumption, working speed, soil fragmentation, weed incorporation, and traction force were measured and compared with the conventional plowing method. The results showed enhanced soil fragmentation and more effective residue incorporation, along with notable reductions in traction effort and fuel use at optimal oscillation settings. These findings highlight the potential of vibratory tillage to be used as a soil preparation method for compaction-prone areas, improving the soil structure while increasing operational energy efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

Back to TopTop