Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = powered-two-wheeler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 957 KiB  
Article
Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives
by Edward Bormashenko
Entropy 2024, 26(5), 423; https://doi.org/10.3390/e26050423 - 15 May 2024
Cited by 8 | Viewed by 5306
Abstract
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a [...] Read more.
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat kBTln2 per a bit of information to its surroundings. The Landauer principle is discussed in the context of fundamental physical limiting principles, such as the Abbe diffraction limit, the Margolus–Levitin limit, and the Bekenstein limit. Synthesis of the Landauer bound with the Abbe, Margolus–Levitin, and Bekenstein limits yields the minimal time of computation, which scales as τmin~hkBT. Decreasing the temperature of a thermal bath will decrease the energy consumption of a single computation, but in parallel, it will slow the computation. The Landauer principle bridges John Archibald Wheeler’s “it from bit” paradigm and thermodynamics. Experimental verifications of the Landauer principle are surveyed. The interrelation between thermodynamic and logical irreversibility is addressed. Generalization of the Landauer principle to quantum and non-equilibrium systems is addressed. The Landauer principle represents the powerful heuristic principle bridging physics, information theory, and computer engineering. Full article
Show Figures

Figure 1

16 pages, 3929 KiB  
Article
Performance Assessment of Two-Wheeler Electric Vehicle Batteries Using Multi-Mode Drive Cycles
by Padmavathi Lakshmanan, Anand Abhishek, Brijendra Kumar Verma and Subhash Kumar Ram
World Electr. Veh. J. 2024, 15(4), 145; https://doi.org/10.3390/wevj15040145 - 2 Apr 2024
Cited by 2 | Viewed by 3660
Abstract
This article presents a model-based approach to assess the battery performance of a two-wheeler EV drive train system for various user driving patterns using the selected urban drive cycles. The battery pack is one of the most expensive parts of an EV, and [...] Read more.
This article presents a model-based approach to assess the battery performance of a two-wheeler EV drive train system for various user driving patterns using the selected urban drive cycles. The battery pack is one of the most expensive parts of an EV, and its life is heavily dependent on its usage pattern. The impact of the user’s driving behaviour on the performance parameters of the EV battery pack needs to be investigated. Thus, a two-wheeler EV drive train model was developed in MATLAB with a 5 kW motor, a 4.32 kWh battery, vehicle dynamics, and the power train control algorithms for in-depth analysis of battery performance. The validity of the developed model was tested against various state-of-the-art drive cycles for a duration of 3600 s. Numerous user driving behaviours, such as aggressive, moderate, and slow driving behaviours, were modelled with modified drive cycles, which were used to assess the two-wheeler battery pack performance. An optimum speed range, which ranges from 21 km/h to 34 km/h for different drive cycles, was identified, and these speed ranges minimised the battery energy consumption for the selected drive cycles with the modified drive cycle models. Full article
Show Figures

Figure 1

18 pages, 5522 KiB  
Article
Data Acquisition and Performance Analysis during Real-Time Driving of a Two-Wheeler Electric Vehicle—A Case Study
by Divyakumar Bhavsar, Ramesh Kaipakam Jaychandra and Mayank Mittal
World Electr. Veh. J. 2024, 15(3), 121; https://doi.org/10.3390/wevj15030121 - 21 Mar 2024
Cited by 1 | Viewed by 2658
Abstract
Data acquisition from a vehicle operating in real driving conditions is extremely useful for analyzing the real-time behavior of the vehicle and its components. A few studies have measured the real-time data for a four-wheeler electric vehicle. However, no attempts have been reported [...] Read more.
Data acquisition from a vehicle operating in real driving conditions is extremely useful for analyzing the real-time behavior of the vehicle and its components. A few studies have measured the real-time data for a four-wheeler electric vehicle. However, no attempts have been reported to measure the real-time data and find the inverter efficiency for a two-wheeler electric vehicle. The present work has accomplished successful real-time data acquisition from a two-wheeler electric vehicle. The real-time current and voltage coming in and going out from the inverter, frequency of the motor operation, power factor, distance covered, and velocity have been measured. The inverter efficiency is found to be over 95% for over 80% of the total drive time, and the power factor for the motor is over 0.8 for almost 50% of the total drive time. A few insights on driver behavior and finally the torque-speed characteristics and two quadrant operation of the motor are discussed. Full article
Show Figures

Figure 1

20 pages, 4196 KiB  
Article
Personality Traits Affecting Risky Riding Behavior: An Application of an Extended Theory of Planned Behavior
by Luu Van Le, Long Xuan Nguyen, Minh Cong Chu and Nathan Huynh
Sustainability 2023, 15(24), 16586; https://doi.org/10.3390/su152416586 - 6 Dec 2023
Cited by 5 | Viewed by 2138
Abstract
The primary objective of this study is to investigate the influence of personality traits such as anxiety, sensation seeking, altruism, anger, and normlessness on young powered two-wheeler riders’ risky riding behavior. The theory of planned behavior (TPB) is extended to include personality traits [...] Read more.
The primary objective of this study is to investigate the influence of personality traits such as anxiety, sensation seeking, altruism, anger, and normlessness on young powered two-wheeler riders’ risky riding behavior. The theory of planned behavior (TPB) is extended to include personality traits forming an extended TPB (ETPB). The ETPB model is used to examine how personality traits directly influence risky riding behavior and indirectly influence risky riding behavior through latent mediating factors. The secondary objective is to examine the differences in interactions between personality traits, mediating factors, and risky riding behaviors of those who have been and have not been involved in traffic accidents. The study sample included 535 high school students in Phu Yen, Vietnam. The results showed that personality traits, directly and indirectly, influence risky riding behaviors through the mediating construct. Young riders with sensation-seeking, anger, and normlessness have a higher frequency of risky riding behavior than those with anxiety and altruistic personality traits. Sensation seeking, anger, and normlessness indirectly influence risky riding behavior through risk perception and subjective norms. In addition, the results also show a clear difference in the relationship between the personality and behavior of people who have been involved in traffic accidents and those who have never been involved in accidents. Full article
Show Figures

Figure 1

15 pages, 7141 KiB  
Article
Sustainable Traffic Regulation System in Protected Areas: Pilot Technology Testing in National Park in the Czech Republic
by Jiří Růžička, Milan Sliacky, Zuzana Purkrábková, Martin Langr, Patrik Horažďovský and Eva Hajčiarová
Sustainability 2023, 15(17), 12675; https://doi.org/10.3390/su151712675 - 22 Aug 2023
Cited by 2 | Viewed by 1280
Abstract
In the context of nature protection, there is an effort to regulate individual car traffic in protected areas. In the framework of the research, a pilot testing of a vehicle detection and identification system in the Krkonoše National Park was carried out using [...] Read more.
In the context of nature protection, there is an effort to regulate individual car traffic in protected areas. In the framework of the research, a pilot testing of a vehicle detection and identification system in the Krkonoše National Park was carried out using two selected technologies (license plate recognition and Bluetooth token detection). The research was carried out under conditions of poorer availability of mobile signal for transmission of measured data, lack of electrical power supply, and in challenging climatic conditions in the mountains. The main objective was to verify the applicability and limits of the mentioned technologies under these difficult conditions. For this purpose, two test sites were built: a fixed and a mobile point. Testing at both points was carried out using two basic methods, namely online through continuous data collection from the detectors and on-site through a local survey during the summer of 2022. The parameters evaluated were the reliability of the vehicle identification itself and the reliability of the operation of the individual detection subsystems and the tested system as a whole. The results show that the license plate recognition system using two cameras for the checkpoint shows a high recognition reliability, but it is reduced for some types of vehicles (especially motorcycles and four-wheelers). At the same time, this technology is demanding on energy resources. Detection using a Bluetooth scanner has proven to be highly reliable up to 50 km/h. A reliable power supply is necessary to achieve high reliability, which was a problem at the mobile point. Evaluation of images from cameras with motion detection showed the limits of this technology, which increased with increasing vehicle speed. The system can be used to detect traffic in protected areas, taking into account the limits specified in this article. Full article
(This article belongs to the Special Issue Traffic Flow, Road Safety, and Sustainable Transportation)
Show Figures

Figure 1

24 pages, 4797 KiB  
Article
Hardware-in-the-Loop Scheme of Linear Controllers Tuned through Genetic Algorithms for BLDC Motor Used in Electric Scooter under Variable Operation Conditions
by Leonardo Esteban Moreno-Suarez, Luis Morales-Velazquez, Arturo Yosimar Jaen-Cuellar and Roque Alfredo Osornio-Rios
Machines 2023, 11(6), 663; https://doi.org/10.3390/machines11060663 - 19 Jun 2023
Cited by 7 | Viewed by 2970
Abstract
Outrunner brushless DC motors (BLDC) are a type of permanent magnet synchronous motor (PMSM) widely used in electric micro-mobility vehicles, such as scooters, electric bicycles, wheelchairs, and segways, among others. Those vehicles have many operational constraints because they are driven directly by the [...] Read more.
Outrunner brushless DC motors (BLDC) are a type of permanent magnet synchronous motor (PMSM) widely used in electric micro-mobility vehicles, such as scooters, electric bicycles, wheelchairs, and segways, among others. Those vehicles have many operational constraints because they are driven directly by the user with light protective wearing. Therefore, to improve control strategies to make the drive safer, it is essential to model the traction system over a wide range of operating conditions in a street environment. In this work, we developed an electro-mechanical model based on the Hardware-in-the-Loop (HIL) structure for a two-wheeler electric scooter, using the BLDC motor to explore its response and to test linear controllers for speed and torque management under variable operating conditions. The proposed model includes motor parameters, power electronics component characteristics, mechanical structure, and external operating conditions. Meanwhile the linear controllers will be adjusted or tuned though a heuristic approach based on Genetic Algorithms (GAs) to optimize the system’s response. The HIL scheme will be able to simulate a wide range of conditions such as user weight, slopes, wind speed changes, and combined conditions. The designed model can be used to improve the design of the controller and estimate mechanical and electrical loads. Finally, the results of the controller tests show how the proposed cascade scheme, tuned through the GA, improves the system behavior and reduces the mean square error with respect to a classical tuning approach between 20% and 60%. Full article
(This article belongs to the Special Issue Condition-Based Monitoring of Electrical Machines)
Show Figures

Figure 1

21 pages, 1931 KiB  
Article
Risk Factors Influencing Fatal Powered Two-Wheeler At-Fault and Not-at-Fault Crashes: An Application of Spatio-Temporal Hotspot and Association Rule Mining Techniques
by Reuben Tamakloe
Informatics 2023, 10(2), 43; https://doi.org/10.3390/informatics10020043 - 12 May 2023
Cited by 4 | Viewed by 2428
Abstract
Studies have explored the factors influencing the safety of PTWs; however, very little has been carried out to comprehensively investigate the factors influencing fatal PTW crashes while considering the fault status of the rider in crash hotspot areas. This study employs spatio-temporal hotspot [...] Read more.
Studies have explored the factors influencing the safety of PTWs; however, very little has been carried out to comprehensively investigate the factors influencing fatal PTW crashes while considering the fault status of the rider in crash hotspot areas. This study employs spatio-temporal hotspot analysis and association rule mining techniques to discover hidden associations between crash risk factors that lead to fatal PTW crashes considering the fault status of the rider at statistically significant PTW crash hotspots in South Korea from 2012 to 2017. The results indicate the presence of consecutively fatal PTW crash hotspots concentrated within Korea’s densely populated capital, Seoul, and new hotspots near its periphery. According to the results, violations such as over-speeding and red-light running were critical contributory factors influencing PTW crashes at hotspots during summer and at intersections. Interestingly, while reckless riding was the main traffic violation leading to PTW rider at-fault crashes at hotspots, violations such as improper safety distance and red-light running were strongly associated with PTW rider not-at-fault crashes at hotspots. In addition, while PTW rider at-fault crashes are likely to occur during summer, PTW rider not-at-fault crashes mostly occur during spring. The findings could be used for developing targeted policies for improving PTW safety at hotspots. Full article
(This article belongs to the Special Issue Feature Papers in Big Data)
Show Figures

Figure 1

29 pages, 12405 KiB  
Article
Torque Measurement and Control for Electric-Assisted Bike Considering Different External Load Conditions
by Ping-Jui Ho, Chen-Pei Yi, Yi-Jen Lin, Wei-Der Chung, Po-Huan Chou and Shih-Chin Yang
Sensors 2023, 23(10), 4657; https://doi.org/10.3390/s23104657 - 11 May 2023
Cited by 10 | Viewed by 6195
Abstract
This paper proposes a novel torque measurement and control technique for cycling-assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes, the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce the pedaling torque generated by the [...] Read more.
This paper proposes a novel torque measurement and control technique for cycling-assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes, the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce the pedaling torque generated by the human rider. However, the overall cycling torque is affected by external loads, including the cyclist’s weight, wind resistance, rolling resistance, and the road slope. With knowledge of these external loads, the motor torque can be adaptively controlled for these riding conditions. In this paper, key E-bike riding parameters are analyzed to find a suitable assisted motor torque. Four different motor torque control methods are proposed to improve the E-bike’s dynamic response with minimal variation in acceleration. It is concluded that the wheel acceleration is important to determine the E-bike’s synergetic torque performance. A comprehensive E-bike simulation environment is developed with MATLAB/Simulink to evaluate these adaptive torque control methods. In this paper, an integrated E-bike sensor hardware system is built to verify the proposed adaptive torque control. Full article
Show Figures

Figure 1

25 pages, 3314 KiB  
Article
Assessment of Electric Two-Wheelers Development in Establishing a National E-Mobility Roadmap to Promote Sustainable Transport in Vietnam
by Dinh Van Hiep, Nam Hoai Tran, Nguyen Anh Tuan, Tran Manh Hung, Ngo Viet Duc and Hoang Tung
Sustainability 2023, 15(9), 7411; https://doi.org/10.3390/su15097411 - 29 Apr 2023
Cited by 8 | Viewed by 8368
Abstract
Faced with increasing environmental pollution due to traffic concentration in big cities, Vietnam, as well as many countries worldwide, has encouraged its people to use environmentally-friendly vehicles. Because the transport mode is dominated by two-wheelers (i.e., motorcycles and mopeds) (2Ws), electrifying 2Ws has [...] Read more.
Faced with increasing environmental pollution due to traffic concentration in big cities, Vietnam, as well as many countries worldwide, has encouraged its people to use environmentally-friendly vehicles. Because the transport mode is dominated by two-wheelers (i.e., motorcycles and mopeds) (2Ws), electrifying 2Ws has the potential for significant air pollution reductions as an alternative to gasoline-powered vehicles in Vietnam. Therefore, there has recently been an increasing trend of shifting from traditional gasoline two-wheeler vehicles to electric two-wheelers (E2Ws). Depending on different local contexts, some countries/regions quickly adopted the policies/incentives, and new technologies for E2W usage, while others acted more slowly. In order to advance the use of E2Ws in Vietnam, assessing E2W user preferences is essential to classify and prioritize further solutions, which would be instrumental in fulfilling user expectations. However, a few academic works pay attention to this field of the Vietnamese E2W market. In response to this research gap, this paper aims to overview the current status of E2W usage, assess the market development of E2Ws, and evaluate the battery charging business models in Vietnam. The questionnaire survey was carried out to evaluate the preferences of E2W users in the Vietnamese market, while the assessment of E2W development was conducted based on the SWOT (strengths, weaknesses, opportunities, and threats) analysis. The results demonstrated that E2W deployment is still at an exploratory stage in the transportation industry and is growing significantly in Vietnam. This study also revealed significant challenges for E2W adoption, especially the E2W battery charging/swapping system. Thus, it is recommended that incentives for E2W uptake and the battery charging infrastructure system should be improved and implemented. The evaluation of E2W perceptions in the three-city context is realized as exploratory, generating the baseline for further research when the survey can engage more respondents in other places to confirm the current research findings. The study can also assist policymakers and investors in comprehensively assessing the opportunities and challenges and provide recommendations for accelerating the growth of E2Ws in Vietnam for establishing a national e-mobility roadmap and thereby promoting sustainable transport in alignment with the COP26. Full article
Show Figures

Figure 1

19 pages, 4156 KiB  
Article
Influence of Cell Selection and Orientation within the Traction Battery on the Crash Safety of Electric-Powered Two-Wheelers
by Alessio Sevarin, Markus Fasching, Marco Raffler and Christian Ellersdorfer
Batteries 2023, 9(4), 195; https://doi.org/10.3390/batteries9040195 - 24 Mar 2023
Cited by 5 | Viewed by 2649
Abstract
The crash safety of lithium-ion traction batteries is a relevant concern for electric vehicles. Current passive safety strategies of traction batteries usually come at the cost of their volumetric or gravimetric energy density. This work analyses the influence of the variables cell selection [...] Read more.
The crash safety of lithium-ion traction batteries is a relevant concern for electric vehicles. Current passive safety strategies of traction batteries usually come at the cost of their volumetric or gravimetric energy density. This work analyses the influence of the variables cell selection and orientation within the traction battery on the crash safety of an electric-powered two-wheeler. These two variables do not negatively influence the traction battery’s volumetric or gravimetric energy density in the design process. Metamodels and numerical simulations are used to evaluate the crash safety of an electric-powered two-wheeler’s traction battery in a potentially dangerous crash scenario. The influence of the variable’s cell selection and orientation is evaluated through the internal short circuit risk of the integrated cells. The comparison of the metamodels shows that the cell orientation reduces the internal short circuit risk by up to 51% on average in the analysed crash scenario. The cell selection reduces it only up to 21% on average. The results show that crash safety can be increased in the design process, and a combination with the current protection strategies can increase crash safety further. Full article
Show Figures

Figure 1

71 pages, 52778 KiB  
Review
Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future
by Srinath Belakavadi Sudarshan and Gopal Arunkumar
Sustainability 2023, 15(3), 2813; https://doi.org/10.3390/su15032813 - 3 Feb 2023
Cited by 11 | Viewed by 10123
Abstract
The transportation industry is transitioning from conventional Internal Combustion Engine Vehicles (ICVs) to Electric Vehicles (EVs) due to the depletion of fossil fuels and the rise in non-traditional energy sources. EVs are emerging as the new leaders in the industry. Some essential requirements [...] Read more.
The transportation industry is transitioning from conventional Internal Combustion Engine Vehicles (ICVs) to Electric Vehicles (EVs) due to the depletion of fossil fuels and the rise in non-traditional energy sources. EVs are emerging as the new leaders in the industry. Some essential requirements necessary for the widespread adoption of EVs include sufficient charging stations with numerous chargers, less to no wait time before charging, quick charging, and better range. To enable a quicker transition from ICVs to EVs, commercial organizations and governments would have to put in a mammoth effort, given the low number of installed chargers in developing nations such as India. One solution to lower the waiting time is to have multiple vehicles charging simultaneously, which might involve charging two- and four-wheelers simultaneously, even though their battery voltage ratings differ. This paper begins by providing the details of the power sources for EV charging, the charging levels and connector types, along with the specifications of some of the commercial chargers. The necessity of AC-DC converters in EV charging systems is addressed along with the power quality concerns due to the increased penetration of EVs. Next, a review of the existing research and technology of isolated DC-DC converters for simultaneous charging of EV batteries is provided. Further, several potential isolated DC-DC converter topologies for simultaneous charging are described with their design and loss estimation. A summary of the existing products and projects with simultaneous charging features is provided. Finally, insight is given into the future of simultaneous charging. Full article
Show Figures

Figure 1

17 pages, 5069 KiB  
Article
An Advanced Rider-Cornering-Assistance System for PTW Vehicles Developed Using ML KNN Method
by Fakhreddine Jalti, Bekkay Hajji, Alberto Acri and Michele Calì
Sensors 2023, 23(3), 1540; https://doi.org/10.3390/s23031540 - 31 Jan 2023
Cited by 1 | Viewed by 2782
Abstract
The dynamic behavior of a Powered Two-Wheeler (PTW) is much more complicated than that of a car, which is due to the strong coupling between the longitudinal and lateral dynamics produced by the large roll angles. This makes the analysis of the dynamics, [...] Read more.
The dynamic behavior of a Powered Two-Wheeler (PTW) is much more complicated than that of a car, which is due to the strong coupling between the longitudinal and lateral dynamics produced by the large roll angles. This makes the analysis of the dynamics, and therefore the design and synthesis of the controller, particularly complex and difficult. In relation to assistance in dangerous situations, several recent manuscripts have suggested devices with limitations of cornering velocity by proposing restrictive models. However, these models can lead to repulsion by the users of PTW vehicles, significantly limiting vehicle performance. In the present work, the authors developed an Advanced Rider-cornering Assistance System (ARAS) based on the skills learned by riders running across curvilinear trajectories using Artificial Intelligence (AI) and Neural Network (NN) techniques. New algorithms that allow the value of velocity to be estimated by prediction accuracy of up to 99.06% were developed using the K-Nearest Neighbor (KNN) Machine Learning (ML) technique. Full article
(This article belongs to the Special Issue Pattern Recognition Using Neural Networks)
Show Figures

Figure 1

16 pages, 2318 KiB  
Article
Estimation of Head Accelerations in Crashes Using Neural Networks and Sensors Embedded in the Protective Helmet
by Andrea Bracali and Niccolò Baldanzini
Sensors 2022, 22(15), 5592; https://doi.org/10.3390/s22155592 - 26 Jul 2022
Cited by 3 | Viewed by 2548
Abstract
Traumatic Brain Injuries (TBIs) are one of the most frequent and severe outcomes of a Powered Two-Wheeler (PTW) crash. Early diagnosis and treatment can greatly reduce permanent consequences. Despite the fact that devices to track head kinematics have been developed for sports applications, [...] Read more.
Traumatic Brain Injuries (TBIs) are one of the most frequent and severe outcomes of a Powered Two-Wheeler (PTW) crash. Early diagnosis and treatment can greatly reduce permanent consequences. Despite the fact that devices to track head kinematics have been developed for sports applications, they all have limitations, which hamper their use in everyday road applications. In this study, a new technical solution based on accelerometers integrated in a motorcycle helmet is presented, and the related methodology to estimate linear and rotational acceleration of the head with deep Artificial Neural Networks (dANNs) is developed. A finite element model of helmet coupled with a Hybrid III head model was used to generate data needed for the neural network training. Input data to the dANN model were time signals of (virtual) accelerometers placed on the inner surface of the helmet shell, while the output data were the components of linear and rotational head accelerations. The network was capable of estimating, with good accuracy, time patterns of the acceleration components in all impact conditions that require medical treatment. The correlation between the reference and estimated values was high for all parameters and for both linear and rotational acceleration, with coefficients of determination (R2) ranging from 0.91 to 0.97. Full article
Show Figures

Figure 1

20 pages, 3750 KiB  
Article
Applicability Assessment of Active Safety Systems for Motorcycles Using Population-Based Crash Data: Cross-Country Comparison among Australia, Italy, and USA
by Paolo Terranova, Morgan E. Dean, Cosimo Lucci, Simone Piantini, Trevor J. Allen, Giovanni Savino and Hampton C. Gabler
Sustainability 2022, 14(13), 7563; https://doi.org/10.3390/su14137563 - 21 Jun 2022
Cited by 7 | Viewed by 3399
Abstract
The role of powered two-wheeler (PTW) transport from the perspective of a more sustainable mobility system is undermined by the associated high injury risk due to crashes. Motorcycle-based active safety systems promise to avoid or mitigate many of these crashes suffered by PTW [...] Read more.
The role of powered two-wheeler (PTW) transport from the perspective of a more sustainable mobility system is undermined by the associated high injury risk due to crashes. Motorcycle-based active safety systems promise to avoid or mitigate many of these crashes suffered by PTW riders. Despite this, most systems are still only in the prototype phase and understanding which systems have the greatest chance of reducing crashes is an important step in prioritizing their development. Earlier studies have examined the applicability of these systems to individual crash configurations, e.g., rear-end vs. intersection crashes. However, there may be large regional differences in the distribution of PTW crash configurations, motorcycle types, and road systems, and hence in the priority for the development of systems. The study objective is to compare the applicability of five active safety systems for PTWs in Australia, Italy, and the US using real-world crash data from each region. The analysis found stark differences in the expected applicability of the systems across the three regions. ABS generally resulted in the most applicable system, with estimated applicability in 45–60% of all crashes. In contrast, in 20–30% of the crashes in each country, none of the safety systems analyzed were found to be applicable. This has important implications for manufacturers and researchers, but also for regulators, which may demand country-specific minimum performance requirements for PTW active safety countermeasures. Full article
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan
by Anam Nadeem, Mosè Rossi, Erica Corradi, Lingkang Jin, Gabriele Comodi and Nadeem Ahmed Sheikh
Energies 2022, 15(9), 3054; https://doi.org/10.3390/en15093054 - 21 Apr 2022
Cited by 11 | Viewed by 3960
Abstract
Energy-environmental planning for road transportation involves a vast investigation of vehicles’ technologies and electricity production. However, in developing countries where the public transportation sector is growing quickly, energy-environmental planning is urgently needed. This paper evaluates the future electricity demand, as well as fuel [...] Read more.
Energy-environmental planning for road transportation involves a vast investigation of vehicles’ technologies and electricity production. However, in developing countries where the public transportation sector is growing quickly, energy-environmental planning is urgently needed. This paper evaluates the future electricity demand, as well as fuel consumption and CO2 emissions reduction, due to the operation of an expected increasing number of electric vehicles (EVs) in Pakistan. The planning of EVs up to 2040 is performed with the ePop simulator that calculates the future EVs’ electricity demand, while EnergyPLAN® assesses the expected new power capacities. Two scenarios are investigated by penetrating 30% and 90% of 2/3 electric wheelers and cars by 2030 and 2040 compared to 2020, respectively. To fulfill the expected energy demand, PV in the daytime and the national electric grid at nighttime are here considered. Finally, a 9 GW of PV capacity is needed to satisfy the EVs’ electricity demand of 14.7 TWh/year, and a 0.7 GW power plants capacity is needed to fulfill 4.7 TWh/year by 2040. Consequently, EVs’ charging scenarios at daytime and nighttime are assessed. Results indicated a total reduction of 10.4 Mtonnes of CO2 emissions and 9.1 Mtoe of fuel consumption by 2040 in the transportation sector. Full article
(This article belongs to the Special Issue Electric Vehicle Charging Networks)
Show Figures

Figure 1

Back to TopTop