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Abstract: Traumatic Brain Injuries (TBIs) are one of the most frequent and severe outcomes of a
Powered Two-Wheeler (PTW) crash. Early diagnosis and treatment can greatly reduce permanent
consequences. Despite the fact that devices to track head kinematics have been developed for sports
applications, they all have limitations, which hamper their use in everyday road applications. In
this study, a new technical solution based on accelerometers integrated in a motorcycle helmet is
presented, and the related methodology to estimate linear and rotational acceleration of the head
with deep Artificial Neural Networks (dANNs) is developed. A finite element model of helmet
coupled with a Hybrid III head model was used to generate data needed for the neural network
training. Input data to the dANN model were time signals of (virtual) accelerometers placed on the
inner surface of the helmet shell, while the output data were the components of linear and rotational
head accelerations. The network was capable of estimating, with good accuracy, time patterns of
the acceleration components in all impact conditions that require medical treatment. The correlation
between the reference and estimated values was high for all parameters and for both linear and
rotational acceleration, with coefficients of determination (R2) ranging from 0.91 to 0.97.

Keywords: traumatic brain injuries (TBIs); linear acceleration; rotational acceleration; safety; helmet
sensors; neural networks

1. Introduction

Despite attempts to minimize the incidence and severity of head injuries with im-
proved protective equipment, closed-head impacts represent the highest percentage of
Traumatic Brain Injuries (TBIs) diagnosed each year among the civil population in the
United States (US) [1]. In 2017, 61,000 TBI-related deaths occurred in the United States, and
motor vehicle crash was the second most relevant category after suicide [2]. In addition,
TBIs, regardless of severity level, can lead to difficulties in performing daily activities, such
as gait impairment [3]. Worldwide, Vulnerable Road Users (VRUs) account for more than
half of all global deaths in road crashes (the events related to two- and three-wheeled vehi-
cles represent 26% of all deaths) [4]. Therefore, models capable of properly estimating TBI
are needed to perform real-time estimation of the injuries and thus to improve protective
devices.

Currently, TBI risk assessment is made using criteria coupling a biomechanical metric
and an injury risk function. There are two types of biomechanical metrics: based on
kinematic parameters of the head or on the brain tissue deformation during the impact.
Most of the existing injury criteria are based on the head kinematics since measurements,
either on a dummy or a volunteer, are easier than measuring brain tissue response. An
overview of these metrics was provided by Gabler et al. [5]. The latest findings on the key
role played by rotational acceleration on brain injuries led the United Nations Economic
Commission for Europe to revise the ECE 22.05 helmet homologation standard [6]. The
new regulation, ECE 22.06, took effect on January 2021 and introduced new tests for
homologation also based on the rotational acceleration [7]. Several studies [8–14] were
conducted to improve the knowledge of TBI and to develop a method or an injury criterion
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to estimate injuries based on kinematic parameters. The possibility of estimating the linear
and rotational accelerations of the head during a crash becomes key to predicting TBIs,
but the estimation process is extremely difficult in real-world conditions (e.g., impacts
between football players, motorcyclists’ road crashes, skiers’ falls). Since a helmet is the
most common solution to mitigate TBIs, several technical solutions used the helmet as
part of the measuring system. Systems incorporating microelectromechanical system
(MEMS) inertial sensors into helmets were developed and employed, with the Head Impact
Telemetry System (HITS) [15] being one of the earliest and most widely used [11,16–21].
The HIT system is composed of six single-axis accelerometers oriented normal to the skull,
and it is specifically designed to measure head accelerations by elastically coupling the
accelerometers in contact with the head, isolating them from the helmet shell. The linear
acceleration is estimated with an optimization method, while the rotational acceleration is
computed assuming a pivot point located about 10 cm below the head Centre of Gravity
(CoG). A development of HIT with a new sensor layout resulted in the 6DOF (Degrees
of Freedom) HIT measurement device [22], providing both the linear and the rotational
accelerations and iteratively solving the optimization problem [12,20,23].

The most recent helmeted device was the gForce Tracker (GFT) [24], characterized by
a triaxial accelerometer and a triaxial gyroscope embedded inside a casing attached to the
helmet. This technology provides the maximum values of the resultant linear acceleration
and rotational velocity obtained from a power fit regression. Other devices require a rigid
connection to the head such as mount-guards, earplugs and bands. These devices provide
more accurate data at the expense of comfort and user-friendliness, and they may cause an
acceptability problem to end users such as motorcyclists or bikers.

Although the indirect identification of the head kinematics by using helmet dynamics
was extensively deepened in previous research, all measurement devices fitted to the helmet
and capable of estimating kinematic parameters as a function of time require sensors to
be in contact with the head to overcome the difficulties due to the relative movement
between head and helmet. The helmet rotation in relation to the head is primarily affected
by the coupling of different head and helmet sizes as well as by a combination of padding
compression, chin strap tension, and friction between the helmet and the head. This
dependency produces different rotational velocities and rotational acceleration sustained
by the helmet and head during an impact. Additionally, the presence of the foam component
between the helmet outer shell and the head significantly reduces its linear acceleration
compared to the helmet one. Manoogian et al. [25] demonstrated that the helmet peak
linear acceleration is approximately 10 times the head peak acceleration. More recently,
Joodaki et al. [26] found that the peak linear acceleration of the helmet was 2/5 times
greater than the head one, while the helmet peak angular velocity was greater or smaller
than the head one according to the impact conditions; in some tests, the helmet rotated
more than 30 deg relative to the head.

The technical solution investigated in this paper is based on a novel sensing system
characterized by a new layout of the accelerometers, which are placed on the inner side of
the helmet shell. In this configuration, the signal processing for the determination of the
head kinematics cannot rely on simplifying assumptions, as typical of previous studies.
The high number of parameters influencing head kinematics increases the complexity level
and suggests the use of deep learning techniques for the estimation task.

At present, there are a limited number of applications of deep Artificial Neural Net-
works (dANNs) for identifying the impact load history of structures [27–29]. dANNs are
computing models used for information processing that only need data for supervised
learning. They are often used to identify and model a complex functional relationship or
pattern between input and output data with a black-box approach. ANNs can detect com-
plex non-linear relationships between variables through their training phase. Nowadays,
several software offer packages to develop ANNs in an easy and friendly way with multiple
training algorithms [30]. However, ANNs also have some disadvantages: performances
achieved are highly reliant on the quantity and quality of data given as input and output
to train the networks; collecting the necessary amount of data to train the network can be
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costly and time-consuming [31]. Staszewski [28] and Ghajari [27] used an dANN model to
identify the impact load acting on a composite plate; specifically, in Ghajari [27], the effects
of signal features, network architectures and sensor placements on the performance of the
dANN model were analyzed. Most recently, Zhou [29] proposed a novel impact load identi-
fication method of non-linear structures by using deep Recurrent Neural Networks (RNNs),
verifying this method in three non-linear cases: damped Duffing oscillator, non-linear
three-degree-of-freedom system and non-linear composite plate. Finally, deep learning
neural networks techniques were recently implemented to recognize human activities from
wearable sensors [32,33]. To date, there is no application for the identification of a body
(e.g., head) acceleration with sensors embedded in a second body (e.g., helmet), which
exhibits a relative movement to the first one.

This paper contributes to the methodological development of a device for the real-time
estimation of TBIs. Specifically, it proposes a novel method to estimate, as time functions,
the components of head linear and rotational accelerations from signals provided by twelve
single-axis accelerometers embedded in the outer shell of a motorcycle helmet. The sensors
are organized in orthogonally oriented pairs at six different locations, with their sensing
axis tangential to the helmet, as described in [34]. The system’s non-linearity at the helmet–
head interface is modeled within the estimation process using deep learning ANNs. They
were trained using data collected from finite element simulations, which is a time-saving
and cost-effective technique compared to carrying out the same number of experimental
tests.

2. Materials and Methods

Head impact scenarios were defined considering previous research on head impacts.
A wide and representative set of impact conditions was defined and reproduced with a
finite element model to generate the necessary datasets. The Artificial Neural Network
architecture was defined to optimize the estimation of head kinematics. The procedure
implemented to develop and validate the technology is described at the end of this section.

2.1. Head Impact Scenarios

A head impact scenario can be defined by two different variables: relative position
between the helmeted head and the ground and the impact speed vector. Considering
a reference scenario (Figure 1a) where the helmeted head was oriented such that the
transverse plane of the head was parallel to the ground, the relative position in a generic
scenario was defined by sequentially rotating the ground around the X-axis and Y-axis,
while the helmeted head position was unchanged. Different ranges were considered for
these two parameters: the angle β around the X-axis was varied between −100◦ and 100◦,
but the angle γ around the Y-axis was varied between −125◦ and 115◦.

The impact speed vector was defined through its tangential and normal components
to the ground and the orientation of the tangential component in the ground plane. Vehicle
impact speed varies between 20 and 88 km/h in urban accidents [35]. Different studies
reproducing typical oblique impacts in motorcycle crashes through experimental impact
tests [36] or FE analyses [27,37] observed that the angular kinematics of the head remained
quite constant at high tangential speeds. Cernicchi et al. [38] simulated motorcycle head
impacts using two different Vn magnitudes: 2.20 and 5.66 m/s and a tangential velocity
ranging from 0 to 60 m/s. They observed that at constant Vn, the angular acceleration peak
did not vary above a specific Vt threshold (V∗t ). However, as Vn increased, the value of
V∗t seemed also to increase (for Vn = 2.20 m/s, V∗t = 4.21 m/s, while for Vn = 5.66 m/s,
V∗t = 8.57 m/s). Based on previous research, the magnitude of the impact speed ranged
between 8 and 78 km/h to reproduce real-world head impacts in urban crashes. This
magnitude was obtained by combining the normal speed component Vn, which ranged
between 2 and 12 m/s, and the tangential speed component Vt, which varied between 3
and 18 m/s. A range of 360◦ was considered for the orientation of the tangential component
in the ground plane (angle θ).
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Figure 1. (a) Start of the first head-impact scenario; (b) scatter plot of the shell mesh nodes (blue
points) and the impact points (black points) for the entire training dataset.

The latter five parameters (rotational angles around X-axis and Y-axis, normal and
tangential impact speed components and tangential speed orientation) were combined
using the Latin Hypercube Sampling (LHS) method [39] to define three different datasets
of, respectively, 2000, 200 and 300 simulations. The purpose of the three datasets will be
clarified later in Section 3. The impact points on the helmet outer shell for the training
dataset of 2000 simulations are shown in Figure 1b.

2.2. Finite Element Head and Helmet Model

Head impact scenarios were simulated using a Hybrid III (HIII) Head finite element
model (https://biocorellc.com/finite-element-models/) (accessed on 21 July 2022) dis-
tributed by the Biomechanics and Research, LLC (Biocore) [40], which was coupled with
an AGV X3000 full-face helmet provided by the Dainese company.

The original HIII model included both the head and neck, but only the head model
was used in this study, in accordance with the ECE 22.06 standard [7]. The HIII head was
previously validated by the University of Virginia Center for Applied Biomechanics [40],
simulating the NHTSA Head Drop Certification Test. The present head includes three main
parts: skin rubber layer, rigid skull and head mount. Both the head skin and mount used
hexahedral solid elements, but the quadrilateral shell elements were used to mesh the rigid
skull.

The helmet model consists of an outer shell, an energy-absorbing liner, a chin pad
and a chin strap. Further information about the helmet finite element model used in this
paper can be found in [34]. This model was updated, including the accelerometers of
the measurement device. Further information about the procedure adopted to select the
accelerometer locations can be found in [34].

2.3. Neural Networks

Recurrent neural networks [41] are one of the most known types of Artificial Neural
Networks, capable of processing sequential data or time series data. The ability to use
feedback loops, commonly described as "memory", ensures the output is influenced by
both previous and current inputs. The process of carrying memory forward is described
mathematically:

ht = fh(U ∗ xt + V ∗ ht−1) (1)

ot = fo(W ∗ ht) (2)

where xt is the input at time step t, ht stores the values of the hidden units at time step t and

https://biocorellc.com/finite-element-models/)
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ot is the output at time step t. fh and fo are the hidden and output unit activation functions.
They define how the weighted sum of the input is transformed into an output; commonly
used activation functions are logistic sigmoid, rectified linear (ReLU) and Hyperbolic
Tangent (Tanh). The weight matrices U, W and V are determined with supervised training
of the RNN, but it requires a huge amount of data (Figure 2a). A relevant problem in RNNs
concerns long-term memory: input information (xt′) persists for a short time, but it cannot
be kept for a long period of time due to the vanishing gradient problem.
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Figure 2. (a) Recurrent Neural Network; (b) Long Short Term Memory (LSTM) cell.

The long-term dependency was improved with the Long Short-Term Memory (LSTM)
structure, introduced by Hochreitener and Schmidhurber [42] for the first time in 1997.
They replaced the typical recurrent unit of RNNs with a more complex gated recurrent unit.
The LSTM used in this study is a standard LSTM, and it is shown in Figure 2b. The LSTM
forward propagation process is described mathematically:

ft = σ(W f ∗ [ht−1, xt] + b f ) (3)

it = σ(Wi ∗ [ht−1, xt] + bi) (4)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo ∗ [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

where x and h are the input and the output, W the weight matrices and b the biases; σ
and tanh are the logistic sigmoid and Tanh activation functions. The LSTM cell can decide
whether to discard or keep the past information using the variable “Cell State” (C). With
a value of C equal to 1, the information is completely kept, while a 0 means that the
information is discarded. The signals of the accelerometers embedded in the helmet are
the inputs to the LSTM network, while the outputs are the components of the linear or
rotational acceleration of the head. Two separate but identical networks were used for the
linear and rotational components to improve the estimation results.

A simple Neural Network with a single LSTM layer did not provide good perfor-
mances in the impact force history identification, as stated by Zhou [29]. Assuming that
the same conclusion can be considered for the estimation of impact acceleration, the deep
neural network architecture used by Zhou [29] was the starting point for this study. Some
improvements were identified to maximize the performance for the specific problem, and
the final architecture is shown in Figure 3. It consists of a Bidirectional Long Short-Term
Memory (BLSTM) layer, two LSTM layers and two Fully Connected (FC) layers. Basically, a
BLSTM layer consists of a forward LSTM layer and a backward LSTM layer. This provides
the opportunity to consider both past and future responses of sequential inputs. BLSTM
and the two LSTM layers have 200 cells per layer, the first FC layer has 200 hidden units,
but the last FC layer has a number of hidden units equal to the number of outputs. The
over-fitting was prevented using the dropout operation to each non-recurrent connection, as
shown in the dashed lines in Figure 3. From here onwards, this neural network architecture
will be referred to as deep Artificial Neural Network (dANN).
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Figure 3. Deep Artificial Neural Network (dANN) architecture.

3. Identification Steps

STEP 1—Development of simulation datasets. Three datasets of simulations repro-
ducing real-world head impacts in urban crashes were implemented with the procedure
explained in Section 2.1. The first dataset consisted of 2000 simulations, and the second and
the third ones consisted of, respectively, 200 and 300 simulations. The first dataset was used
for training the network, while the second and the third datasets were used, respectively,
for validation and testing purposes.

STEP 2—Neural Networks design. Two deep neural networks with the same structure
described in Section 2.3 were implemented. The networks had the same inputs, i.e.,
accelerations from the accelerometers embedded in the helmet’t outer shell, but the outputs
differed: the three head linear acceleration components were used as outputs of the network
A and the three head rotational acceleration components were the outputs of the network B.
From here onwards, the neural networks estimating linear and rotational accelerations will
be referred to as A and B, respectively.

STEP 3—Data preparation. Accelerations of the helmet outer shell were filtered using
a SAE108 filter, but both the linear and rotational head accelerations were filtered with a
CFC1000 filter as suggested by ISO 6487:2002 standard [43].

STEP 4—Model training. Networks A and B were fed with the inputs and outputs
described in STEP 2. Weights and biases were optimized using a back-propagation through
time (BPTT) [44] algorithm. The Root Mean Square propagation (RMSprop) [45] was
selected as the optimizer. RMSprop is a Gradient Descent-based Learning Algorithm,
which adapts, at each iteration, the learning rate of each parameter individually using a
subset of the training data. A different subset, called a mini-batch, is used at each iteration.
A mini-batch size equal to 16 was chosen to implement this process. The initial learning rate
was 0.001, and the maximum epochs used for the training were 1000. After each training
epoch, the Root-Mean-Squared-Error (RMSE) on the validation data was monitored. If
the RMSE did not decrease after 30 consecutive epochs, the training process was stopped.
Every 45 epochs, the learning rate was reduced by a factor of two.

STEP 5—Model performance assessment. Helmet accelerations from the test dataset
were used as input for both the NNs A and B, and the estimated linear and rotational
head acceleration components were compared to the target ones. Three parameters were
introduced to assess the model performance: peak error, Head Injury Criterion (HIC) [46]
and Rotational Injury Criterion (RIC) [12]. The assessment parameters were applied to both
the reference head accelerations (extracted from the simulations) and the head accelerations
estimated with the dANN. For each of them, the Pearson coefficient R2 was calculated.
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HIC [46] is the most commonly used metric for evaluating head and brain injury risk;
it is currently required by the UN/ECE 22.06 standard [7] used in helmet regulation.

HIC = max
{
(t2 − t1)

[
1

t2 − t1

∫ t2

t1

|a(t)dt|
]2,5}

(9)

where a is the magnitude of the resultant head linear acceleration, and t1 and t2 are,
respectively, the initial and final integral times over which HIC is calculated (t1 and t2 are
selected to maximize HIC).

RIC was proposed by Kimpara et al. [12]; it was formulated similarly to HIC by
replacing the linear acceleration term with angular acceleration.

RIC = max
{
(t2 − t1)

[
1

t2 − t1

∫ t2

t1

|α(t)dt|
]2,5}

(10)

where α is the magnitude of the resultant head linear acceleration. For t1 and t2, the same
considerations made for the HIC are applicable.

In this paper, no consideration about the correlation between the HIC / RIC and head
injuries will be analyzed. These criteria were selected exclusively as parameters to compare
the estimated and target curves.

4. Results
4.1. Training Dataset

Training, validation and testing datasets were generated as described in Section 2.1
and the five parameters used to define the impact simulations were combined using the
LHS. Initially the 2000 values of each parameter were sampled uniformly within their
ranges. With this solution, most of the impact points were in the top outer shell area, but
the left, right, back and chin areas had a poor spatial sampling. Therefore, the parameters
that contributed to spreading the impact points over the outer shell surface (i.e., α and β)
were modified, as shown in Figure 4a for β. Angle distributions were modified to have
lower frequencies between −20◦ and 20◦ than between −100◦ and −60◦ or 60◦ and 100◦.
The new distribution of the parameters created a uniform spatial sampling over the entire
outer shell surface of the helmet, as shown in Figure 1.

Figure 4b,c show, respectively, the distribution of the impact speed and the angle
between the impact speed direction and the ground. Most of the impact simulations
are characterized by an impact speed magnitude within the range of 8–16 m/s and an
inclination angle within the range of 16–45◦.
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Figure 4. Distribution of (a) β angle values, (b) the impact speed magnitude, (c) the angle between
the impact speed direction and the ground for the training dataset simulations.

4.2. Head Linear Acceleration

The deep Artificial Neural Networks used to estimate the head linear acceleration
components were trained, as described in STEP 4 of Section 3. LSTM and BLSTM layers
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and the first fully-connected layer had 200 hidden units. Dropout probability was set equal
to 0.5 and learning rate equal to 0.001. Two examples of the estimated linear acceleration
are shown in Figure 5: the plot in the rightmost column shows the resultant accelerations
obtained by combining the three components plotted in previous columns.
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Figure 5. Linear acceleration prediction using the deep neural network model.

The dANN reproduces the acceleration component’s shape and the peak values in
both cases well (Figure 5). Peak values and HIC were calculated on the entire testing dataset
(300 simulations). Scatter plots in Figure 6 show the comparison between peak values of
the target and estimated acceleration components. Peaks of the Z-component had the best
overall performance with R2 = 0.972. Parameters calculated on the resultant acceleration,
i.e., peak value and HIC, had similar R2 high values, confirming the strong learning ability
of dANNs (Figure 7).
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4.3. Head Rotational Acceleration

The dANN used to estimate the head rotational accelerations had the same architecture
as the dANN described in Section 4.2. Figure 8 shows the rotational accelerations for the
same cases reported in Figure 5. Rotational acceleration components of shape and peak
values were estimated with a good approximation (Figure 9). Rotational peak values
around the Y-axis had the best performances, with R2 = 0.908. R2 coefficients for the peak
values around the X and Z axes were, respectively, 0.800 and 0.783.
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Peak values of the resultant acceleration and RIC have an R2 correlation coefficient,
respectively, of 0.771 and 0.687. (Figure 10). For both parameters, the regression line and
the symmetry axis largely diverge for high values of acceleration.

Testing data
Regression line
Symmetry axis

=0.772 =0.687

(a) (b)

Figure 10. Correlation between (a) target and predicted peak for the resultant rotational acceleration
and (b) target and predicted RIC.

5. Discussions

The indirect head kinematics estimation, through sensors embedded in protective
devices and far from the head, is the only way to enable the real-time evaluation of TBIs
without reducing the acceptability of the protective devices by the end users. This study
presents the development and assessment of a new methodology, based on deep neural
networks applied to a sensor system, to estimate the head kinematics with sensors attached
to the inner surface of a helmet’s outer shell.

Different designs for the neural network used to estimate linear and rotational accel-
erations were tested. The analyzed architectures differed in the number of BLSTM and
LSTM layers. Table 1 reports the designs of the networks and their performances for the
rotational acceleration. R2 for peak values and RIC were used to compare the performances
of the different deep neural networks investigated. DANN0 has the architecture and
hyperparameters suggested by Zhou [29]; it was trained using the Adam optimizer, i.e.,
the same used by Zhou in his study. Network performances were not acceptable since
values of R2 ranged between 0.168 and 0.278 for the estimation of peak values. A set
of changes (network architecture integrated with an FC layer, learning rate decreased to
0.001, hidden units decreased to 100, and the Adam optimizer replaced with the RMSprop
one) led to great improvements. Progressive increase in Hidden Unit values (100, 200
and 300; DANN1-DANN3) generated a slight improvement in the performances against
an increase in training time. For instance, using 300 hidden units instead of 200 did not
produce considerable improvement (as described in the next paragraphs, results are mainly
affected by the lack of data for high acceleration values); therefore, 200 hidden units were
used to analyze the learning rate influence. The worst results were obtained by decreasing
or increasing the learning rate, as shown, respectively, by model DANN4 and DANN5.
Other more complex architectures were investigated (models DANN6-DANN9), but none
of them considerably improved the performances to justify the adoption of a more complex
architecture against an increase in training time. BLSTM, 2LSTM and 2FC architecture
were the most suitable for head kinematics estimation, and it was selected as the preferred
one. DANN2 (Table 1) was used both to present the results shown in Section 4 and for the
considerations listed below.
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Table 1. Effect of learning rate, hidden units and architecture in the peak values and RIC estimation.

Architecture Learning
Rate

Hidden
Units R2 Peak Value R2 RIC

αx αy αz Resultant

DANN0 BLSTM and
2LSTM [29] 0.005 128 0.248 0.278 0.168 0.192 0.404

DANN1
BLSTM and
2LSTM and

2FC
0.001 100 0.776 0.882 0.795 0.755 0.672

DANN2
BLSTM and
2LSTM and

2FC
0.001 200 0.800 0.908 0.783 0.772 0.687

DANN3
BLSTM and
2LSTM and

2FC
0.001 300 0.802 0.927 0.827 0.783 0.681

DANN4
BLSTM and
2LSTM and

2FC
0.01 200 0.775 0.849 0.759 0.746 0.679

DANN5
BLSTM and
2LSTM and

2FC
0.0001 200 0.689 0.016 0.231 0.529 0.514

DANN6
BLSTM and
3LSTM and

2FC
0.001 200 0.817 0.901 0.834 0.782 0.710

DANN7
2BLSTM

and 3LSTM
and 2FC

0.001 200 0.791 0.917 0.834 0.791 0.705

DANN8
3BLSTM

and 2LSTM
and 2FC

0.001 200 0.804 0.890 0.765 0.772 0.650

DANN9 4LSTM and
2FC 0.001 200 0.782 0.900 0.780 0.772 0.643

The overall correlation between the reference and estimated head accelerations was
higher for the linear accelerations than the rotational ones (i.e., R2 = 0.946 vs. R2 = 0.772
for the resultant). Specifically, rotational acceleration estimation worsens as the absolute
value of the acceleration peak increases. As shown in Figure 10, the regression line and
the symmetry axis diverge for high values of acceleration. This did not happen for the
parameters of the resultant linear acceleration (Figure 7), as the regression line and the
symmetry axis remained almost parallel, even for high values of acceleration. The increase
in the identification error was expected since rotational acceleration is strongly influenced
by friction between head and helmet and the system behavior is more complex to model.

Looking at the comparison between the target and estimated peak values of the
resultant rotational acceleration (Figure 10a), the network underestimates the target values
starting from a target peak of 40 krad/s2. This is confirmed by a smaller slope of the
regression line compared to the symmetry axis. The network performance is affected by the
small number of impacts with high rotational acceleration in the datasets (143 out of 2000 in
the training dataset, 28 out of 300 in the testing dataset with a peak of rotational acceleration
exceeding 40 krad/s2). This result is a consequence of the procedure used to generate the
databases: the position of the helmet with respect to the ground and the impact speed
is defined, and the accelerations of the head–helmet system are a consequence of these
parameters. Nonetheless, the network performances need to be properly framed within the
physiological limits of the human body and take into account the overall objective of the
research (i.e., early detection and treatment of TBIs). From this context, acceleration values,
which cause immediate and permanent brain damage, should be clearly excluded.

Brain injury tolerance based on head rotational acceleration was investigated in numer-
ous studies. Pike [47] proposed a peak angular head acceleration of 9 krad/s2 associated
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with a 10% risk of Mild Traumatic Brain Injury (MTBI) based on 27000 head impacts
recorded from American football players at the collegiate level. Zhang et al. [48] proposed
a maximum resultant rotational acceleration peak of 7.9 krad/s2 for an 80% probability of
sustaining an MTBI. Rotational acceleration peak was also connected to specific TBI such as
concussion and DAI. The first type of injury was analyzed by Ommaya et al. [8], which sug-
gested an angular acceleration tolerance of 1.8 krad/s2 for a 50% probability of concussion.
Rowson et al. [20] proposed a tolerance value of 6383 krad/s2 for the same probability of
concussion. Finally, Margulies and Thibault [10] proposed an angular acceleration of 16
krad/s2 as tolerance to moderate to severe DAI for the human head subjected to a lateral
motion. These results support the exclusion of impacts with peak rotational acceleration
above 40 krad/s2 from the assessment of the proposed method, as this threshold is more
than double the highest value cited in [10]. With the redefined dataset, the estimation of
peak values is improved, and R2 exceeded 0.9 for each component. The new scatter plots for
peak values of the acceleration components, the resultant acceleration and RIC are shown
in Figures 11 and 12. Considering Figures 7 and 12, a slight systematic underestimation of
the accelerations is still evident when the absolute peak value increases. Future exploitation
of this method in a real-time system implemented into a helmet should include a proper
correction to adjust for these errors.

Testing data
Regression line

y

y z

z

(a) (b) (c)
=0.923 =0.922 =0.913

Figure 11. Correlation between target and predicted peak rotational acceleration for the reduced
testing dataset (exclusion of impacts with peak rotational acceleration above 40 krad/s2): (a) αx;
(b) αy; (c) αz.

=0.925

Testing data
Regression line
Symmetry axis

=0.914

(a) (b)

Figure 12. Correlation between (a) target and predicted peak for the resultant rotational acceleration
and (b) target and predicted RIC for the reduced testing dataset (exclusion of impacts with peak
rotational acceleration above 40 krad/s2).

A considerable amount of data is usually needed to obtain acceptable results from a
trained deep neural network. Zhou et al. [29], in the identification of the impact load history
acting on a composite plate, have used 10,000 signals to train their dANN, compared to
2000 acceleration signals used in this study. All simulations were run on a 72-cpu cluster
and each simulation took approximately 20 min, for 28 days of total computational time.
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As well as the performances of the dANNs, calculation time is really important for a future
industrial application of this method. Results proved that the indirect identification of
head kinematics history through dANNs, fed with data from accelerometers embedded
in the helmet, can be successfully accomplished using a training dataset of limited size.
The use of the LHS method to combine the factors described in Section 2.1 and create a
well-distributed dataset of simulations for the training process was a relevant contribution
to the methodology, as it avoided data overfitting and selection bias.

6. Conclusions

In this paper, a novel method to identify the head linear and rotational acceleration
time signals from acceleration data, acquired by single-axis sensors embedded in the outer
shell of a helmet and processed with deep learning techniques, is presented. The results
support the following major findings:

• Neural Networks: LSTM Neural Networks are capable of reproducing the underlying
non-linear behavior of the model. A specific network was defined to solve the problem,
and the related hyperparameters were determined. This result enables real-time
prediction of head kinematics and paves the road to the application of specific metrics
for TBI estimation.

• Dataset:

– The training, validation and testing datasets can be obtained from a virtual
environment using state-of-the-art tools (e.g., Finite Elements). The approach
used for the generation of datasets greatly reduces time requirements and costs
compared to experimental tests;

– An adequate size for the datasets was determined, which may be used for guid-
ance in further applications. The networks can be trained with a limited amount
of data because of the well-distributed dataset generated using the LHS method
to combine the parameters defining our case study;

– Both the use of virtual testing tools and the application of the LHS method to
generate the simulation inputs facilitate the industrial application of the method-
ology.

• Prediction: The results proved the high accuracy of the trained networks, as a high
correlation coefficient was obtained for all the parameters used in the assessment
stage.

To the best knowledge of the authors, this is the first application of neural networks
for the estimation of a body (head) acceleration with sensors embedded in a second body
(helmet), considering that the two bodies are not fully connected. The results proved the
feasibility of the proposed methodology. The next steps will focus on the experimental
validation of the findings highlighted in this study.
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