Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = power signatures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 - 1 Aug 2025
Viewed by 292
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

29 pages, 959 KiB  
Review
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling
by Amr Elguoshy, Hend Zedan and Suguru Saito
Metabolites 2025, 15(8), 514; https://doi.org/10.3390/metabo15080514 - 1 Aug 2025
Viewed by 229
Abstract
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted [...] Read more.
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies—including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks—are advancing cancer research. Specifically, we highlight three major applications of ML–metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer)
Show Figures

Figure 1

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 157
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 270
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

45 pages, 770 KiB  
Review
Neural Correlates of Burnout Syndrome Based on Electroencephalography (EEG)—A Mechanistic Review and Discussion of Burnout Syndrome Cognitive Bias Theory
by James Chmiel and Agnieszka Malinowska
J. Clin. Med. 2025, 14(15), 5357; https://doi.org/10.3390/jcm14155357 - 29 Jul 2025
Viewed by 343
Abstract
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies [...] Read more.
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies to determine whether burnout is accompanied by reproducible brain-function alterations that justify disease-level classification. Methods: Following PRISMA-adapted guidelines, two independent reviewers searched PubMed/MEDLINE, Scopus, Google Scholar, Cochrane Library and reference lists (January 1980–May 2025) using combinations of “burnout,” “EEG”, “electroencephalography” and “event-related potential.” Only English-language clinical investigations were eligible. Eighteen studies (n = 2194 participants) met the inclusion criteria. Data were synthesised across three domains: resting-state spectra/connectivity, event-related potentials (ERPs) and longitudinal change. Results: Resting EEG consistently showed (i) a 0.4–0.6 Hz slowing of individual-alpha frequency, (ii) 20–35% global alpha-power reduction and (iii) fragmentation of high-alpha (11–13 Hz) fronto-parietal coherence, with stage- and sex-dependent modulation. ERP paradigms revealed a distinctive “alarm-heavy/evaluation-poor” profile; enlarged N2 and ERN components signalled hyper-reactive conflict and error detection, whereas P3b, Pe, reward-P3 and late CNV amplitudes were attenuated by 25–50%, indicating depleted evaluative and preparatory resources. Feedback processing showed intact or heightened FRN but blunted FRP, and affective tasks demonstrated threat-biassed P3a latency shifts alongside dampened VPP/EPN to positive cues. These alterations persisted in longitudinal cohorts yet normalised after recovery, supporting trait-plus-state dynamics. The electrophysiological fingerprint differed from major depression (no frontal-alpha asymmetry, opposite connectivity pattern). Conclusions: Across paradigms, burnout exhibits a coherent neurophysiological signature comparable in magnitude to established psychiatric disorders, refuting its current classification as a non-disease. Objective EEG markers can complement symptom scales for earlier diagnosis, treatment monitoring and public-health surveillance. Recognising burnout as a clinical disorder—and funding prevention and care accordingly—is medically justified and economically imperative. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

18 pages, 392 KiB  
Article
Semantic Restoration of Snake-Slaying in Chan Buddhist Koan
by Yun Wang and Yulu Lv
Religions 2025, 16(8), 973; https://doi.org/10.3390/rel16080973 - 27 Jul 2025
Viewed by 321
Abstract
In the Chan Buddhism koan (gong’an 公案) tradition, the act of “slaying the snake” functions as a signature gesture imbued with complex, historically layered cultural meanings. Rather than merely examining its motivations, this paper emphasizes tracing the semantic transformations that this motif has [...] Read more.
In the Chan Buddhism koan (gong’an 公案) tradition, the act of “slaying the snake” functions as a signature gesture imbued with complex, historically layered cultural meanings. Rather than merely examining its motivations, this paper emphasizes tracing the semantic transformations that this motif has undergone across different historical contexts. It argues that “snake-slaying” operated variously as an imperial narrative strategy reinforcing ruling class ideology; as a form of popular resistance by commoners against flood-related disasters; as a dietary practice among aristocrats and literati seeking danyao (elixirs) 丹藥 for reclusion and transcendence; and ultimately, within the Chan tradition, as a method of spiritual cultivation whereby masters sever desires rooted in attachment to both selfhood and the Dharma. More specifically, first, as an imperial narrative logic, snake-slaying embodied exemplary power: both Liu Bang 劉邦 and Guizong 歸宗 enacted this discursive strategy, with Guizong’s legitimacy in slaying the snake deriving from the precedent set by Liu Bang. Second, as a folk strategy of demystification, snake-slaying acquired a moral aura—since the snake was perceived as malevolent force, their slaying appeared righteous and heroic. Finally, as a mode of self-cultivation among the aristocracy, snake-slaying laid the groundwork for its later internalization. In Daoism, slaying the snake was a means of cultivating the body; in Chan Buddhism, the act is elevated to a higher plane—becoming a way of cultivating the mind. This transformation unfolded naturally, as if predestined. In all cases, the internalization of the snake-slaying motif was not an overnight development: the cultural genes that preceded its appearance in the Chan tradition provided the fertile ground for its karmic maturation and discursive proliferation. Full article
29 pages, 3064 KiB  
Review
Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Junctions: Recent Advances and Applications
by Hyunwook Song
Crystals 2025, 15(8), 681; https://doi.org/10.3390/cryst15080681 - 26 Jul 2025
Viewed by 379
Abstract
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing [...] Read more.
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing its development from foundational principles to the latest advances. We begin with the theoretical background, detailing the mechanisms by which inelastic tunneling processes generate vibrational fingerprints of molecules, and highlighting how IETS complements optical spectroscopies by accessing electrically driven vibrational excitations. We then discuss recent progress in experimental techniques and device architectures that have broadened the applicability of IETS. Central focus is given to emerging applications of IETS over the last decade: molecular sensing (identification of chemical bonds and conformational changes in junctions), thermoelectric energy conversion (probing vibrational contributions to molecular thermopower), molecular switches and functional devices (monitoring bias-driven molecular state changes via vibrational signatures), spintronic molecular junctions (detecting spin excitations and spin–vibration interplay), and advanced data analysis approaches such as machine learning for interpreting complex tunneling spectra. Finally, we discuss current challenges, including sensitivity at room temperature, spectral interpretation, and integration into practical devices. This review aims to serve as a thorough reference for researchers in physics, chemistry, and materials science, consolidating state-of-the-art understanding of IETS in molecular junctions and its growing role in molecular-scale device characterization. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

29 pages, 2815 KiB  
Review
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics
by Seungah Lee, Nayra A. M. Moussa and Seong Ho Kang
Nanomaterials 2025, 15(15), 1153; https://doi.org/10.3390/nano15151153 - 25 Jul 2025
Viewed by 349
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of [...] Read more.
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies. Full article
Show Figures

Figure 1

8 pages, 4452 KiB  
Proceeding Paper
Synthetic Aperture Radar Imagery Modelling and Simulation for Investigating the Composite Scattering Between Targets and the Environment
by Raphaël Valeri, Fabrice Comblet, Ali Khenchaf, Jacques Petit-Frère and Philippe Pouliguen
Eng. Proc. 2025, 94(1), 11; https://doi.org/10.3390/engproc2025094011 - 25 Jul 2025
Viewed by 227
Abstract
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s [...] Read more.
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s characteristics. Moreover, for a complex scene of interest with targets located on a rough soil, a composite scattering between the target and the surface occurs and creates distortions on the SAR image. These characteristics can make the SAR images difficult to analyse and process. To better understand the complex EM phenomena and their signature in the SAR image, we propose a methodology to generate raw SAR signals and SAR images for scenes of interest with a target located on a rough surface. With this prospect, the entire radar acquisition chain is considered: the sensor parameters, the atmospheric attenuation, the interactions between the incident EM field and the scene, and the SAR image formation. Simulation results are presented for a rough dielectric soil and a canonical target considered as a Perfect Electric Conductor (PEC). These results highlight the importance of the composite scattering signature between the target and the soil. Its power is 21 dB higher that that of the target for the target–soil configuration considered. Finally, these simulations allow for the retrieval of characteristics present in actual SAR images and show the potential of the presented model in investigating EM phenomena and their signatures in SAR images. Full article
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 555
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

18 pages, 4203 KiB  
Article
SRW-YOLO: A Detection Model for Environmental Risk Factors During the Grid Construction Phase
by Yu Zhao, Fei Liu, Qiang He, Fang Liu, Xiaohu Sun and Jiyong Zhang
Remote Sens. 2025, 17(15), 2576; https://doi.org/10.3390/rs17152576 - 24 Jul 2025
Viewed by 278
Abstract
With the rapid advancement of UAV-based remote sensing and image recognition techniques, identifying environmental risk factors from aerial imagery has emerged as a focal point in intelligent inspection during the power transmission and distribution projects construction phase. The uneven spatial distribution of risk [...] Read more.
With the rapid advancement of UAV-based remote sensing and image recognition techniques, identifying environmental risk factors from aerial imagery has emerged as a focal point in intelligent inspection during the power transmission and distribution projects construction phase. The uneven spatial distribution of risk factors on construction sites, their weak texture signatures, and the inherently multi-scale nature of UAV imagery pose significant detection challenges. To address these issues, we propose a one-stage SRW-YOLO algorithm built upon the YOLOv11 framework. First, a P2-scale shallow feature detection layer is added to capture high-resolution fine details of small targets. Second, we integrate a reparameterized convolution based on channel shuffle (RCS) of a one-shot aggregation (RCS-OSA) module into the backbone and neck’s shallow layers, enhancing feature extraction while significantly reducing inference latency. Finally, a dynamic non-monotonic focusing mechanism WIoU v3 loss function is employed to reweigh low-quality annotations, thereby improving small-object localization accuracy. Experimental results demonstrate that SRW-YOLO achieves an overall precision of 80.6% and mAP of 79.1% on the State Grid dataset, and exhibits similarly superior performance on the VisDrone2019 dataset. Compared with other one-stage detectors, SRW-YOLO delivers markedly higher detection accuracy, offering critical technical support for multi-scale, heterogeneous environmental risk monitoring during the power transmission and distribution projects construction phase, and establishes the theoretical foundation for rapid and accurate inspection using UAV-based intelligent imaging. Full article
Show Figures

Graphical abstract

32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 319
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Viewed by 581
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

19 pages, 2632 KiB  
Article
Data-Driven Attack Detection Mechanism Against False Data Injection Attacks in DC Microgrids Using CNN-LSTM-Attention
by Chunxiu Li, Xinyu Wang, Xiaotao Chen, Aiming Han and Xingye Zhang
Symmetry 2025, 17(7), 1140; https://doi.org/10.3390/sym17071140 - 16 Jul 2025
Viewed by 251
Abstract
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant [...] Read more.
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant cybersecurity vulnerabilities. Notably, FDI attacks can effectively bypass conventional Chi-square detector-based protection mechanisms through malicious manipulation of communication layer data. To address this critical security challenge, we propose a hybrid deep learning framework that synergistically combines: Convolutional Neural Networks (CNN) for robust spatial feature extraction from power system measurements; Long Short-Term Memory (LSTM) networks for capturing complex temporal dependencies; and an attention mechanism that dynamically weights the most discriminative features. The framework operates through a hierarchical feature extraction process: First-level spatial analysis identifies local measurement patterns; second-level temporal analysis detects sequential anomalies; attention-based feature refinement focuses on the most attack-relevant signatures. Comprehensive simulation studies demonstrate the superior performance of our CNN-LSTM-Attention framework compared to conventional detection approaches (CNN-SVM and MLP), with significant improvements across all key metrics. Namely, the accuracy, precision, F1-score, and recall could be improved by at least 7.17%, 6.59%, 2.72% and 6.55%. Full article
Show Figures

Figure 1

53 pages, 915 KiB  
Review
Neural Correlates of Huntington’s Disease Based on Electroencephalography (EEG): A Mechanistic Review and Discussion of Excitation and Inhibition (E/I) Imbalance
by James Chmiel, Jarosław Nadobnik, Szymon Smerdel and Mirela Niedzielska
J. Clin. Med. 2025, 14(14), 5010; https://doi.org/10.3390/jcm14145010 - 15 Jul 2025
Viewed by 454
Abstract
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century [...] Read more.
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century of EEG findings, identify reproducible electrophysiological signatures, and outline translational next steps. Methods: Two independent reviewers searched PubMed, Scopus, Google Scholar, ResearchGate, and the Cochrane Library (January 1970–April 2025) using the terms “EEG” OR “electroencephalography” AND “Huntington’s disease”. Clinical trials published in English that reported raw EEG (not ERP-only) in human HD gene carriers were eligible. Abstract/title screening, full-text appraisal, and cross-reference mining yielded 22 studies (~700 HD recordings, ~600 controls). We extracted sample characteristics, acquisition protocols, spectral/connectivity metrics, and neuroclinical correlations. Results: Across diverse platforms, a consistent spectral trajectory emerged: (i) presymptomatic carriers show a focal 7–9 Hz (low-alpha) power loss that scales with CAG repeat length; (ii) early-manifest patients exhibit widespread alpha attenuation, delta–theta excess, and a flattened anterior-posterior gradient; (iii) advanced disease is characterized by global slow-wave dominance and low-voltage tracings. Source-resolved studies reveal early alpha hypocoherence and progressive delta/high-beta hypersynchrony, microstate shifts (A/B ↑, C/D ↓), and rising omega complexity. These electrophysiological changes correlate with motor burden, cognitive slowing, sleep fragmentation, and neurovascular uncoupling, and achieve 80–90% diagnostic accuracy in shallow machine-learning pipelines. Conclusions: EEG offers a coherent, stage-sensitive window on HD pathophysiology—from early thalamocortical disinhibition to late network fragmentation—and fulfills key biomarker criteria. Translation now depends on large, longitudinal, multi-center cohorts with harmonized high-density protocols, rigorous artifact control, and linkage to clinical milestones. Such infrastructure will enable the qualification of alpha-band restoration, delta-band hypersynchrony, and neurovascular coupling as pharmacodynamic readouts, fostering precision monitoring and network-targeted therapy in Huntington’s disease. Full article
Show Figures

Figure 1

Back to TopTop