Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = power plant pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 493
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

21 pages, 5917 KiB  
Article
Cyanobacterial Assemblages Inhabiting the Apatity Thermal Power Plant Fly Ash Dumps in the Russian Arctic
by Denis Davydov and Anna Vilnet
Microorganisms 2025, 13(8), 1762; https://doi.org/10.3390/microorganisms13081762 - 28 Jul 2025
Viewed by 217
Abstract
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly [...] Read more.
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems. Pollutants migrate into terrestrial and aquatic systems, compromising soil quality and water resources, and posing documented risks to the environment and human health. Primary succession on the coal ash dumps of the Apatity thermal power plant (Murmansk Region, NW Russia) was initiated by cyanobacterial colonization. We studied cyanobacterial communities inhabiting three spoil sites that varied in time since decommissioning. These sites are characterized by exceptionally high concentrations of calcium and magnesium oxides—levels approximately double those found in the region’s natural soils. A total of 18 cyanobacterial taxa were identified in disposal sites. Morphological analysis of visible surface crusts revealed 16 distinct species. Furthermore, 24 cyanobacterial strains representing 11 species were successfully isolated into unialgal culture and tested with a molecular genetic approach to confirm their identification from 16S rRNA. Three species were determined with molecular evidence. Cyanobacterial colonization of coal fly ash disposal sites begins immediately after deposition. Primary communities initially exhibit low species diversity (four taxa) and do not form a continuous ground cover in the early years. However, as succession progresses—illustrated by observations from a 30-year-old deposit—spontaneous surface revegetation occurs, accompanied by a marked increase in cyanobacterial diversity, reaching 12 species. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

25 pages, 6370 KiB  
Article
Emissions of Conventional and Electric Vehicles: A Comparative Sustainability Assessment
by Esra’a Alrashydah, Thaar Alqahtani and Abdulnaser Al-Sabaeei
Sustainability 2025, 17(15), 6839; https://doi.org/10.3390/su17156839 - 28 Jul 2025
Viewed by 330
Abstract
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits [...] Read more.
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits are minimal as the power plant emissions compensate for emissions from the tailpipes of vehicles. This study compared two scenarios: scenario A considers all vehicles as internal combustion engine vehicles (ICEVs), and scenario B considers all vehicles as BEVs. The study used the City of San Antonio, Texas, as the study area. The study also focused on the seasonal and spatial variation in ICEV emissions. The results indicate that scenario A has a considerably higher volume of emissions than scenario B. For ICEVs, PM2.5 emissions were up to 50% higher in rural areas than urban areas, but 45% lower for unrestricted versus restricted conditions. CO2 emissions were highly affected by seasonal variations, with a 51% decrease from winter to summer. The full adoption of BEVs could reduce CO2 and N2O emissions by 99% and 58% per km, especially for natural gas power resources. Therefore, BEVs play a significant role in reducing emissions from the transportation sector. Full article
Show Figures

Figure 1

29 pages, 4438 KiB  
Review
Microfluidic Sensors Integrated with Smartphones for Applications in Forensics, Agriculture, and Environmental Monitoring
by Tadsakamon Loima, Jeong-Yeol Yoon and Kattika Kaarj
Micromachines 2025, 16(7), 835; https://doi.org/10.3390/mi16070835 - 21 Jul 2025
Viewed by 590
Abstract
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated [...] Read more.
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated microfluidic sensors, focusing on their design, fabrication, smartphone integration, and analytical functions with the applications in forensic science, agriculture, and environmental monitoring. In forensic science, these sensors provide fast, field-based alternatives to traditional lab methods for detecting substances like DNA, drugs, and explosives, improving investigation efficiency. In agriculture, they support precision farming by enabling on-demand analysis of soil nutrients, water quality, and plant health, enhancing crop management. In environmental monitoring, these sensors allow the timely detection of pollutants in air, water, and soil, enabling quicker responses to hazards. Their portability and user-friendliness make them particularly valuable in resource-limited settings. Overall, this review highlights the transformative potential of smartphone-based microfluidic sensors in enabling accessible, real-time diagnostics across multiple disciplines. Full article
(This article belongs to the Special Issue Microfluidic-Based Sensing)
Show Figures

Figure 1

19 pages, 2374 KiB  
Article
Analysis of Opportunities to Reduce CO2 and NOX Emissions Through the Improvement of Internal Inter-Operational Transport
by Szymon Pawlak, Tomasz Małysa, Angieszka Fornalczyk, Angieszka Sobianowska-Turek and Marzena Kuczyńska-Chałada
Sustainability 2025, 17(13), 5974; https://doi.org/10.3390/su17135974 - 29 Jun 2025
Viewed by 407
Abstract
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on [...] Read more.
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on climate change as well as human health and welfare. Consequently, numerous studies and regulatory and technological initiatives are underway to mitigate these emissions. One critical area is intra-plant transport within manufacturing facilities, which, despite its localized scope, can substantially contribute to a company’s total emissions. This paper aims to assess the potential of computer simulation using FlexSim software as a decision-support tool for planning inter-operational transport, with a particular focus on environmental aspects. The study analyzes real operational data from a selected production plant (case study), concentrating on the optimization of the number of transport units, their routing, and the layout of workstations. It is hypothesized that reducing the number of trips, shortening transport routes, and efficiently utilizing transport resources can lead to lower emissions of carbon dioxide (CO2) and nitrogen oxides (NOX). The findings provide a basis for a broader adoption of digital tools in sustainable production planning, emphasizing the integration of environmental criteria into decision-making processes. Furthermore, the results offer a foundation for future analyses that consider the development of green transport technologies—such as electric and hydrogen-powered vehicles—in the context of their implementation in the internal logistics of manufacturing enterprises. Full article
Show Figures

Figure 1

17 pages, 5229 KiB  
Article
Distribution and Relationship of Radionuclides and Heavy Metal Concentrations in Marine Sediments from the Areas Surrounding the Daya Bay Power Plant, Southeast China
by Chengpeng Huang, Yunpeng Lin, Haidong Li, Binxin Zheng, Xueqiang Zhu, Yiming Xu, Heshan Lin, Qiangqiang Zhong, Fangfang Shu, Mingjiang Cai and Yunhai Li
J. Mar. Sci. Eng. 2025, 13(7), 1237; https://doi.org/10.3390/jmse13071237 - 27 Jun 2025
Viewed by 297
Abstract
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment [...] Read more.
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment samples were collected in January 2024 and analyzed for natural (210Pb, 228Th, 226Ra, 228Ra, and 40K) and anthropogenic (137Cs) radionuclides, heavy metals (Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As), grain size, and total organic carbon (TOC). The surface sediments of Daya Bay were predominantly fine-grained, with TOC levels ranging from 0.41% to 1.83%, influenced significantly by riverine input from the Dan’ao River. Natural radionuclides exhibited distinct spatial patterns: 210Pb and 228Th activity levels were higher in fine-grained sediments, and correlated with TOC, indicating adsorption and sedimentation controls. In contrast, anthropogenic 137Cs activity was low and showed no significant impact from the nuclear power plant. Notably, the absence in the samples of key anthropogenic radionuclides typically associated with nuclear power plant operations further confirmed the negligible impact of the power plant on local sediment contamination. The results indicated that the baseline levels of both natural and anthropogenic radionuclides and heavy metals were predominantly influenced by natural processes and local anthropogenic activities rather than the operation of the nuclear power plant. This study establishes critical baselines for radioactivity and heavy metals in Daya Bay, underscoring effective pollution control measures and the resilience of local ecosystems despite anthropogenic pressures. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

23 pages, 743 KiB  
Article
Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant
by Augusto Montisci and Aiman Rashid
Sustainability 2025, 17(13), 5816; https://doi.org/10.3390/su17135816 - 24 Jun 2025
Viewed by 740
Abstract
The layout of an urban waste-fired zero-emission power plant is described in this paper. The principle layout, which is based on similar coal-fired plants retrieved from the literature, integrates gasification with a power-generation section and implements two parallel conversion processes: one relies on [...] Read more.
The layout of an urban waste-fired zero-emission power plant is described in this paper. The principle layout, which is based on similar coal-fired plants retrieved from the literature, integrates gasification with a power-generation section and implements two parallel conversion processes: one relies on the heat developed in the gasifier and consists of a thermoacoustic-magnetohydrodynamic (TA-MHD) generator; the other involves treating syngas to obtain almost pure hydrogen, which is then fed to fuel cells. The CO2 derived from the oxidation of Carbon is stocked in liquid form. The novelty of the proposed layout lies in the fact that the entire conversion is performed using static equipment. The resulting plant prevents the release of any type of emissions in the atmosphere and increases mechanical efficiency, compared to traditional plants—thanks to the absence of moving parts—resolving, nonetheless, the ever-increasing waste-related pollution issue. A case study of a Union of Municipalities in Southern Lebanon is considered. The ideal cycle handles 65 tons/day of urban waste and is capable of generating 7.71 MW of electric power, with a global efficiency of 52.39%. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 664 KiB  
Article
A Bio-Inspired Optimization Approach for Low-Carbon Dispatch in EV-Integrated Virtual Power Plants
by Renfei Gao, Kunze Song, Bijiang Zhu and Hongbo Zou
Processes 2025, 13(7), 1969; https://doi.org/10.3390/pr13071969 - 21 Jun 2025
Viewed by 399
Abstract
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form [...] Read more.
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form large-scale coordinated regulation capabilities. Subsequently, considering diversified resources such as energy storage systems and photovoltaic (PV) generation within VPPs, a low-carbon economic optimization dispatching model is established to minimize the total system operation costs and polluted gas emissions. To address the limitations of traditional algorithms in solving high-dimensional, nonlinear dispatching problems, this paper introduces a plant root-inspired growth optimization algorithm. By simulating the nutrient-adaptive uptake mechanism and branching expansion strategy of plant roots, the algorithm achieves a balance between global optimization and local fine-grained search. Compared with the genetic algorithm, particle swarm optimization algorithm and bat algorithm, simulation results demonstrate that the proposed method can effectively enhance the low-carbon operational economy of VPPs with high PV, ESS, and EV penetration. The research findings provide theoretical support and practical references for optimal dispatch of multi-stakeholder VPPs. Full article
Show Figures

Figure 1

25 pages, 4660 KiB  
Article
CO Emission Prediction Based on Kernel Feature Space Semi-Supervised Concept Drift Detection in Municipal Solid Waste Incineration Process
by Runyu Zhang, Jian Tang and Tianzheng Wang
Sustainability 2025, 17(13), 5672; https://doi.org/10.3390/su17135672 - 20 Jun 2025
Viewed by 321
Abstract
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various [...] Read more.
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various countries in the world. The construction of its prediction model is conducive to pollution reduction control. The MSWI process is affected by multi-factors such as MSW component fluctuation, equipment wear and maintenance, and seasonal change, and has complex nonlinear and time-varying characteristics, which makes it difficult for the CO prediction model based on offline historical data to adapt to the above changes. In addition, the continuous emission monitoring system (CEMS) used for conventional pollutant detection has unavoidable misalignment and failure problems. In this article, a novel prediction model of CO emission from the MSWI process based on semi-supervised concept drift (CD) detection in kernel feature space is proposed. Firstly, the CO emission deep prediction model and the kernel feature space detection model are constructed based on offline batched historical data, and the historical data set for the real-time construction of the pseudo-labeling model is obtained. Secondly, the drift detection for the CO emission prediction model is carried out based on real-time data by using unsupervised kernel principal component analysis (KPCA) in terms of feature space. If CD occurs, the pseudo-label model is constructed, the pseudo-truth value is obtained, and the drift sample is confirmed and selected based on the Page–Hinkley (PH) test. If no CD occurs, the CO emission concentration is predicted based on the historical prediction model. Then, the updated data set of the CO emission prediction model and kernel feature space detection is obtained by combining historical samples and drift samples. Finally, the offline history model is updated with a new data set when the preset conditions are met. Based on the real data set of an MSWI power plant in Beijing, the validity of the proposed method is verified. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

22 pages, 1664 KiB  
Article
Techno-Economic Assessment of Alternative-Fuel Bus Technologies Under Real Driving Conditions in a Developing Country Context
by Marc Haddad and Charbel Mansour
World Electr. Veh. J. 2025, 16(6), 337; https://doi.org/10.3390/wevj16060337 - 19 Jun 2025
Viewed by 750
Abstract
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and [...] Read more.
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and the onset of hyperinflation. This study investigates the potential reductions in energy use, emissions, and costs from the possible introduction of natural gas, hybrid, and battery-electric buses compared to traditional diesel buses in local real driving conditions. Four operating conditions were considered including severe congestion, peak, off-peak, and bus rapid transit (BRT) operation. Battery-electric buses are found to be the best performers in any traffic operation, conditional on having clean energy supply at the power plant and significant subsidy of bus purchase cost. Natural gas buses do not provide significant greenhouse gas emission savings compared to diesel buses but offer substantial reductions in the emission of all major pollutants harmful to human health. Results also show that accounting for additional energy consumption from the use of climate-control auxiliaries in hot and cold weather can significantly impact the performance of all bus technologies by up to 44.7% for electric buses on average. Performance of all considered bus technologies improves considerably in free-flowing traffic conditions, making BRT operation the most beneficial. A vehicle mix of diesel, natural gas, and hybrid bus technologies is found most feasible for the case of Lebanon and similar developing countries lacking necessary infrastructure for a near-term transition to battery-electric technology. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

18 pages, 6644 KiB  
Article
Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico
by Osiel O. Mendoza-Lara, Andrés O. López-Pérez, Claudia Yazmín Ortega-Montoya, Adria Imelda Prieto Hinojosa and J. M. Baldasano
Atmosphere 2025, 16(6), 728; https://doi.org/10.3390/atmos16060728 - 16 Jun 2025
Viewed by 537
Abstract
The Tula Metropolitan Area in Mexico is characterized by significant industrial activity, including thermoelectric power plants, refineries, cement plants, and mining operations. While the impact of mining on air quality has been less studied compared to other industries, this research aims to estimate [...] Read more.
The Tula Metropolitan Area in Mexico is characterized by significant industrial activity, including thermoelectric power plants, refineries, cement plants, and mining operations. While the impact of mining on air quality has been less studied compared to other industries, this research aims to estimate the contribution of mining areas to PM10 air pollution in the region. Using the AERMOD dispersion model coupled with the WRF meteorological model, emission areas were identified through GIS analysis, and specific emission factors for mining activities were applied. The results indicate that mining areas can contribute up to 40 µg/m3 of PM10, exceeding both national and international air quality standards. Monitoring data suggests that mining activities account for approximately 30% of the measured PM10 concentrations in the area. Furthermore, spatial analysis using the Urban Marginalization Index (UMI) revealed that areas with high PM10 concentrations often coincide with regions of high social vulnerability, particularly in communities with elevated levels of marginalization. This study concludes that mining operations significantly contribute to air pollution in the Tula Metropolitan Area, highlighting the need for targeted mitigation measures and public policies that address both environmental and social vulnerabilities. Full article
(This article belongs to the Special Issue Atmospheric Pollution in Mining Areas)
Show Figures

Figure 1

26 pages, 3346 KiB  
Article
Environmental Life Cycle Assessment of the Materials, Components, and Elements of a Mono-Si Photovoltaic Power Plant
by Patryk Leda, Izabela Piasecka and Grzegorz Szala
Materials 2025, 18(12), 2748; https://doi.org/10.3390/ma18122748 - 11 Jun 2025
Viewed by 497
Abstract
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. [...] Read more.
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. During their exploitation, no pollutants are emitted into the environment. However, the processes of manufacturing and post-used management of their materials, components and elements are associated with both high demand for energy and matter, as well as with emissions of harmful substances into the atmosphere, water, and soil. For this reason, from the perspective of the entire life cycle, photovoltaic power plants may contribute to the deterioration of human health, the reduction in the quality of the environment, and the depletion of non-renewable fossil resources. Due to these potential threats, it was considered appropriate to conduct a Life Cycle Assessment of a real 2 MW photovoltaic power plant located in northern Poland, in terms of compliance with the main assumptions of sustainable development. The analysis was conducted using the Life Cycle Assessment (LCA) methodology (the ReCiPe 2016 model). Impacts on the environment was assessed in three areas: human health, ecosystem quality, and material resources. Two scenarios were adopted for the post-used management of materials, components, and elements: landfill disposal and recycling. Based on the conducted research, it was found that, among the assessed groups of photovoltaic power plant components (photovoltaic modules, supporting structure, inverter station, and electrical infra-structure), photovoltaic modules have the highest level of harmful impact on the environment (especially the manufacturing stage). The use of recycling processes at the end of their use would reduce their harmful impact over the entire life cycle of a photovoltaic power plant and better fit with the main principles of sustainable development. Full article
Show Figures

Figure 1

19 pages, 6583 KiB  
Article
Transmission of Heavy Metals in River Water and Self-Purification Capacity of Ile River
by Ainur Mussakulkyzy, Christian Opp, Nariman Amirgaliev, Azamat Madibekov, Laura Ismukhanova and Askhat Zhadi
Appl. Sci. 2025, 15(12), 6548; https://doi.org/10.3390/app15126548 - 10 Jun 2025
Viewed by 417
Abstract
The continuing anthropogenic pollution of the Ile River occurs both by transboundary runoff and as a result of discharges of industrial, agricultural, and domestic wastewater on the territory of Kazakhstan. With this amount of pollution, the river’s capacity for self-purification is very limited, [...] Read more.
The continuing anthropogenic pollution of the Ile River occurs both by transboundary runoff and as a result of discharges of industrial, agricultural, and domestic wastewater on the territory of Kazakhstan. With this amount of pollution, the river’s capacity for self-purification is very limited, and in some cases practically exhausted. Hydrochemical and toxic indicators in the Ile River basin were analyzed based on water sampling from the Chinese–Kazakh border station to 37 km downstream of the hydroelectric power plants (HPPs). Heavy metals were determined by flame AAS methods. The self-purification capacity (SPC) was determined for cadmium by 28–81%, copper 15–66%, zinc 22–37%, and cobalt 5–9% while the nickel self-purification of water did not occur. The SPC was influenced by the Kapshagai reservoir. The identified main regularities of the anthropogenic transformation of water quality and self-purification capacity of the river will help both in solving the problems of river pollution and in the development of necessary measures aimed at the protection of water resources from pollution and depletion. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

16 pages, 2298 KiB  
Article
Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler
by Dias Raybekovich Umyshev, Andrey Anatoliyevich Kibarin, Aiganym Bulatkyzy Seidaliyeva, Dilshat Ozatuly Iskakov, Yeldos Lesbekovich Zhekenov, Ilyas Kermyly Jambayev and Madina Maratovna Umysheva
Energies 2025, 18(12), 3028; https://doi.org/10.3390/en18123028 - 7 Jun 2025
Viewed by 416
Abstract
Currently, ecological energy production is one of the most pressing issues in power engineering. In addition, environmental pollution caused by various emissions and the challenge of waste disposal remain significant global concerns. One potential solution to these problems is the conversion of waste [...] Read more.
Currently, ecological energy production is one of the most pressing issues in power engineering. In addition, environmental pollution caused by various emissions and the challenge of waste disposal remain significant global concerns. One potential solution to these problems is the conversion of waste into useful energy through combustion. In this study, experimental investigations were carried out on the combustion of municipal solid waste (MSW) in a grate furnace of a 400 kW hot water boiler. The experiments included the combustion of both MSW and traditional brown coal. Data were collected on the concentrations of various substances in the exhaust gases, and thermal imaging was performed to assess heat losses from the boiler surface. When burning waste compared to coal, SO2 concentrations were significantly lower, ranging from 3.43 to 4.3 ppm, whereas for coal they reached up to 122 ppm. NOX concentrations during MSW combustion peaked at 106 ppm, while for coal combustion they reached 67.5 ppm. A notable increase in CO concentration was observed during the initial phase of coal combustion, with levels reaching up to 2510 ppm. The thermal efficiency of the boiler plant reached 84.4% when burning waste and 87% when burning brown coal. Full article
(This article belongs to the Special Issue Clean Use of Fuels: Future Trends and Challenges)
Show Figures

Figure 1

16 pages, 2501 KiB  
Article
Long-Term Use of Nuclear Energy from the Aspect of Economy and Greenhouse Gas Emissions
by Dinka Lale and Dubravko Pevec
Energies 2025, 18(11), 2978; https://doi.org/10.3390/en18112978 - 5 Jun 2025
Viewed by 462
Abstract
Conventional sources of electricity are limited and they pollute the Earth, so it is necessary to think about an additional source of electricity in the future. Nuclear power is one of the options. Two scenarios using different shares of nuclear power in the [...] Read more.
Conventional sources of electricity are limited and they pollute the Earth, so it is necessary to think about an additional source of electricity in the future. Nuclear power is one of the options. Two scenarios using different shares of nuclear power in the future are described in this paper. Scenario 1 describes a moderate increase in nuclear energy use in the future, but with a tendency for a larger increase over 2050. Scenario 2 describes a significant increase in nuclear energy until 2100. Both scenarios are divided into three sub-scenarios (total six) in which the use of different nuclear technologies is analyzed (conventional liquid water reactors, fast breeder reactors and molten salt reactors using thorium as nuclear fuel). In all scenarios, the phase-out of fossil fuel power plants is assumed. One part of the power system is covered by nuclear power plants, and the remaining part is covered by renewable energy power plants. After 2050, an increasing share of the electricity system will be taken over by RES power plants. Nuclear fuel stocks are also analyzed. It is calculated that currently known nuclear fuel stocks are sufficient to meet the needs in all six scenarios. The carbon dioxide emissions saved due to nuclear energy use instead of conventional energy power plants are calculated. The CO2eq emission savings for Scenario 1 is 87.4% of the recommended emission savings under the IPCC. The CO2eq emission savings for Scenario 2 is more than sufficient. A calculation of the economic profitability of nuclear energy use is made in relation to fossil power plants and renewable energy power plants. According to calculations, nuclear energy is profitable compared to other energy sources. Nuclear energy use is positive from all the mentioned aspects. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

Back to TopTop