Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico
Abstract
:1. Introduction
Tula Metropolitan Area
2. Materials and Methods
2.1. Delimitation of the Study Area
2.2. Emission
- PME_process = particulate matter emissions for a given process.
- PMEF_process = particulate matter emission factor for a given process.
- Unit_process = tons processed, tons produced, tons transferred, etc.
- EC = emission control factor, %
2.3. Modeling System
2.3.1. AERMOD
2.3.2. Meteorology (WRF)
2.3.3. Evaluation of Sensitivity
2.3.4. AERMOD Configuration
2.4. Standards for Evaluation of Air Quality by PM10
2.5. Social Impact Evaluation
- wij = binary weight that indicates neighborhood adjacency of j samples to i.
- i = the intersection in question.
- j = their neighboring intersections of i.
- y = the dependent variable.
3. Results
3.1. Emissions in the Study Area
3.2. Sensitivity Evaluation WRF
3.3. Impact on Air Quality by PM10
3.4. Social Impact of the Pollutant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AERMAP | terrain preprocessor for AERMOD |
AERMET | meteorological data preprocessor for AERMOD |
AERMOD | Atmospheric Dispersion Modeling System |
AMS | American Meteorological Society |
CALPUFF | Advanced, Integrated LaGrange Puff Modeling System |
CFE | Federal Electricity Commission of Mexico |
CMAQ | Community Multiscale Air Quality model |
EC | emission control factor |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EPA | United States Environmental Protection Agency |
EU | European Union |
INECC | Mexican government’s National Institute of Ecology and Climate Change |
IOA | index of agreement |
MB | mean bias |
NCAR | National Center for Atmospheric Research |
NMGE | normalized mean absolute error |
NOM | Mexican Official Standard |
PEMEX | Mexican Petroleum |
PM10 | particulate matter with an aerodynamic diameter of less than 10 μm |
PME | particulate matter emissions |
PMEF | particulate matter emission factor |
r | Pearson’s correlation coefficient |
RH | relative humidity |
RMSE | root mean square error |
SINAICA | Mexican Air Quality Information System |
T | temperature |
UMI | Urban Marginalization Index |
USA | United States of America |
WHO | World Health Organization |
WS | wind speed |
References
- Yang, S.; Wu, H.; Chen, J.; Lin, X.; Lu, T. Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China. Atmosphere 2018, 9, 47. [Google Scholar] [CrossRef]
- Ma, X.; Chen, T.; Ge, R.; Xv, F.; Cui, C.; Li, J. Prediction of PM2.5 Concentration Using Spatiotemporal Data with Machine Learning Models. Atmosphere 2023, 14, 1517. [Google Scholar] [CrossRef]
- WHO. Climate Change and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 6 July 2021).
- Coelho, M.S.; Zacharias, D.C.; de Paulo, T.S.; Ynoue, R.Y.; Fornaro, A. Air Quality Impact Estimation Due to Uncontrolled Emissions from Capuava Petrochemical Complex in the Metropolitan Area of São Paulo (MASP), Brazil. Atmosphere 2023, 14, 577. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2024. Special Report; Health Effects Institute: Boston, MA, USA, 2024. [Google Scholar]
- California Air Resources Board. Inhalable Particulate Matter and Health (PM2.5 and PM10). Available online: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health (accessed on 2 May 2025).
- Ganapathi, H.; Phukan, M. Environmental Hazards of Limestone Mining and Adaptive Practices for Environment Management Plan. In Environmental Processes and Management: Tools and Practices; Singh, R.M., Shukla, P., Singh, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 121–134. ISBN 978-3-030-38152-3. [Google Scholar]
- Lamare, R.E.; Singh, O.P. Limestone Mining and Its Environmental Implications in Meghalaya, India. ENVIS Bull. Himal. Ecol. 2017, 24, 87–100. [Google Scholar]
- Raysoni, A.U.; Mendez, E.; Luna, A.; Collins, J. Characterization of Particulate Matter Species in an Area Impacted by Aggregate and Limestone Mining North of San Antonio, TX, USA. Sustainability 2022, 14, 4288. [Google Scholar] [CrossRef]
- Sairanen, M.; Rinne, M. Dust Emission from Crushing of Hard Rock Aggregates. Atmos. Pollut. Res. 2019, 10, 656–664. [Google Scholar] [CrossRef]
- Lilic, N.; Cvjetic, A.; Knezevic, D.; Milisavljevic, V.; Pantelic, U. Dust and Noise Environmental Impact Assessment and Control in Serbian Mining Practice. Minerals 2018, 8, 34. [Google Scholar] [CrossRef]
- Ojelede, M.E.; Annegarn, H.J.; Kneen, M.A. Evaluation of Aeolian Emissions from Gold Mine Tailings on the Witwatersrand. Aeolian Res. 2012, 3, 477–486. [Google Scholar] [CrossRef]
- Yang, P.; Yi, H.; Zhao, L.; Chen, L. A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control. Atmosphere 2023, 14, 891. [Google Scholar] [CrossRef]
- Kunt, F.; Ayturan, Z.C.; Yümün, F.; Karagönen, İ.; Semerci, M.; Akgün, M. Modeling and Assessment of PM10 and Atmospheric Metal Pollution in Kayseri Province, Turkey. Atmosphere 2023, 14, 356. [Google Scholar] [CrossRef]
- Carrico, C.M.; Karacaoglu, J. Impacts of a Prescribed Fire on Air Quality in Central New Mexico. Atmosphere 2023, 14, 316. [Google Scholar] [CrossRef]
- Garduño-Jiménez, A.L.; Durán-Álvarez, J.C.; Ortori, C.A.; Abdelrazig, S.; Barrett, D.A.; Gomes, R.L. Delivering on Sustainable Development Goals in Wastewater Reuse for Agriculture: Initial Prioritization of Emerging Pollutants in the Tula Valley, Mexico. Water Res. 2023, 238, 119903. [Google Scholar] [CrossRef] [PubMed]
- NOM-085-SEMARNAT-2011; Air Pollution-Maximum Permissible Emission Levels of Indirect Heating Combustion Equipment and Their Measurement. DOF: Mexico City, Mexico, 2011.
- Rivera-Cárdenas, C.I.; Arellano, T. The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments. Pollutants 2024, 4, 463–473. [Google Scholar] [CrossRef]
- García-Escalante, J.S.; García-Reynoso, J.A.; Jazcilevich-Diamant, A.; Ruiz-Suárez, L.G. The Influence of the Tula, Hidalgo Complex on the Air Quality of the Mexico City Metropolitan Area. AtmóSfera 2014, 27, 215–225. [Google Scholar] [CrossRef]
- Sosa, G.; Vega, E.; González-Avalos, E.; Mora, V.; López-Veneroni, D. Air Pollutant Characterization in Tula Industrial Corridor, Central Mexico, during the MILAGRO Study. BioMed Res. Int. 2013, 2013, 521728. [Google Scholar] [CrossRef]
- Almanza, V.H.; Molina, L.T.; Sosa, G. Soot and SO2 Contribution to the Supersites in the MILAGRO Campaign from Elevated Flares in the Tula Refinery. Atmos. Chem. Phys. 2012, 12, 10583–10599. [Google Scholar] [CrossRef]
- Sosa-Iglesias, G.; Rivera-Cárdenas, C.; Ortega-López, F. Medición Del Flujo de Emisiones Totales de SO2 y NO2 Generadas Por Fuentes Urbanas e Industriales Mediante Detección Remota. Tecnología Ciencia Educación 2006, 21, 103–109. [Google Scholar]
- de Foy, B.; Bei, N.; Herndon, S.; Huey, L.; Martínez, A.-P.; Ruiz Suárez, L.G.; Wood, E.; Zavala, M.; Molina, L. Hit from Both Sides: Tracking Industrial and Volcanic Plumes in Mexico City with Surface Measurements and OMI SO2 Retrievals during the MILAGRO Field Campaign. Atmos. Chem. Phys. 2009, 9, 9599–9617. [Google Scholar] [CrossRef]
- Sosa, E.R.; Vega, E.; Wellens, A.; Jaimes, M.; Fuentes, G.G.; Granados, H.E.; Alarcón, J.A.L.; Torres, B.M.d.C.; Sánchez, A.P.; Rosas, A.S.; et al. Reduction of Atmospheric Emissions Due to Switching from Fuel Oil to Natural Gas at a Power Plant in a Critical Area in Central Mexico. J. Air Waste Manag. Assoc. 2020, 70, 1043–1059. [Google Scholar] [CrossRef]
- Hidalgo State Government. Management Program to Improve Air Quality in the State of Hidalgo 2021–2030; Hidalgo State Government: Pachuca, Mexico, 2021. [Google Scholar]
- Vázquez-Rodríguez, G.-A. La Acción Comunitaria Contra La “Basurización” de Hidalgo, México. Let. Verdes Rev. Latinoam. Estud. Socioambientales 2023, 34, 162–179. [Google Scholar] [CrossRef]
- Zonas de Sacrificio ¿Quiénes Somos? Available online: https://www.zonasdesacrificio.mx/acerca (accessed on 7 May 2025).
- Zonas de Sacrificio Zona Del Valle Del Mezquital (Tula). Available online: https://www.zonasdesacrificio.mx/casos/zona-del-valle-del-mezquital-tula (accessed on 7 May 2025).
- Vega-Ortiz, C.; Larios-Ferrer, J.L.; Reyes-García, J.C.; Badillo-Maldonado, M.; Kuri-Mar, G. Análisis Numérico de La Infiltración de Contaminantes En La Cuenca Del Río Tula. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 2024, 12, 213–220. [Google Scholar] [CrossRef]
- Narváez, J.A.D.; Guevara-Rosales, C.; Ibarra, N.D.; Cabrera, D.M. Impacto Del Uso de Aguas Residuales En El Valle Del Mezquital. XAHNI Boletín Científico de la Escuela Preparatoria 2023, 1, 6–11. [Google Scholar]
- Espejel-García, A.; Barrera-Rodríguez, A.; Cuevas-Reyes, V. Dinámica de La Innovación y Ganancias Económicas de La Producción de Leche En El Valle Del Mezquital, Hidalgo. Nova Sci. 2016, 8, 391–408. [Google Scholar] [CrossRef]
- Ortiz Espejel, B.; Rosano Reyes, E.; Hernández Castán, J.; Cuesta Mejía, E. Biodiversidad e Industria En La Región de Tula, Hidalgo: Un Ensamblaje Sistémico. Hatso-Hnini. Revista de Investigación de Paisajes y Espacio Construido 2023, 1, 1–21. [Google Scholar] [CrossRef]
- Brauer, M.; Roth, G.A.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; et al. Global Burden and Strength of Evidence for 88 Risk Factors in 204 Countries and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef]
- National Institute of Ecology and Climate Change. Air Quality in the Tula Air Basin, Hidalgo (2013–2021); National Institute of Ecology and Climate Change: Mexico City, Mexico, 2023. [Google Scholar]
- INEGI. National Population and Household Census. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463807469 (accessed on 24 March 2022).
- Huertas, J.I.; Huertas, M.E.; Izquierdo, S.; González, E.D. Air Quality Impact Assessment of Multiple Open Pit Coal Mines in Northern Colombia. J. Environ. Manag. 2012, 93, 121–129. [Google Scholar] [CrossRef]
- Richardson, C.; Rutherford, S.; Agranovski, I. Particulate Emission Rates for Open Surfaces in Australian Open Cut Black Coal Mines. J. Environ. Manag. 2019, 232, 537–544. [Google Scholar] [CrossRef]
- Hagan, N.; Robins, N.; Hsu-Kim, H.; Halabi, S.; Morris, M.; Woodall, G.; Zhang, T.; Bacon, A.; Richter, D.d.B.; Vandenberg, J. Estimating Historical Atmospheric Mercury Concentrations from Silver Mining and Their Legacies in Present-Day Surface Soil in Potosí, Bolivia. Atmos. Environ. 2011, 45, 7619–7626. [Google Scholar] [CrossRef]
- Tran, Q.B.; Lohitnavy, M.; Phenrat, T. Assessing Potential Hydrogen Cyanide Exposure from Cyanide-Contaminated Mine Tailing Management Practices in Thailand’s Gold Mining. J. Environ. Manag. 2019, 249, 109357. [Google Scholar] [CrossRef]
- Sanderson, R.S.; McKenna Neuman, C.; Boulton, J.W. Windblown Fugitive Dust Emissions from Smelter Slag. Aeolian Res. 2014, 13, 19–29. [Google Scholar] [CrossRef]
- Tartakovsky, D.; Stern, E.; Broday, D.M. Indirect Estimation of Emission Factors for Phosphate Surface Mining Using Air Dispersion Modeling. Sci. Total Environ. 2016, 556, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, T.; Yi, N.; Yuan, B.; Li, C.; Ye, Z.; Zhu, Z.; Zhang, X. Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China. Atmosphere 2023, 14, 1422. [Google Scholar] [CrossRef]
- González-Sánchez, J.F.; Mendoza-Lara, O.O.; Romero-Hernández, J.L.; Fernández-Villagómez, G. Evaluation of the Danger of a Tailings Pile Belonging to an Active Mine through Its Characterization and a Dispersion Model. Environ. Monit Assess 2023, 195, 889. [Google Scholar] [CrossRef] [PubMed]
- Elson, B.; Ince, M. Emission Factors for Air Pollutants Related to Mining and Mineral Processing. In Environmental Impact of Mining and Mineral Processing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 271–297. [Google Scholar]
- Stovern, M.; Rine, K.P.; Russell, M.R.; Félix, O.; King, M.; Eduardo Sáez, A.; Betterton, E.A. Development of a Dust Deposition Forecasting Model for Mine Tailings Impoundments Using in Situ Observations and Particle Transport Simulations. Aeolian Res. 2015, 18, 155–167. [Google Scholar] [CrossRef]
- Ma, B.; Li, X.; Jiang, Z.; Pu, R.; Liang, A.; Che, D. Dust Dispersion and Its Effect on Vegetation Spectra at Canopy and Pixel Scales in an Open-Pit Mining Area. Remote Sens. 2020, 12, 3759. [Google Scholar] [CrossRef]
- Igri, P.M.; Vondou, D.A.; Kamga, F.M. Case Study of Pollutants Concentration Sensitivity to Meteorological Fields and Land Use Parameters over Douala (Cameroon) Using AERMOD Dispersion Model. Atmosphere 2011, 2, 715–741. [Google Scholar] [CrossRef]
- de Ferreyro Monticelli, D.; Santos, J.M.; Dourado, H.O.; Moreira, D.M.; Reis, N.C., Jr. Assessing Particle Dry Deposition in an Urban Environment by Using Dispersion Models. Atmos. Pollut. Res. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Tartakovsky, D.; Broday, D.M.; Stern, E. Evaluation of AERMOD and CALPUFF for Predicting Ambient Concentrations of Total Suspended Particulate Matter (TSP) Emissions from a Quarry in Complex Terrain. Environ. Pollut. 2013, 179, 138–145. [Google Scholar] [CrossRef]
- Eibedingil, I.G.; Gill, T.E.; Van Pelt, R.S.; Tatarko, J.; Li, J.; Li, W.-W. Applying Wind Erosion and Air Dispersion Models to Characterize Dust Hazard to Highway Safety at Lordsburg Playa, New Mexico, USA. Atmosphere 2022, 13, 1646. [Google Scholar] [CrossRef]
- Piewkhaow, L.; Manuilova, A.; Chan, C.; Wilson, M.; Tontiwachwuthikul, P. Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques. Technologies 2016, 4, 9. [Google Scholar] [CrossRef]
- Mendoza-Lara, O.O.; Ortega-Montoya, C.Y.; Prieto Hinojosa, A.I.; López-Pérez, A.O.; Baldasano, J.M. An Empirical and Modelling Approach to the Evaluation of Cruise Ships’ Influence on Air Quality: The Case of La Paz, Mexico. Sci. Total Environ. 2023, 886, 163855. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, H. Impact of Urban Morphology on the Spatial and Temporal Distribution of PM2.5 Concentration: A Numerical Simulation with WRF/CMAQ Model in Wuhan, China. J. Environ. Manag. 2021, 290, 112427. [Google Scholar] [CrossRef] [PubMed]
- Ogbuabia, T.B.; Guney, M.; Baimatova, N.; Ulusoy, I.; Karaca, F. Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification. Atmosphere 2023, 14, 1554. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-Hourly Products. Available online: https://rda.ucar.edu/datasets/d094000/ (accessed on 2 May 2025).
- World Health Organization. WHO Global Air Quality Guidelines, Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- UE-CA-Dir 2024/2881; Directive on Ambient Air Quality and Cleaner Air for Europe. European Union: Brussels, Belgium, 2024.
- NOM-025-SSA1-2021; Environmental Health, Criteria for Evaluating Ambient Air Quality Regarding Suspended Particles PM10 and PM2.5, Regulated Values for PM10 and PM2.5 Concentrations in Ambient Air as a Measure to Protect Public Health. NORMA Oficial Mexicana: Mexico City, Mexico, 2021.
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- CONAPO. Open Data on the Urban Marginalization Index; CONAPO: Mexico City, Mexico, 2020. [Google Scholar]
- QGIS. Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://www.qgis.org (accessed on 7 May 2025).
- Titi, A.; Dweirj, M.; Tarawneh, K. Environmental Effects of the Open Cast Mining a Case Study: Irbid Area, North Jordan. Am. J. Ind. Bus. Manag. 2015, 5, 404. [Google Scholar] [CrossRef]
- Bluvshtein, N.; Mahrer, Y.; Sandler, A.; Rytwo, G. Evaluating the Impact of a Limestone Quarry on Suspended and Accumulated Dust. Atmos. Environ. 2011, 45, 1732–1739. [Google Scholar] [CrossRef]
- Chang, C.-T. Assessment of Influential Range and Characteristics of Fugitive Dust in Limestone Extraction Processes. J. Air Waste Manag. Assoc. 2004, 54, 141–148. [Google Scholar] [CrossRef]
- Chang, C.-T.; Chang, Y.-M.; Lin, W.-Y.; Wu, M.-C. Fugitive Dust Emission Source Profiles and Assessment of Selected Control Strategies for Particulate Matter at Gravel Processing Sites in Taiwan. J. Air Waste Manag. Assoc. 2010, 60, 1262–1268. [Google Scholar] [CrossRef]
- EPA 40 CFR Part 51; Guideline on Air Quality Models; Enhancements to the AERMOD Dispersion Modeling System. Environmental Protection Agency: Washington, DC, USA, 2024.
- Yin, P.-Y. Mining Associations between Air Quality and Natural and Anthropogenic Factors. Sustainability 2024, 16, 4614. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Kurniawan, T.A.; Chandra, I.; Lei, T.M.T. Modeling PM10 Emissions in Quarry and Mining Operations: Insights from AERMOD Applications in Malaysia. Atmosphere 2025, 16, 369. [Google Scholar] [CrossRef]
- González-Sánchez, J.F.; Fernández-Villagómez, G.; Loredo Jasso, A.U.; Fernández, J.M.; Navarro-Blasco, Í.; Alvarez, J.I. Increasing the Sustainability of the Stabilization/Solidification of Potentially Toxic Elements Contained in Tailings from an Active Mine Using a Modified Lime Mortar. Sustainability 2024, 16, 2320. [Google Scholar] [CrossRef]
Element | Parameter |
---|---|
Forecasting modeling system | WRF |
Resolution | 12 km |
Study area | 50 km |
Period | 1095 days (2021–2023) |
Database | NCEP Climate Forecast System version 2 [55] |
Reference coordinates | Latitude 20.057°, Longitude −99.278° |
Element | Parameter |
---|---|
Digital model | Shuttle Radar Topography Mission (SRTM) |
Resolution | 30 m |
Mesh | 50 km |
Spacing | 500 m |
Receptors | 10,201 |
Period | 1095 days (2021–2023) |
Average concentration | 1 h |
Reference coordinates | Latitude 20.057000° N, Longitude −99.278000° W |
Air Quality Standard (PM10) | Averaging Period | Concentration (µg/m3) |
---|---|---|
OMS (2021) [56] | Annual | 15 |
EU (2024) [57] | 20 | |
NOM (2021) [58] | 20 |
Zone | Reference Coordinates (Latitude, Longitude) | Area (km2) | Emission (g/s) | |
---|---|---|---|---|
1 | 19.972773° N | −99.361018° W | 0.30 | 0.42 |
2 | 20.009011° N | −99.296722° W | 1.00 | 1.40 |
3 | 19.959346° N | −99.280095° W | 0.59 | 0.83 |
4 | 19.977837° N | −99.278636° W | 0.28 | 0.39 |
5 | 19.976077° N | −99.271331° W | 0.67 | 0.94 |
6 | 19.986662° N | −99.269256° W | 0.35 | 0.49 |
7 | 19.988643° N | −99.262271° W | 0.62 | 0.87 |
8 | 20.015981° N | −99.228319° W | 0.55 | 0.77 |
9 | 19.966233° N | −99.221968° W | 1.71 | 2.39 |
10 | 19.990308° N | −99.220969° W | 1.08 | 1.51 |
11 | 19.994019° N | −99.183703° W | 0.35 | 0.49 |
12 | 19.988484° N | −99.179385° W | 0.74 | 1.04 |
13 | 19.962665° N | −99.180579° W | 1.28 | 1.79 |
Year | Variable | Temperature | Relative Humidity | Wind Speed |
---|---|---|---|---|
2021 | MB | −0.81 | 2.63 | 0.87 |
NMGE | 0.11 | 0.16 | 0.59 | |
RMSE | 2.44 | 14.2 | 1.66 | |
r | 0.91 | 0.87 | 0.65 | |
IOA | 0.78 | 0.78 | 0.46 | |
2022 | MB | −0.63 | 1.78 | 0.85 |
NMGE | 0.11 | 0.16 | 0.58 | |
RMSE | 2.37 | 14.3 | 1.68 | |
r | 0.92 | 0.86 | 0.67 | |
IOA | 0.80 | 0.77 | 0.47 | |
2023 | MB | −082 | 3.02 | 0.86 |
NMGE | 0.11 | 0.18 | 0.61 | |
RMSE | 2.52 | 15.4 | 1.75 | |
r | 0.92 | 0.84 | 0.62 | |
IOA | 0.80 | 0.75 | 0.45 |
Month | Impact to Air Quality (µg/m3) | ||
---|---|---|---|
2021 | 2022 | 2023 | |
January | 21.9 | 19.8 | 20.2 |
February | 16.3 | 20.5 | 15.3 |
March | 14.3 | 17.8 | 17.9 |
April | 16.7 | 16.2 | 15.9 |
May | 16.4 | 16.5 | 14.9 |
June | 20.1 | 18.4 | 16.2 |
July | 23.5 | 21.7 | 21.3 |
August | 19.9 | 24.0 | 22.1 |
September | 22.1 | 20.5 | 22.9 |
October | 19.5 | 18.1 | 21.3 |
November | 20.0 | 21.1 | 20.5 |
December | 20.0 | 20.4 | 19.1 |
Annual | 19.2 | 19.6 | 18.9 |
AQS comparison (%) | |||
15 (OMS) | +28.0 | +30.6 | +26.0 |
20 (EU) | −4.0 | −2.0 | −5.5 |
20 (NOM) | −4.0 | −2.0 | −5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Lara, O.O.; López-Pérez, A.O.; Ortega-Montoya, C.Y.; Prieto Hinojosa, A.I.; Baldasano, J.M. Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico. Atmosphere 2025, 16, 728. https://doi.org/10.3390/atmos16060728
Mendoza-Lara OO, López-Pérez AO, Ortega-Montoya CY, Prieto Hinojosa AI, Baldasano JM. Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico. Atmosphere. 2025; 16(6):728. https://doi.org/10.3390/atmos16060728
Chicago/Turabian StyleMendoza-Lara, Osiel O., Andrés O. López-Pérez, Claudia Yazmín Ortega-Montoya, Adria Imelda Prieto Hinojosa, and J. M. Baldasano. 2025. "Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico" Atmosphere 16, no. 6: 728. https://doi.org/10.3390/atmos16060728
APA StyleMendoza-Lara, O. O., López-Pérez, A. O., Ortega-Montoya, C. Y., Prieto Hinojosa, A. I., & Baldasano, J. M. (2025). Air Quality and Social Vulnerability: Estimating Mining-Induced PM10 Pollution in Tula, Mexico. Atmosphere, 16(6), 728. https://doi.org/10.3390/atmos16060728