Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = power battery enterprise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2038 KB  
Article
Five-Stakeholder Collaboration in Power Battery Recycling Within Reverse Supply Chains: Threshold Analysis and Policy Recommendations via Evolutionary Game and System Dynamics
by Zhiping Lu, Zhengying Jin, Jiaying Qin and Yanyan Wang
Sustainability 2026, 18(1), 382; https://doi.org/10.3390/su18010382 - 30 Dec 2025
Viewed by 267
Abstract
The current retired recycling system suffers from “systemic coordination failure”, primarily due to ambiguous responsibility boundaries hindering interenterprise collaboration, unequal profit distribution discouraging technological innovation investment, and low participation from both consumers and recycling enterprises undermining the efficiency of recycling channels. However, the [...] Read more.
The current retired recycling system suffers from “systemic coordination failure”, primarily due to ambiguous responsibility boundaries hindering interenterprise collaboration, unequal profit distribution discouraging technological innovation investment, and low participation from both consumers and recycling enterprises undermining the efficiency of recycling channels. However, the simplified tripartite game models commonly adopted in existing research exhibit significant limitations in explaining and addressing the above practical challenges, as they fail to incorporate consumers and third-party recyclers as strategic decision-makers into the analytical framework. To address these issues, this study develops, for the first time, a five-party evolutionary game model involving governments, vehicle manufacturers, battery producers, third-party recyclers, and consumers within a reverse supply chain framework. We further employ system dynamics to simulate the dynamic evolution of stakeholder strategies. The results show that: (1) When tri-party synergistic benefits exceed 15, the system transitions from resource dissipation to circular regeneration. (2) Government subsidies reaching the threshold of 2 effectively promote low-carbon transformation across the industrial chain. (3) Bilateral synergistic benefits of 12 can stimulate green technological innovation and industrial upgrading. (4) Establishing a multi-stakeholder governance framework is key to enhancing resource circulation efficiency. This research provides quantitative evidence and policy implications for constructing an efficient and sustainable power battery recycling system. Full article
(This article belongs to the Special Issue Advances in Electronic Waste Management and Sustainability)
Show Figures

Figure 1

31 pages, 2435 KB  
Article
Comparative Life Cycle Analysis of Battery Electric Vehicle and Fuel Cell Electric Vehicle for Last-Mile Transportation
by Jieyi Zhang, Zhong Shuo Chen, Xinrui Zhang, Heran Zhang and Ruobin Gao
Energies 2026, 19(1), 136; https://doi.org/10.3390/en19010136 - 26 Dec 2025
Viewed by 611
Abstract
This study investigates whether Battery Electric Vehicles (BEVs) or Fuel Cell Electric Vehicles (FCEVs) represent the superior alternative to conventional vehicles for last-mile delivery, with a particular focus on large enterprises that prioritize both economic feasibility and environmental performance. Life Cycle Assessment and [...] Read more.
This study investigates whether Battery Electric Vehicles (BEVs) or Fuel Cell Electric Vehicles (FCEVs) represent the superior alternative to conventional vehicles for last-mile delivery, with a particular focus on large enterprises that prioritize both economic feasibility and environmental performance. Life Cycle Assessment and Life Cycle Cost methodologies are applied to evaluate both technologies across the full cradle-to-grave life cycle within a unified framework. The functional unit is defined as one kilometer traveled by a BEV or FCEV in last-mile transportation, and the system boundary includes vehicle manufacturing, operation, maintenance, and end-of-life treatment. The environmental impacts are assessed using the ReCiPe 2016 Midpoint (H) method implemented in OpenLCA 2.0.4, and normalization follows the standards provided by the official ReCiPe 2016 framework. The East China Power Grid serves as the baseline electricity mix for the operational stage. Regarding GHG emissions, FCEVs demonstrate a 12.36% reduction in carbon dioxide (CO2) emissions compared to BEVs. This reduction is particularly significant during the operational phase, where FCEVs can lower CO2 emissions by 53.51% per vehicle relative to BEVs, largely due to hydrogen energy’s higher efficiency and durability. In terms of economic costs, BEVs hold a slight advantage over FCEVs, costing approximately 0.8 RMB/km/car less. However, during the manufacturing phase, FCEVs present greater environmental challenges. It is recommended that companies fully consider which environmental issues they wish to make a greater contribution to when selecting vehicle types. This study provides insight and implications for large companies with financial viability concerns about environmental impact regarding selecting the two types of vehicles for last-mile transportation. The conclusions offer guidance for companies assessing which vehicle technology better aligns with their long-term operational and sustainability priorities. It can also help relevant practitioners and researchers to develop solutions to last-mile transportation from the perspective of different enterprise sizes. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 2733 KB  
Article
Managing Strategic Interactions for a Circular Economy: An Evolutionary Game Analysis of a Dynamic Deposit-Refund System in Electric Vehicle Battery Recycling
by Honghu Gao, Xu Han, Linjie Sun and Guangmei Cao
Sustainability 2025, 17(24), 11196; https://doi.org/10.3390/su172411196 - 14 Dec 2025
Viewed by 523
Abstract
This study addresses the challenge of electric vehicle power battery recycling by proposing a dynamic deposit-refund system (DRS) under the Extended Producer Responsibility (EPR) framework, as an alternative to the conventional static DRS. An evolutionary game model is developed to capture the strategic [...] Read more.
This study addresses the challenge of electric vehicle power battery recycling by proposing a dynamic deposit-refund system (DRS) under the Extended Producer Responsibility (EPR) framework, as an alternative to the conventional static DRS. An evolutionary game model is developed to capture the strategic interactions between local governments and responsible enterprises, incorporating a feedback mechanism where the deposit level is dynamically adjusted based on corporate EPR fulfillment rates. Using system dynamics simulation, the evolutionary paths under both static and dynamic DRS regimes are compared. The results demonstrate that the dynamic DRS effectively eliminates persistent oscillations and guides the system toward a stable equilibrium. Furthermore, by defining an ideal scenario, key factors are identified and prioritized to assist the government in steering the system toward this desired state. These findings offer actionable insights for designing adaptive regulatory mechanisms and fostering a self-sustaining battery recycling ecosystem. Full article
(This article belongs to the Special Issue Sustainable Energy: Circular Economy and Supply Chain Management)
Show Figures

Figure 1

32 pages, 3705 KB  
Article
Adaptive Iterative Algorithm for Optimizing the Load Profile of Charging Stations with Restrictions on the State of Charge of the Battery of Mining Dump Trucks
by Nikita V. Martyushev, Boris V. Malozyomov, Vitaliy A. Gladkikh, Anton Y. Demin, Alexander V. Pogrebnoy, Elizaveta E. Kuleshova and Yulia I. Karlina
Mathematics 2025, 13(24), 3964; https://doi.org/10.3390/math13243964 - 12 Dec 2025
Viewed by 265
Abstract
The development of electric quarry transport puts a significant strain on local power grids, leading to sharp peaks in consumption and degradation of power quality. Existing methods of peak smoothing, such as generation control, virtual power plants, or intelligent load management, have limited [...] Read more.
The development of electric quarry transport puts a significant strain on local power grids, leading to sharp peaks in consumption and degradation of power quality. Existing methods of peak smoothing, such as generation control, virtual power plants, or intelligent load management, have limited efficiency under the conditions of stochastic and high-power load profiles of industrial charging stations. A new strategy for direct charge and discharge management of a system for integrated battery energy storage (IBES) is based on dynamic iterative adjustment of load boundaries. The mathematical apparatus of the method includes the formalization of an optimization problem with constraints, which is solved using a nonlinear iterative filter with feedback. The key elements are adaptive algorithms that minimize the network power dispersion functionality (i.e., the variance of Pgridt over the considered time interval) while respecting the constraints on the state of charge (SOC) and battery power. Numerical simulations and experimental studies demonstrate a 15 to 30% reduction in power dispersion compared to traditional constant power control methods. The results confirm the effectiveness of the proposed approach for optimizing energy consumption and increasing the stability of local power grids of quarry enterprises. Full article
Show Figures

Figure 1

36 pages, 3748 KB  
Article
Research on Power Battery Recycling Decision Considering Deposit System Under Online Platform Recycling Mode
by Chunyi Ji, Yuxi Cui and Ziyin Wan
Appl. Sci. 2025, 15(23), 12514; https://doi.org/10.3390/app152312514 - 25 Nov 2025
Viewed by 386
Abstract
To promote the effective recycling of power batteries and solve the industry dilemma of “missing used batteries”, the deposit system and blockchain technology are regarded as important policy and technical tools. This paper constructs a power battery closed-loop supply chain composed of a [...] Read more.
To promote the effective recycling of power batteries and solve the industry dilemma of “missing used batteries”, the deposit system and blockchain technology are regarded as important policy and technical tools. This paper constructs a power battery closed-loop supply chain composed of a battery manufacturer and an online platform, considering two power structures of platforms with and without pricing power, respectively. This study employs Stackelberg game theory, and through modeling and optimization analysis, the optimal pricing, blockchain investment level, and profit of the supply chain under different deposit collectors are explored. The results discuss the following: (1) whether the online platform maintaining the right to recover pricing fundamentally changes the incentive mechanism and efficiency level of the supply chain. When the platform holds the pricing power, its blockchain technology investment level and profit potential are significantly higher than that of its agent model. (2) Deposit as a different attribute of cost or income determines the different pricing logic of enterprises. (3) To maximize the application of innovative technologies such as blockchain in recycling systems, governments, manufacturers, and platforms should strive to promote the application of government–manufacturers deposits modes. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

20 pages, 2783 KB  
Article
Research on the Recycling Strategy of End-of-Life Power Battery for Electric Vehicles Based on Evolutionary Game
by Fangfang Zhao, Yiqi Geng, Wenhui Shi and Yingxue Ren
World Electr. Veh. J. 2025, 16(11), 625; https://doi.org/10.3390/wevj16110625 - 17 Nov 2025
Viewed by 640
Abstract
The rapid growth of China’s electric vehicle (EV) market has led to a peak in end-of-life (EOL) power batteries, yet the recycling sector remains dominated by informal operations. This paper incorporates the formal and informal recycling participation behaviours of EV owners into the [...] Read more.
The rapid growth of China’s electric vehicle (EV) market has led to a peak in end-of-life (EOL) power batteries, yet the recycling sector remains dominated by informal operations. This paper incorporates the formal and informal recycling participation behaviours of EV owners into the framework of evolutionary games, systematically examines the mechanism by which governmental incentive and disincentive mechanisms influence the evolutionary stability of each party, and constructs a tripartite evolutionary game model involving the government, recycling enterprises, and EV owners. Numerical simulation experiments conducted using PyCharm 2.3 provide an in-depth exploration of the strategic evolutionary trajectories of each participating agent. The findings indicate that (1) the stable strategy for the game-theoretic system of EOL power battery recycling is government non-regulation, recycling enterprises adopting formal recycling practices, and EV owners participating in formal recycling; (2) strengthening penalties against recycling enterprises will accelerate their transition towards formal recycling strategies, while increasing incentive levels can significantly enhance the steady-state probability of firms opting for formal recycling; (3) government subsidies for EV owners encourage both EV owners and recycling enterprises to adopt formal recycling, with recycling enterprises shifting first. This study enriches the application of evolutionary game theory in the field of EOL power battery recycling and further provides guidance for the healthy development of the recycling industry. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

17 pages, 4642 KB  
Article
Maximizing Efficiency in a Retrofitted Battery-Powered Material Handler by Novel Control Strategies
by Marco Ferrari, Daniele Beltrami, Vinay Partap Singh, Tatiana Minav and Stefano Uberti
Actuators 2025, 14(11), 553; https://doi.org/10.3390/act14110553 - 11 Nov 2025
Viewed by 444
Abstract
The electrification of non-road mobile machinery is advancing to enhance sustainability and reduce emissions. This study investigates how to maximize the efficiency of the retrofitting of a material handler from an internal combustion engine to a battery-powered electric motor, while keeping the hydraulic [...] Read more.
The electrification of non-road mobile machinery is advancing to enhance sustainability and reduce emissions. This study investigates how to maximize the efficiency of the retrofitting of a material handler from an internal combustion engine to a battery-powered electric motor, while keeping the hydraulic system unchanged. Using a previously validated model, this study proposes three control strategies for the electric motor and hydraulic pump to enhance efficiency and performance. The first control strategy optimizes hydraulic pump performance within its most efficient displacement range. The second strategy maximizes powertrain efficiency by considering both efficiencies of the electric motor and hydraulic pump. The third strategy uses a servo-actuated valve to adjust the load-sensing margin and exhibits energy savings up to 14.2% and an 11.5% increase in efficiency. The proposed strategies avoid complex optimization algorithms, ensuring practical applicability for small- and medium-sized enterprises, which often face cost constraints and limited scalability. Full article
(This article belongs to the Special Issue New Control Schemes for Actuators—2nd Edition)
Show Figures

Figure 1

33 pages, 6586 KB  
Article
Pricing Strategy for Sustainable Recycling of Power Batteries Considering Recycling Competition Under the Reward–Penalty Mechanism
by Hairui Wei and Ziming Qi
Sustainability 2025, 17(16), 7224; https://doi.org/10.3390/su17167224 - 10 Aug 2025
Cited by 1 | Viewed by 1107
Abstract
With the large-scale power batteries approaching their retirement phase, efforts are being made to advance the recycling and cascade utilization of power batteries for electric vehicles (EVs). This paper constructs a closed-loop supply chain (CLSC) of power batteries led by the battery manufacturer [...] Read more.
With the large-scale power batteries approaching their retirement phase, efforts are being made to advance the recycling and cascade utilization of power batteries for electric vehicles (EVs). This paper constructs a closed-loop supply chain (CLSC) of power batteries led by the battery manufacturer (BM) and composed of the electric vehicle manufacturer (EVM) and third-party recycler (TPR). The study investigates the optimal pricing strategies of this CLSC with the consideration of recycling competition under the government’s reward–penalty mechanism. This paper establishes five recycling modes, namely independent recycling and cooperative recycling, under dual-channel recycling, and further discusses the effects of the government reward–penalty mechanism and recycling competition on the recycling rate, profits, and recycling pricing of the CLSC in each recycling mode. The following conclusions are found: (1) An increase in the reward–penalty intensity will increase the recycling rate, sales price of EVs, wholesale price, transfer price, recycling price, and the profit of each recycler in the CLSC. (2) An increase in the recycling competition will result in the reduction of the profit of each enterprise, and will also lead to the reduction of the recycling rate. (3) Cooperation between enterprises can inhibit the recycling volume of other enterprises to a certain extent. The cooperation between the EVM and BM can increase the recycling volume and the sales volume of EVs. (4) The leadership of the BM in the supply chain is embodied in the recycling and profit. For other members of the supply chain, it is very important to strive for cooperation with the leaders in the supply chain. These research conclusions can provide theoretical support for optimizing the power battery recycling system, formulating relevant policies, and improving the efficiency of resource recycling, thereby promoting the sustainable development of the new energy industry. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

25 pages, 2183 KB  
Article
Research on Decision of Echelon Utilization of Retired Power Batteries Under Government Regulation
by Xudong Deng, Xiaoyu Zhang, Yong Wang and Lihui Wang
World Electr. Veh. J. 2025, 16(7), 390; https://doi.org/10.3390/wevj16070390 - 10 Jul 2025
Cited by 2 | Viewed by 1059
Abstract
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple [...] Read more.
With the rapid development of new energy vehicles, the echelon utilization of power batteries has become a key pathway to promoting efficient resource recycling and environmental sustainability. To address the limitation of the existing studies that overlook the dynamic strategic interactions among multiple stakeholders, this paper constructs a tripartite evolutionary game model involving the government, battery recycling enterprises, and consumers. By incorporating consumers’ battery usage levels into the strategy space, the model captures the behavioral evolution of all these parties under bounded rationality. Numerical simulations are conducted to analyze the impact of government incentives and penalties, consumer usage behaviors, and enterprise recycling modes on system stability. The results show that a “low-subsidy, high-penalty” mechanism can more effectively guide enterprises to prioritize echelon utilization and that moderate consumer usage significantly improves battery reuse efficiency. This study enriches the application of the evolutionary game theory in the field of battery recycling and provides quantitative evidence and practical insights for policy formulation. Full article
Show Figures

Figure 1

30 pages, 432 KB  
Article
Selection of Symmetrical and Asymmetrical Supply Chain Channels for New Energy Vehicles Under Multi-Factor Influences
by Yongjia Tong and Jingfeng Dong
Symmetry 2025, 17(5), 727; https://doi.org/10.3390/sym17050727 - 9 May 2025
Viewed by 1102
Abstract
In recent years, as an important alternative to traditional gasoline-powered vehicles, new electric vehicles (NEVs) have gained widespread attention and rapid development globally. In the traditional automotive industry chain, downstream vehicle manufacturers need to master core technologies, such as engines, chassis, and transmissions. [...] Read more.
In recent years, as an important alternative to traditional gasoline-powered vehicles, new electric vehicles (NEVs) have gained widespread attention and rapid development globally. In the traditional automotive industry chain, downstream vehicle manufacturers need to master core technologies, such as engines, chassis, and transmissions. In contrast to the traditional automotive industry chain, where downstream vehicle manufacturers must master core technologies, like engines, chassis, and transmissions, the electric vehicle industry chain has evolved in a way that the development of core components is gradually separated from the vehicle manufacturers. Downstream vehicle manufacturers can now outsource key components, such as batteries, electric controls, and motors. Additionally, in terms of sales models, the electric vehicle industry chain can adopt either the traditional 4S dealership model or a direct-sales model. As the research and development of core components are increasingly separated from vehicle manufacturers, the downstream vehicle manufacturers can source components, like batteries, electric controls, and motors, externally. At the same time, they can choose to use either the traditional 4S dealership model or the direct-sales model. The underlying mechanisms and channel selection in this context require further exploration. Based on this, a mathematical model is established by incorporating terminal marketing input, product competitiveness, and after-sales service levels from the literature to solve for the optimal pricing under centralized and decentralized pricing strategies. Using numerical examples, the pricing and profit performance under different market structures are analyzed to systematically examine the impact of the electric vehicle supply chain on business operations, as well as the changes in various elements across different channels. We will focus on how after-sales services (including the spare part supply) influence the pricing strategy and profit distribution in the supply chain, aiming to provide insights into advanced manufacturing system management for manufacturing enterprises and improve the efficiency of intelligent logistics management. The research indicates that (1) The direct-sales model helps to improve the terminal marketing input, after-sales service quality, and product competitiveness for supply chain stakeholders; (2) It is noteworthy that the manufacturer’s direct-sales model also significantly contributes to lowering prices, highlighting that the direct-sales model has substantial impacts on both supply chain stakeholders and, importantly, consumers. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

49 pages, 4747 KB  
Article
Electric Vehicle Traction Battery Recycling Decision-Making Considering Blockchain Technology in the Context of Capacitance Level Differential Demand
by Lijun Yang and Yi Wang
World Electr. Veh. J. 2024, 15(12), 561; https://doi.org/10.3390/wevj15120561 - 3 Dec 2024
Cited by 2 | Viewed by 2395
Abstract
In recent years, the rapid growth in electric vehicle ownership has resulted in a significant number of decommissioned traction batteries that will require recycling in the future. As consumer expectations for electric vehicle range continue to rise, the turnover of traction batteries has [...] Read more.
In recent years, the rapid growth in electric vehicle ownership has resulted in a significant number of decommissioned traction batteries that will require recycling in the future. As consumer expectations for electric vehicle range continue to rise, the turnover of traction batteries has accelerated substantially. Consequently, there is an urgent need for electric vehicle manufacturers to establish an efficient, recyclable supply chain for the return of end-of-life (EOL) electric vehicle (EV) traction batteries. In this paper, we investigate the closed-loop recycling supply chain for retired power batteries in electric vehicle manufacturers, taking into account blockchain technology and the high range preferences in the electric vehicle market, which are influenced by varying demand for different levels of electric vehicle capacitance. Blockchain, as a distributed and decentralized technology, offers features such as consensus mechanisms, traceability, and security, which have been effectively applied across various fields. In this study, we construct four models involving EV battery manufacturers, EV retailers, and battery comprehensive utilization (BCU) enterprises participating in the recycling process. Through the analysis of a Stackelberg response model, we find that (1) single-channel recycling is less efficient than dual-channel recycling models, a difference driven by the diversity of recycling channels and the variability in recycling markets; (2) Recycling models incorporating blockchain technology demonstrate superior performance compared to those that do not utilize blockchain technology, particularly when the intensity of recycling competition is below 0.76; (3) Traction batteries integrated with blockchain technology exhibit higher recycling rates when the optimization index is below 0.96. Electric vehicle battery manufacturers must evaluate the benefits and costs of adopting blockchain technology; (4) With lower recycling incentive levels and EV range preferences, the single-channel recycling model yields better returns than the other three recycling models. EV manufacturers can enhance overall battery supply chain revenues by establishing varying incentive levels based on market demand for different capacitance levels. Full article
(This article belongs to the Topic Electric Vehicles Energy Management, 2nd Volume)
Show Figures

Figure 1

26 pages, 5125 KB  
Article
Power Battery Recycling Model of Closed-Loop Supply Chains Considering Different Power Structures Under Government Subsidies
by Fei Zeng, Zhiping Lu and Chengyu Lu
Sustainability 2024, 16(21), 9589; https://doi.org/10.3390/su16219589 - 4 Nov 2024
Cited by 5 | Viewed by 3576
Abstract
With the rapid growth of the electric vehicle industry, the recycling of power batteries has attracted significant attention. In light of current circumstances, the question of how the government can incentivize relevant stakeholders to actively engage in recycling and improve its efficiency has [...] Read more.
With the rapid growth of the electric vehicle industry, the recycling of power batteries has attracted significant attention. In light of current circumstances, the question of how the government can incentivize relevant stakeholders to actively engage in recycling and improve its efficiency has become increasingly pressing. In this context, this study analyses and develops four closed-loop supply chain recycling models to investigate how different government subsidy recipients under varying power structures influence recycling efficiency, profitability, and the overall supply chain structures. The following conclusions are derived from numerical simulations: (1) Government subsidies serve to elevate recycling prices, expand profit margins, and consequently boost the volume of recycled batteries, thus incentivizing corporate engagement in recycling initiatives. (2) When the processor assumes the role of the leader in the Stackelberg game framework, it can maximize the overall efficiency and profitability of the supply chain. (3) The sensitivity coefficient and the competition coefficient are closely interrelated, exerting opposing impacts on the recycling decision made by enterprises. (4) The supply chain leader plays a crucial role in ensuring orderly supply chain development, with government subsidies of the supply chain being transmitted to its members through the leader. Consequently, this study offers a theoretical foundation for the government to enhance policy-making and for enterprises to make informed decisions. It also holds significant practical relevance in addressing the challenges associated with power battery recycling. Full article
Show Figures

Figure 1

14 pages, 20801 KB  
Article
Collaborative Business Models for the Second-Life Utilization of New Energy Vehicle (NEV) Batteries in China: A Multi-Case Study
by Xichen Lyu, Zhenni Zhang and Liya Fu
Sustainability 2024, 16(20), 8972; https://doi.org/10.3390/su16208972 - 17 Oct 2024
Cited by 1 | Viewed by 2642
Abstract
New energy vehicle (NEV) power batteries are experiencing a significant “retirement wave”, making second-life utilization (SLU) a crucial strategy to extend their lifespan and maximize their inherent value. This study focuses on prominent enterprises in China’s SLU sector, including BAIC Group, BYD, China [...] Read more.
New energy vehicle (NEV) power batteries are experiencing a significant “retirement wave”, making second-life utilization (SLU) a crucial strategy to extend their lifespan and maximize their inherent value. This study focuses on prominent enterprises in China’s SLU sector, including BAIC Group, BYD, China Tower, and Zhongtian Hongli. Employing a multi-case study approach, a variety of business models and applicable scenarios developed through the cooperation between NEV manufacturers and SLU enterprises are effectively identified, including “co-constructing and purchase”, “co-constructing and leasing”, “self-constructing and purchase”, and “self-constructing and leasing”. The choice of collaborative business model is closely linked to the developmental stage of the NEV manufacturers and SLU enterprises. Additionally, this paper finds that the achievement of collaboration is influenced by the interplay between market dynamics and government policies. The theoretical framework developed from this study offers valuable insights for NEV manufacturers and SLU enterprises to establish stable and effective collaborative business models. Full article
Show Figures

Figure 1

33 pages, 3567 KB  
Article
Supply Chain Coordination of New Energy Vehicles under a Novel Shareholding Strategy
by Zijia Liu and Guoliang Liu
Sustainability 2024, 16(18), 8046; https://doi.org/10.3390/su16188046 - 14 Sep 2024
Viewed by 1476
Abstract
As important methods of ecofriendly transportation, the supply chain coordination of new energy vehicles (NEVs) is an important issue in the field of sustainability. This study constructs a Stackelberg game composed of a power battery supplier and an NEV manufacturer. To better describe [...] Read more.
As important methods of ecofriendly transportation, the supply chain coordination of new energy vehicles (NEVs) is an important issue in the field of sustainability. This study constructs a Stackelberg game composed of a power battery supplier and an NEV manufacturer. To better describe the coordination relationship in the NEV supply chain, we introduce the Nash bargaining framework into the fairness concern preference utility function. Through a comprehensive discussion of shareholding ratios and external environment factors, we discover that the traditional shareholding strategy fails to coordinate the NEV supply chain effectively, as enterprises seek to avoid losing management control, which occurs when excessive shares are held by others. In this context, this study proposes a novel industry–university–research (IUR) shareholding strategy, which can more easily achieve supply chain coordination and improve social welfare. In particular, this study reveals the superiority of the novel strategy in eliminating the double-marginal effect caused by high fairness concern preference among NEV enterprises. Based on these facts, we provide enterprises with optimal strategies under different conditions and offer a government-optimal subsidy to maximize the social welfare function. Full article
Show Figures

Figure 1

17 pages, 3918 KB  
Article
Integrated Risk-Aware Smart Disassembly Planning for Scrap Electric Vehicle Batteries
by Shibo Yang, Xiaojun Zhuo, Wei Ning, Xing Xia and Yong Huang
Energies 2024, 17(12), 2946; https://doi.org/10.3390/en17122946 - 14 Jun 2024
Cited by 5 | Viewed by 1747
Abstract
With the increase in the production of electric vehicles (EVs) globally, a significant volume of waste power battery modules (WPBM) will be generated accordingly, posing challenges for their disposal. An intelligent scrap power battery disassembly sequence planning method, integrated with operational risk perception, [...] Read more.
With the increase in the production of electric vehicles (EVs) globally, a significant volume of waste power battery modules (WPBM) will be generated accordingly, posing challenges for their disposal. An intelligent scrap power battery disassembly sequence planning method, integrated with operational risk perception, is proposed to automate the planning process. Taking into consideration the risk coefficients, energy consumption, and costs during disassembly, this method maximizes profits, minimizes energy usage, and ensures safety. Utilizing an extended part priority graph, an optimized model for integrated risk-aware disassembly sequence planning (IRA-DSP) is constructed. With the Guangqi Toyota LB7A-FX1 as a case study, and using real data from resource recovery enterprises, an improved MOPSO-GA algorithm is proposed to solve the model and generate disassembly plans. The results demonstrate the method’s ability to achieve unit-level disassembly of WPBM, avoid high-risk sequences, and optimize profit and energy consumption, exhibiting its practicality and feasibility. Full article
(This article belongs to the Special Issue Advances in Battery Degradation and Recycling)
Show Figures

Figure 1

Back to TopTop