Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = powder bed temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7997 KiB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

21 pages, 6163 KiB  
Article
Residual Stress and Corrosion Performance in L-PBF Ti6Al4V: Unveiling the Optimum Stress Relieving Temperature via Microcapillary Electrochemical Characterisation
by Lorenzo D’Ambrosi, Katya Brunelli, Francesco Cammelli, Reynier I. Revilla and Arshad Yazdanpanah
Metals 2025, 15(8), 855; https://doi.org/10.3390/met15080855 - 30 Jul 2025
Viewed by 251
Abstract
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and [...] Read more.
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and 800 °C on microstructure, residual stress, and electrochemical performance. Specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical techniques. A novel microcapillary electrochemical method was employed to precisely assess passive layer stability and corrosion behaviour under simulated oral conditions, including fluoride contamination and tensile loading. Results show that heat treatments up to 600 °C effectively reduce residual stress with minimal impact on corrosion resistance. However, 800 °C treatment leads to a phase transformation from α′ martensite to a dual-phase α + β structure, significantly compromising passive film integrity. The findings establish 600 °C as the optimal stress-relieving temperature for balancing mechanical stability and electrochemical performance in biomedical and aerospace components. Full article
Show Figures

Figure 1

15 pages, 8574 KiB  
Article
Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources
by Mattia Cabrioli, María Silva Colmenero, Matteo Vanazzi, Luisa E. Mondora, Gianluca Acquistapace, Fabio Esposito and Michela Giovanardi
Corros. Mater. Degrad. 2025, 6(3), 34; https://doi.org/10.3390/cmd6030034 - 26 Jul 2025
Viewed by 180
Abstract
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed [...] Read more.
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed Fusion (LPBF) technology. After machining and exposure to a controlled, pressurized hydrogen atmosphere at high temperature, the effect of hydrogen charging on the mechanical performance under static and dynamic conditions was investigated. The stabilizing effect of the optimized chemical composition is reflected in the absence of degradation effects on Yield Stress (YS), Ultimate Tensile Stress (UTS), and fatigue life observed for specimens exposed to hydrogen. Moreover, despite a moderate reduction in the elongation at fracture observed by increasing the hydrogen charging time, ductility loss calculated as Relative Reduction of Area (RRA) remains substantially unaffected by the duration of exposure to hydrogen and demonstrates that the austenitic steel is capable of resisting hydrogen embrittlement (HE). Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

18 pages, 7614 KiB  
Article
The Influence of Print Orientation and Discontinuous Carbon Fiber Content on the Tensile Properties of Selective Laser-Sintered Polyamide 12
by Jonathan J. Slager, Joshua T. Green, Samuel D. Levine and Roger V. Gonzalez
Polymers 2025, 17(15), 2028; https://doi.org/10.3390/polym17152028 - 25 Jul 2025
Viewed by 333
Abstract
Discontinuous fibers are commonly added to matrix materials in additive manufacturing to enhance properties, but such benefits may be constrained by print and fiber orientation. The additive processes of forming rasters and layers in powder bed fusion inherently cause anisotropy in printed parts. [...] Read more.
Discontinuous fibers are commonly added to matrix materials in additive manufacturing to enhance properties, but such benefits may be constrained by print and fiber orientation. The additive processes of forming rasters and layers in powder bed fusion inherently cause anisotropy in printed parts. Many print parameters, such as laser, temperature, and hatch pattern, influence the anisotropy of tensile properties. This study characterizes fiber orientation attributed to recoating non-encapsulated fibers and the resulting anisotropic tensile properties. Tensile and fracture properties of polyamide 12 reinforced with 0%, 2.5%, 5%, and 10% discontinuous carbon fibers by volume were characterized in two primary print/tensile loading orientations: tensile loading parallel to the recoater (“horizontal specimens”) and tensile load along the build axis (“vertical specimens”). Density and fractographic analysis indicate a homogeneous mixture with low porosity and primary fiber orientation along the recoating direction for both print orientations. Neat specimens (zero fiber) loaded in either direction have similar tensile properties. However, fiber-reinforced vertical specimens have significantly reduced consistency and tensile strength as fiber content increased, while the opposite is true for horizontal specimens. These datasets and results provide a mechanism to tune material properties and improve the functionality of selectively laser-sintered fiber-reinforced parts through print orientation selection. These datasets could be used to customize functionally graded parts with multi-material selective laser-sintering manufacturing. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

24 pages, 11312 KiB  
Article
Effect of Thermomechanical Processing on Porosity Evolution and Mechanical Properties of L-PBF AISI 316L Stainless Steel
by Patrik Petroušek, Róbert Kočiško, Andrea Kasperkevičová, Dávid Csík and Róbert Džunda
Metals 2025, 15(7), 789; https://doi.org/10.3390/met15070789 - 12 Jul 2025
Viewed by 318
Abstract
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h [...] Read more.
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h with air cooling (HT1), and annealed at 1050 °C for 1 h followed by water quenching (HT2), combined with cold and hot rolling at different strain levels. The most pronounced improvement was observed after 20% hot rolling followed by water quenching (HR + WQ), which reduced porosity to 0.05% and yielded the most spherical pores, with a circularity factor (fcircle) of 0.90 and an aspect ratio (AsR) of 1.57. At elevated temperatures, the matrix becomes more pliable, which promotes pore closure and helps reduce stress concentrations. On the other hand, applying heat treatment without causing deformation resulted in the pores growing and increasing porosity in the build direction. The fractography supported these findings, showing a transition from brittle to more ductile fracture surfaces. Heat treatment combined with plastic deformation effectively reduced internal defects and improved both structural integrity and strength. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

13 pages, 3463 KiB  
Article
The Effects of Heat Treatment Temperatures on the Properties of 316L Stainless Steel Produced via Laser Powder Bed Fusion
by Yizhi Zhou, Mingxia Chai, Fu Zheng and Zhiyong Li
Materials 2025, 18(13), 3167; https://doi.org/10.3390/ma18133167 - 3 Jul 2025
Viewed by 427
Abstract
316L stainless steel (316L SS) exhibits excellent corrosion resistance, mechanical properties, and biocompatibility, but the rapid melting and solidification of the laser powder bed fusion (PBF-LB/M) process reduce the properties of the newly formed parts. This study aims to enhance the mechanical properties [...] Read more.
316L stainless steel (316L SS) exhibits excellent corrosion resistance, mechanical properties, and biocompatibility, but the rapid melting and solidification of the laser powder bed fusion (PBF-LB/M) process reduce the properties of the newly formed parts. This study aims to enhance the mechanical properties of PBF-LB/M PBF-LB/M-formed 316L SS parts by investigating the effects of various heat treatment temperatures. The results show that an appropriate heat treatment temperature can improve the microstructure and mechanical properties of the formed parts. Lower temperatures have minimal effects on performance; however, at 1100 °C, recrystallization occurs, resulting in more uniform grain structures, improved densification, and substantial stress relief. The residual stress is reduced by 85.59% compared to the untreated PBF-LB/M samples, while the ferrite content is significantly decreased, making the phase structure more homogeneous. Although both yield strength and tensile strength decrease, plasticity improves by 21.11%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 5928 KiB  
Article
The Influence of Direct Aging on TiB2/Al–Si–Mg Composites Fabricated by LPBF: Residual Stress, Mechanical Properties and Microstructure
by Peng Rong, Xin Fang, Yirui Chang, Yong Chen, Dan Huang and Yang Li
Coatings 2025, 15(7), 780; https://doi.org/10.3390/coatings15070780 - 2 Jul 2025
Viewed by 540
Abstract
This study systematically investigates the effects of various direct aging (DA) treatments on the residual stress, mechanical properties, and microstructure of laser powder bed fusion (LPBF) fabricated TiB2/AlSi7Mg composites. The results demonstrate that during aging at 120 °C, the hardness exhibits [...] Read more.
This study systematically investigates the effects of various direct aging (DA) treatments on the residual stress, mechanical properties, and microstructure of laser powder bed fusion (LPBF) fabricated TiB2/AlSi7Mg composites. The results demonstrate that during aging at 120 °C, the hardness exhibits a typical age-hardening behavior. The residual stress relief rate increased to 45.1% after 336 h, although the stress relief rate significantly diminished over time. Increasing the aging temperature effectively enhanced residual stress removal efficiency, with reductions of approximately 40% and 62% observed after aging at 150 °C for 4 h and 190 °C for 8 h, respectively. Regarding mechanical properties, aging at 150 °C for 4 h resulted in an optimal synergy in yield strength (YS = 358 MPa) and elongation (EL = 9.2%), followed by aging at 190 °C for 8 h with YS of 320 MPa and EL of 7.0%. Microstructural analysis revealed that low temperature aging promotes the formation of nanoscale Si precipitates, which enhance strength through the Orowan mechanism. In contrast, high temperature annealing disrupts the metastable cellular structure, leading to the loss of strengthening effects. This work provides fundamental insights for effective residual stress management and performance optimization of LPBF Al–Si–Mg alloys. Full article
(This article belongs to the Special Issue Advanced Surface Technology and Application)
Show Figures

Graphical abstract

18 pages, 4806 KiB  
Article
Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior
by Vito Burgio and Ghazal Moeini
Materials 2025, 18(13), 3071; https://doi.org/10.3390/ma18133071 - 27 Jun 2025
Viewed by 407
Abstract
High-entropy alloys are known for their promising mechanical properties, wear and corrosion resistance, which are maintained across a wide range of temperatures. In this study, a CoCrFeNiCu-based high-entropy alloy, distinguished from conventional CoCrFeNi systems by the addition of Cu, which is known to [...] Read more.
High-entropy alloys are known for their promising mechanical properties, wear and corrosion resistance, which are maintained across a wide range of temperatures. In this study, a CoCrFeNiCu-based high-entropy alloy, distinguished from conventional CoCrFeNi systems by the addition of Cu, which is known to enhance toughness and wear resistance, was investigated to better understand the effects of compositional modification on processability and performance. The influence of key process parameters, specifically laser power and scan speed, on the processability of CoCrFeNiCu-based high-entropy alloys produced by laser powder bed fusion additive manufacturing was investigated, with a focus of low laser power, which is critical for minimizing defects and improving the resulting microstructure and mechanical performance. The printed sample density gradually increases with higher volumetric energy density, achieving densities exceeding 99.0%. However, at higher energy densities, the samples exhibit susceptibility to hot cracking, an issue that cannot be mitigated by adjusting the process parameters. Mechanical properties under optimized parameters were further evaluated using Charpy impact and (in situ) tensile tests. These evaluations were supplemented by in situ tensile experiments conducted within a scanning electron microscope to gain insights into the behavior of defects, such as hot cracks, during tensile testing. Despite the sensitivity to hot cracking, the samples exhibited a respectable ultimate tensile strength of 662 MPa, comparable to fine-grained steels like S500MC (070XLK). These findings underscore the potential of CoCrFeNiCu-based high-entropy alloys for advanced applications. However, they also highlight the necessity for developing strategies to ensure stable and reliable processing methods that can mitigate the susceptibility to hot cracking. Full article
Show Figures

Figure 1

31 pages, 62180 KiB  
Article
Evaluation of the Suitability of High-Temperature Post-Processing Annealing for Property Enhancement in LPBF 316L Steel: A Comprehensive Mechanical and Corrosion Assessment
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Tianliang Zhao, Vasily Efremenko, Kaiming Wu, Tao Xia, Miroslav Džupon and Sundas Arshad
Metals 2025, 15(6), 684; https://doi.org/10.3390/met15060684 - 19 Jun 2025
Viewed by 513
Abstract
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing [...] Read more.
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing on tensile properties, nanoindentation hardness and modulus, impact toughness at ambient and cryogenic temperatures (−196 °C), and the corrosion resistance of LPBF 316L. Annealing at 900–1050 °C reduced tensile strength and hardness, followed by a moderate increase at 1200 °C. Conversely, ductility and impact toughness peaked at 900 °C but declined with the increasing annealing temperature. Regardless of the annealing temperature and testing conditions, LPBF 316L steel fractured through a mixed transgranular/intergranular mechanism involving dimple formation. The corrosion resistance of annealed steel was significantly lower than that in the as-built state, with the least detrimental effect being observed at 1050 °C. These changes resulted from the complex interplay of annealing-induced structural transformations, including elimination of the cellular structure and Cr/Mo segregations, reduced dislocation density, the formation of recrystallized grains, and the precipitation of nano-sized (MnCrSiAl)O3 inclusions. At 1200 °C, an abundant oxide formation strengthened the steel; however, particle coarsening, combined with the transition of (MnCrSiAl)O3 into Mo-rich oxide, further degraded the passive film, leading to a sharp decrease in corrosion resistance. Overall, post-processing annealing at 900–1200 °C did not comprehensively improve the combination of LPBF 316L steel properties, suggesting that the as-built microstructure offers a favorable balance of properties. High-temperature annealing can enhance a particular property while potentially compromising other performance characteristics. Full article
Show Figures

Figure 1

23 pages, 10426 KiB  
Article
Experimental Evaluation of Thermo-Mechanical Properties of GRCop-42, Produced by PBF-LB, at Low Temperatures
by Daniele Cortis, Cristina Giancarli, Francesco Ferella, Chiara Di Donato, Riccardo Elleboro, Alessandro Razeto, Stefano Nisi and Donato Orlandi
Metals 2025, 15(6), 604; https://doi.org/10.3390/met15060604 - 28 May 2025
Viewed by 437
Abstract
Today, Powder Bed Fusion-Laser Based technology is widely used in many industrial fields, but some high-demanding applications are still not fully investigated, such as low temperatures. In basic physics research, experiments usually use low temperatures to reduce external influences and to increase the [...] Read more.
Today, Powder Bed Fusion-Laser Based technology is widely used in many industrial fields, but some high-demanding applications are still not fully investigated, such as low temperatures. In basic physics research, experiments usually use low temperatures to reduce external influences and to increase the sensitivity of particle detectors, accelerators, etc. The production capabilities of this technology have become a standard for manufacturing such components, and the demand for high performance has led to the investigation of new materials, like GRCop-42. It possesses excellent thermal properties and strength at high temperatures, and although several works have been published in recent years, full research on its behaviour at low temperatures is still missing. The aim of the paper is to investigate the mechanical properties of GRCop-42, produced by PBF-LB, from low to room temperature, like Elastic Modulus and Poisson’s ratio, and correlate them with thermal conductivity in the as-built state and after heat treatment. The results showed that the material can maintain high strength even at low temperatures, without losing ductility and the ability to store strain energy; moreover, after heat treatment, it increases its thermal properties due to the way the precipitates are dispersed in the copper matrix. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Graphical abstract

16 pages, 2483 KiB  
Article
H2 Production from Pyrolysis-Steam Reforming of Municipal Solid Waste and Biomass: A Comparative Study When Using the Self-Derived Char-Based Catalysts
by Maijia Qiu, Chenhao Xiang, Yitao Wen, Weichen Hong, Renkai Liu, Dehong Chen and Dezhen Chen
Catalysts 2025, 15(6), 531; https://doi.org/10.3390/catal15060531 - 27 May 2025
Viewed by 703
Abstract
This study employed a two-stage fixed-bed pyrolysis-reforming reactor to investigate H2 production behaviors from municipal solid waste (MSW) and biomass with their self-derived catalysts under different operating parameters. The self-derived catalysts are prepared by mechanically mixing pyrolysis-derived chars with CaO and iron [...] Read more.
This study employed a two-stage fixed-bed pyrolysis-reforming reactor to investigate H2 production behaviors from municipal solid waste (MSW) and biomass with their self-derived catalysts under different operating parameters. The self-derived catalysts are prepared by mechanically mixing pyrolysis-derived chars with CaO and iron powders. The main results are as follows: (1) The higher oxygen content in biomass facilitates oxidative dehydrogenation reactions, enabling in situ generation of H2O, which results in a higher H2/CO ratio for biomass compared to MSW under steam-free conditions. (2) There are optimal values for the reforming temperature and steam-to-feedstock ratio (S/F) to achieve best performance. In the presence of steam, MSW generally exhibits superior H2 and syngas production performance to biomass; (3) Both MSW char (MSWC)- and biomass char (BC)-based catalysts showed satisfied H2 production and tar cracking performance at 850–900 °C, and the MSWC-based catalyst demonstrated better catalytic activity than the BC-based catalyst due to its higher contents of several active metals. In addition, the iron powder can be recycled easily, proving the effectiveness of the self-derived convenient and cheap catalysts. Full article
Show Figures

Graphical abstract

16 pages, 3096 KiB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 429
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

14 pages, 3883 KiB  
Article
Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum
by İnayet Burcu Toprak, Nafel Dogdu and Metin Uymaz Salamci
Appl. Sci. 2025, 15(10), 5485; https://doi.org/10.3390/app15105485 - 14 May 2025
Viewed by 491
Abstract
This study presents a comprehensive numerical investigation of the Laser Powder Bed Fusion (LPBF) process for pure molybdenum, focusing on high-precision modeling and process optimization. The powder spreading behavior is simulated using the Discrete Element Method (DEM), while molten pool dynamics are analyzed [...] Read more.
This study presents a comprehensive numerical investigation of the Laser Powder Bed Fusion (LPBF) process for pure molybdenum, focusing on high-precision modeling and process optimization. The powder spreading behavior is simulated using the Discrete Element Method (DEM), while molten pool dynamics are analyzed through Computational Fluid Dynamics (CFD). Optimization of process parameters is performed using FLOW-3D Release 7 software in conjunction with the HEEDS-SHERPA algorithm. A total of 247 simulations are conducted to assess the effects of four critical parameters: laser power (50–400 W), scanning speed (80–300 mm/s), laser spot diameter (40–100 µm), and powder layer thickness (50–100 µm). The optimal parameter set—350 W laser power, 120 mm/s scanning speed, 50 µm spot diameter, and 50 µm layer thickness—results in an 80% laser absorption rate, a 60% reduction in micro-porosity, and over a 30% enhancement in both molten pool volume and surface area. Utilizing a fine 10 µm mesh resolution enables detailed insights into temperature gradients and phase transition behavior. The findings highlight that optimized parameter selection significantly improves the structural integrity of Mo-based components while minimizing manufacturing defects, thus offering valuable guidance for advancing industrial-scale additive manufacturing of refractory metals. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

17 pages, 10233 KiB  
Article
The Influence of Grain Structure on Mechanical Properties of LPBF AlSi10Mg Alloy Obtained via Conventional and KOBO Extrusion Process
by Przemysław Snopiński, Paweł Ostachowski, Krzysztof Matus and Krzysztof Żaba
Symmetry 2025, 17(5), 709; https://doi.org/10.3390/sym17050709 - 6 May 2025
Viewed by 621
Abstract
This study compares the microstructures and mechanical properties of the AlSi10Mg alloy processed by laser powder bed fusion (LPBF) after undergoing different post-processing techniques. These techniques include conventional extrusion at 350 °C (CE-350) and KOBO extrusion at both room temperature (KOBO-RT) and 350 [...] Read more.
This study compares the microstructures and mechanical properties of the AlSi10Mg alloy processed by laser powder bed fusion (LPBF) after undergoing different post-processing techniques. These techniques include conventional extrusion at 350 °C (CE-350) and KOBO extrusion at both room temperature (KOBO-RT) and 350 °C (KOBO-350). The extrusion processes, regardless of the method used, effectively densified the alloy, fragmented the primary silicon network, and refined the grain structure. Notably, a microstructure analysis indicated that the CE-350 method produced the finest grains, whereas the KOBO-350 method resulted in the largest grains. From a mechanical perspective, extrusion significantly increased ductility—rising from 2.4% to more than 14% elongation—while decreasing strength compared to the as-built state. Among the extruded samples, CE-350 provided the best balance of strength and ductility, exhibiting a yield strength of 186 MPa and a ductility of 18.1% elongation. Overall, the results demonstrate that while extrusion enhances ductility, it does so at the expense of strength, with conventional extrusion yielding a more favorable property balance for this alloy under the tested conditions. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

10 pages, 3322 KiB  
Communication
Selective Laser Melting of Molybdenum Alloy on Silicon Carbide Substrate
by Marina Aghayan and Tsovinar Ghaltaghchyan
Materials 2025, 18(9), 2121; https://doi.org/10.3390/ma18092121 - 5 May 2025
Viewed by 552
Abstract
Additive manufacturing (AM) technologies allow for the creation of components with greater design flexibility. The complexity in geometry and composition can enhance functionality, while parts made from multiple materials have the capacity to deliver improved performance. Nonetheless, most multimaterial printing methods are still [...] Read more.
Additive manufacturing (AM) technologies allow for the creation of components with greater design flexibility. The complexity in geometry and composition can enhance functionality, while parts made from multiple materials have the capacity to deliver improved performance. Nonetheless, most multimaterial printing methods are still in their infancy and face numerous challenges. Numerous materials require individual post-treatment, and some may not be compatible with each other regarding shrinkage, melting or sintering temperatures, and interactions. In this study, we introduce a technique for producing a metal–ceramic multimaterial prototype for electronic packages through powder-bed additive manufacturing technology. Silicon carbide-based ceramic substrate was manufactured by selective laser melting, on which molybdenum-based conductive tracks were printed. The results indicated that the SiC-based samples exhibit a relatively uniform microstructure with homogeneously distributed porosity. Mo-based powder containing 5% silicon was successfully SLM-ed on the SiC layer. The microstructural and chemical analyses show that Mo reacted with Si during selective laser melting, resulting in formation of molybdenum silicides. The surface of Mo-based layer surface is smooth; however, there are few cracks on it. The Vickers hardness was measured to be 7.6 ± 1 GPa. The electrical resistivity of the conductive track is 2.8 × 10−5 Ω·m. Full article
Show Figures

Figure 1

Back to TopTop