Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = poultry gelatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2758 KiB  
Article
Effect of UV Exposure Time on the Properties of Films Prepared from Biotechnologically Derived Chicken Gelatin
by Jakub Martinek, Lucie Polomíková, Michal Kudláček, Jana Navrátilová, Pavel Mokrejš, Jana Pavlačková and Robert Gál
Processes 2025, 13(1), 91; https://doi.org/10.3390/pr13010091 - 2 Jan 2025
Viewed by 1560
Abstract
Biomaterials (films, foils, fibers, coatings) based on proteins are becoming increasingly important due to the growing applications for which pork and beef gelatins are used. Alternative types of gelatins (poultry or fish), which have not yet been sufficiently tested, represent a high potential. [...] Read more.
Biomaterials (films, foils, fibers, coatings) based on proteins are becoming increasingly important due to the growing applications for which pork and beef gelatins are used. Alternative types of gelatins (poultry or fish), which have not yet been sufficiently tested, represent a high potential. This study looks at the effect of different UV exposure times on chicken gelatin films with added glycerol. The gelatin was prepared using a unique enzymatic hydrolysis process. The quality of the UV-exposed films was compared with gelatin films not exposed to UV light. Radiation-induced crosslinking improved the mechanical and physical properties of the films. The UV crosslinked films are stabilized at a degree of swelling from 700 to 900%; moreover, they extend their dissolution to more than 7 days while maintaining their original shape. In contrast, non-crosslinked films swell and dissolve in water faster. Further, the effect of UV radiation on the water vapor permeability and color of the films was monitored. Water vapor permeability decreased by 2.5 times with increasing crosslinking time for 30% and 40% glycerol content, and the yellowness of the irradiated samples increased with exposure time in the interval from 24 to 28. Using Fourier transform infrared spectroscopy, the differences in the amount of bonding based on irradiation time were analyzed. As a result of crosslinking, the intensity of existing bonds increased. Thermal properties were verified through differential scanning calorimetry and thermogravimetric analysis. The results proved that chicken gelatin is suitable for preparing films in foods and medicine. Applying UV radiation to crosslink gelatin films is an alternative to traditionally used chemical crosslinkers. Full article
Show Figures

Figure 1

17 pages, 781 KiB  
Article
Characterization of Poultry Gelatins Prepared by a Biotechnological Method for Targeted Changes at the Molecular Level
by Aneta Prokopová, Pavel Mokrejš, Robert Gál, Jana Pavlačková and Anna Hurajová
Int. J. Mol. Sci. 2024, 25(2), 916; https://doi.org/10.3390/ijms25020916 - 11 Jan 2024
Cited by 3 | Viewed by 2101
Abstract
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to [...] Read more.
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

12 pages, 2599 KiB  
Article
Characterization of Collagen Binding Activity of Clostridium perfringens Strains Isolated from Broiler Chickens
by Zhifeng Sun, Mingmin Lu, Hyun Lillehoj, Youngsub Lee, Doyun Goo, Baohong Yuan, Xianghe Yan and Charles Li
Pathogens 2023, 12(6), 778; https://doi.org/10.3390/pathogens12060778 - 30 May 2023
Cited by 4 | Viewed by 2076
Abstract
Clostridium perfringens is the etiological agent for necrotic enteritis (NE) in broiler chickens, which causes a substantial economic loss of an estimated USD 6 billion annually in the global poultry industry. Collagen adhesion is involved in the NE pathogenesis in poultry. In this [...] Read more.
Clostridium perfringens is the etiological agent for necrotic enteritis (NE) in broiler chickens, which causes a substantial economic loss of an estimated USD 6 billion annually in the global poultry industry. Collagen adhesion is involved in the NE pathogenesis in poultry. In this study, the binding capabilities of chicken C. perfringens isolates of various genetic backgrounds (netBtpeL, netB+tpeL, netB+tpeL+) to collagen types I–V and gelatin were examined, and the putative adhesin protein cnaA gene was investigated at the genomic level. In total, 28 C. perfringens strains from healthy and NE-inflicted sick chickens were examined. The results on collagen adhesin-encoding gene cnaA by the quantitative-PCR results indicated that netBtpeL isolates had much lower copies of the detectable cnaA gene than netB+ isolates (10 netB+tpeL isolates, 5 netB+tpeL+ isolates). Most of the virulent C. perfringens isolates demonstrated collagen-binding abilities to types I–II and IV–V, while some strains showed weak or no binding to collagen type III and gelatin. However, the netB+tpeL+ isolates showed significantly higher binding capabilities to collagen III than netBtpeL and netB+tpeL isolates. The data in this study suggest that the collagen-binding capability of clinical C. perfringens isolates correlates well with their NE pathogenicity levels, especially for C. perfringens isolates carrying genes encoding crucial virulence factors and virulence-associated factors such as netB, cnaA, and tpeL. These results indicate that the presence of the cnaA gene may be correlated with C. perfringens virulence (particularly for netB+ isolates). Full article
Show Figures

Figure 1

12 pages, 1439 KiB  
Article
Clinical Use of the ImmunoCAP Inhibition Test in the Diagnosis of Meat Allergy Caused by a Tick Bite in an Adult Male with No Previous Atopic History
by Kinga Lis, Natalia Ukleja-Sokołowska, Kornelia Karwowska, Joanna Wernik, Małgorzata Pawłowska and Zbigniew Bartuzi
Life 2023, 13(3), 699; https://doi.org/10.3390/life13030699 - 5 Mar 2023
Cited by 4 | Viewed by 4260
Abstract
(1) Background: alpha-gal syndrome (AGS) is a serious, potentially life-threatening allergic reaction. This is a type of food allergy to red meat and other mammalian products (e.g., gelatin). In Poland, this problem seems to be rare or, more likely, very underdiagnosed. The diagnosis [...] Read more.
(1) Background: alpha-gal syndrome (AGS) is a serious, potentially life-threatening allergic reaction. This is a type of food allergy to red meat and other mammalian products (e.g., gelatin). In Poland, this problem seems to be rare or, more likely, very underdiagnosed. The diagnosis of AGS is difficult. It seems that the knowledge about this syndrome is insufficient. There are no effective diagnostic tools able to clearly diagnose this cross-reactive allergy. This paper presents the clinical application of a non-standard method in the diagnosis of a cross-reactive allergy using the example of AGS. (2) Methods: standard tests for in vitro allergy diagnostics and the non-standard ImmunoCAP inhibition test(IT) were carried out for serum collected from a patient with a red meat allergy. (3) Results: the serum concentration of anti-α-Gal IgE was very high (302 kUA/L), and IgE antibodies toanti-mammalian-meat allergens were found. The level of IgE antibodies to mammalian meat allergens decreased after blocking on α-GAL-CAP. The concentration of anti-α-Gal IgE decreased after blocking on CAPs coated with various mammalian meat allergens. Blocking with allergens of poultry meat did not affect the concentration of anti-α-Gal IgE. (4) Conclusions: the ImmunoCAP ITseems to be a useful tool in the diagnosis of cross-reactive allergies. Based on their clinical history and test results, the patient was diagnosed with AGS caused by a primary sensitization to α-Gal after a tick bite. This is the second case of AGS described in Poland and the first in Pomerania. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

16 pages, 2214 KiB  
Article
Application of Poultry Gelatin to Enhance the Physicochemical, Mechanical, and Rheological Properties of Fish Gelatin as Alternative Mammalian Gelatin Films for Food Packaging
by Azam Ashrafi, Hamid Babapour, Simindokht Johari, Faezeh Alimohammadi, Farangis Teymori, Abdorreza Mohammadi Nafchi, Nurul Nuraliya Shahrai, Nurul Huda and Ahmadreza Abedinia
Foods 2023, 12(3), 670; https://doi.org/10.3390/foods12030670 - 3 Feb 2023
Cited by 59 | Viewed by 4200
Abstract
This study aimed to describe the properties of cold water fish gelatin (FG) blended with poultry gelatin (PG) for a production of a sachet containing olive oil. To find a desirable film, the different ratio of FG-PG-based films were characterized in terms of [...] Read more.
This study aimed to describe the properties of cold water fish gelatin (FG) blended with poultry gelatin (PG) for a production of a sachet containing olive oil. To find a desirable film, the different ratio of FG-PG-based films were characterized in terms of mechanical properties. As the proportion of PG in PG-FG-based increased, the tensile strength and Young’s modulus were increased, and the elongation at break and heat seal strength of the films were decreased. The 50-50 film had favorable characteristics to use as a sachet. The amount of acid index and peroxide of the oil stored in the sachets after 14 days showed that there is a significant difference (p < 0.05) between the films. The barrier properties of the films including the water vapor permeability and oxygen permeability of films were increased from 1.21 to 4.95 × 10−11 g m−1 Pa−1 s−1 and 48 to 97 cm3 mµ/m2 d kPa, respectively. Dark, red, yellow, and opaque films were realized with increasing PG. Fourier transform infrared (FTIR) spectra approved a wide peak of approximately 2500 cm−1. The rheological analysis indicated that, by adding PG, viscosity, elastic modulus (G′) and loss modulus (G′′) were increased significantly (p < 0.05) about 9.5, 9.32 and 18 times, respectively. Therefore, an easy modification of FG with PG will make it suitable for oil sachet packaging applications for the food industry. Full article
(This article belongs to the Collection Edible Films and Coatings for Food Preservation)
Show Figures

Figure 1

15 pages, 4535 KiB  
Article
Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing
by Izzat Zulkiflee, Ibrahim N. Amirrah, Nur Izzah Md Fadilah, M. F. Mohd Razip Wee, Salma Mohamad Yusop, Manira Maarof and Mh Busra Fauzi
Materials 2023, 16(3), 1162; https://doi.org/10.3390/ma16031162 - 29 Jan 2023
Cited by 6 | Viewed by 2530
Abstract
A skin wound without immediate treatment could delay wound healing and may lead to death after severe infection (sepsis). Any interruption or inappropriate normal wound healing, mainly in these wounds, commonly resulted in prolonged and excessive skin contraction. Contraction is a common mechanism [...] Read more.
A skin wound without immediate treatment could delay wound healing and may lead to death after severe infection (sepsis). Any interruption or inappropriate normal wound healing, mainly in these wounds, commonly resulted in prolonged and excessive skin contraction. Contraction is a common mechanism in wound healing phases and contributes 40–80% of the original wound size post-healing. Even though it is essential to accelerate wound healing, it also simultaneously limits movement, mainly in the joint area. In the worst-case scenario, prolonged contraction could lead to disfigurement and loss of tissue function. This study aimed to fabricate and characterise the elastin-fortified gelatin/polyvinyl alcohol (PVA) film layered on top of a collagen sponge as a bilayer hybrid biomatrix. Briefly, the combination of halal-based gelatin (4% (w/v)) and PVA ((4% (w/v)) was used to fabricate composite film, followed by the integration of poultry elastin (0.25 mg/mL) and 0.1% (w/v) genipin crosslinking. Furthermore, further analysis was conducted on the composite bilayer biomatrix’s physicochemical and mechanical strength. The bilayer biomatrix demonstrated a slow biodegradation rate (0.374967 ± 0.031 mg/h), adequate water absorption (1078.734 ± 42.33%), reasonable water vapour transmission rate (WVTR) (724.6467 ± 70.69 g/m2 h) and porous (102.5944 ± 28.21%). The bilayer biomatrix also exhibited an excellent crosslinking degree and was mechanically robust. Besides, the elastin releasing study presented an acceptable rate post-integration with hybrid biomatrix. Therefore, the ready-to-use bilayer biomatrix will benefit therapeutic effects as an alternative treatment for future diabetic skin wound management. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 2033 KiB  
Article
Preparation of Gelatin from Broiler Chicken Stomach Collagen
by Aneta Prokopová, Robert Gál, Pavel Mokrejš and Jana Pavlačková
Foods 2023, 12(1), 127; https://doi.org/10.3390/foods12010127 - 27 Dec 2022
Cited by 10 | Viewed by 5098
Abstract
With the increasing consumption of poultry meat around the world, the use of chicken stomachs as a source of collagen is being offered. The objective of this study was to extract gelatin from the stomachs of broiler chickens and to estimate their gel [...] Read more.
With the increasing consumption of poultry meat around the world, the use of chicken stomachs as a source of collagen is being offered. The objective of this study was to extract gelatin from the stomachs of broiler chickens and to estimate their gel strength, ash content, viscosity, gelling point, melting point, clarity and digestibility. An innovative biotechnological method based on the conditioning of collagen with a microbial endoproteinase (Protamex®) and hot-water extraction was used to control the chemical and thermal denaturation process of collagen to prepare gelatin. The experiments were planned using a Taguchi design, 2 factors at 3 levels; factor A for the amount of proteolytic enzyme (0.10, 0.15 and 0.20%) and factor B for the extraction temperature (55.0, 62.5 and 70.0 °C). Data were statistically processed and analyzed at a significance level of 95%. The gelatin yield averaged 65 ± 8%; the gel strength ranged from 25 ± 1 to 439 ± 6 Bloom, the viscosity from 1.0 ± 0.4 to 3.40 ± 0.03 mPa·s, gelling point from 14.0 ± 2.0 to 22.0 ± 2.0 °C, melting point from 28.0 ± 1.0 to 37.0 ± 1.0 °C. The digestibility of gelatin was 100.0% in all samples; the ash content was very low (0.44 ± 0.02–0.81 ± 0.02%). The optimal conditions for the enzymatic treatment of collagen from chicken stomachs were achieved at a higher temperature (70.0 °C) and a lower amount of enzyme (0.10–0.15%). Conditioning chicken collagen with a microbial endoproteinase is an economically and environmentally friendly processing method, an alternative to the usual acid- or alkaline-based treatment that is used industrially. The extracted products can be used for food and pharmaceutical applications. Full article
(This article belongs to the Special Issue Meat By-Product Utilization)
Show Figures

Figure 1

15 pages, 1005 KiB  
Article
Impact of Whey Protein Edible Coating Containing Fish Gelatin Hydrolysates on Physicochemical, Microbial, and Sensory Properties of Chicken Breast Fillets
by Forouzan Sabzipour-Hafshejani, Armin Mirzapour-Kouhdasht, Diako Khodaei, Mohammad Sadegh Taghizadeh and Marco Garcia-Vaquero
Polymers 2022, 14(16), 3371; https://doi.org/10.3390/polym14163371 - 18 Aug 2022
Cited by 11 | Viewed by 4647
Abstract
This study aims to research the impact of coatings containing whey protein (WP), fish gelatin hydrolysates (FGH), and both compounds together (WP + FGH) on the shelf-life of chicken breast fillets over the course of 16 days of cold storage (4 °C, 4-day [...] Read more.
This study aims to research the impact of coatings containing whey protein (WP), fish gelatin hydrolysates (FGH), and both compounds together (WP + FGH) on the shelf-life of chicken breast fillets over the course of 16 days of cold storage (4 °C, 4-day intervals), as assessed by their physicochemical, microbiological, and sensory properties. Overall, cooking loss, pH value, total volatile base nitrogen, free fatty acids, peroxide value, and thiobarbituric acid reactive substances increased with storage time in all samples. WP + FGH coated samples had significantly lower variation in all these parameters over the time of storage compared to other coated samples (WP and FGH), while these parameters increased greatly in control (uncoated) samples. WP + FGH coating also resulted in reduced bacterial counts of total mesophilic, aerobic psychrotrophic, and lactic acid bacteria compared to other coated and uncoated samples. The sensory evaluation revealed no differences in the panelists’ overall acceptance at day 0 of storage between samples. The samples were considered “non-acceptable” by day 8 of storage; however, WP + FGH coated samples maintained an overall higher acceptability score for the sensory attributes evaluated by the panelists. Overall, this study shows the potential of WP + FGH coatings for prolonging the shelf-life of chicken breast fillets. Full article
(This article belongs to the Special Issue Polymeric Coatings for Food Applications)
Show Figures

Graphical abstract

16 pages, 439 KiB  
Article
The Effect of Application of Chicken Gelatin on Reducing the Weight Loss of Beef Sirloin after Thawing
by Jakub Martinek, Robert Gál, Pavel Mokrejs, Kristýna Sucháčková, Jana Pavlačkova and Alena Kalendová
Polymers 2022, 14(15), 3094; https://doi.org/10.3390/polym14153094 - 29 Jul 2022
Cited by 4 | Viewed by 2830
Abstract
Freezing is one of the oldest and most-often-used traditional methods to prolong the shelf life of meat. However, the negative phenomenon of this process is the weight loss of water that occurs after the meat is thawed. Together with the water that escapes [...] Read more.
Freezing is one of the oldest and most-often-used traditional methods to prolong the shelf life of meat. However, the negative phenomenon of this process is the weight loss of water that occurs after the meat is thawed. Together with the water that escapes from the meat during thawing, there are large weight losses in this valuable raw material. Another negative aspect is that mineral and extractive substances, vitamins, etc. also leave the meat, resulting in irreversible nutritional losses of nutrients in the meat, which are subsequently missing for use by the consumer of the meat. The main goal of this work is to reduce these losses by using gelatin coatings. Gelatin was prepared from chicken paws according to a patented biotechnological procedure, which uses the very gentle principle of obtaining gelatin with the usage of enzymes. This unique method is friendly to the environment and innocuous for the product itself. At the same time, it ensures that the required principles achieve a circular economy with the use of the so far very-little-used slaughter byproducts, which in most parts of the world end up in uneconomic disposal by burning or landfilling without using this unique potential source of nutrients. Gelatin coatings on the surface of the beef steak were created by immersing the meat in a solution based on gelatin of different composition. A coating containing 3%, 5% or 8% gelatin with 10% or 20% glycerol (by weight of gelatin) and 1% glutaraldehyde crosslinker (by weight of gelatin) has proved to be effective. The amount of glutaraldehyde added to the coating is guaranteed not to exceed the permitted EU/U.S. legislative limits. In addition to weight loss, meat pH, color and texture were also measured. Freezing was done in two ways; some samples were frozen at a normal freezing temperature of −18 °C and the other part of the experiment at deep (shock) freezing at −80 °C. Defrosting took place in two ways, in the refrigerator and in the microwave oven, in order to use the common defrosting methods used in gastronomy. A positive effect of this coating on weight loss was observed for each group of samples. The most pronounced effect of coating was found for the least gentle method of freezing (−18 °C) and thawing (microwave), with the average weight loss of the coated samples differing by more than 2% from that of the uncoated sample. No negative effect of the coating was observed for other meat properties tested, such as pH, Warner-Bratzler Shear Force (WBSF) or color. Gelatin-based coating has a positive effect on reducing the weight loss of meat after thawing. Chicken gelatin prepared by a biotechnological process has a new application in improving the quality of meat due to the retention of water and nutrients in frozen and subsequently thawed beef, which can contribute to the better quality of the subsequently gastronomically prepared dish, while maintaining the weight and nutritional quality. This also results in economic savings in the preparation of highly-valued parts of beef. Full article
(This article belongs to the Special Issue Polymers in Food Sciences)
Show Figures

Graphical abstract

14 pages, 2772 KiB  
Article
The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes
by Saeeda Fatima, Mahnoor Iqtidar Mir, Muhammad Rehan Khan, R. Z. Sayyed, Samina Mehnaz, Sawaid Abbas, Muhammad Bilal Sadiq and Rashid Masih
Sustainability 2022, 14(13), 7881; https://doi.org/10.3390/su14137881 - 28 Jun 2022
Cited by 15 | Viewed by 6254
Abstract
Synthetic plastics are causing serious environmental and health problems due to which the concept of developing biodegradable food packaging has gained considerable attention. In this study, extraction of gelatin from chicken feet was optimized followed by characterization of gelatin. Chicken feet gelatin was [...] Read more.
Synthetic plastics are causing serious environmental and health problems due to which the concept of developing biodegradable food packaging has gained considerable attention. In this study, extraction of gelatin from chicken feet was optimized followed by characterization of gelatin. Chicken feet gelatin was used to develop biodegradable nanocomposite films by the incorporation of chitosan (CS) and zinc oxide (ZnO) nanoparticles (NPs). Gelatin nanocomposite films were used to increase the shelf-life of fresh grapes by determining the browning index, weight loss, and microbial profile of fresh grapes. A high yield (7.5%) of gelatin and Bloom strength (186 g) were obtained at optimized extraction conditions (pretreatment with 4.2% acetic acid and extraction at 66 °C for 4.2 h). Electrophoretic analysis of gelatin revealed the presence of α (130–140 kDa) and β chains (195–200 kDa), whereas a Fourier transformed infrared (FTIR) spectrometer confirmed the presence of amide A and B and amide I, II, and III. Incorporation of ZnO NPs in a gelatin–CS matrix improved the barrier and the mechanical and the thermal properties of films. Gelatin nanocomposite films with 0.3% ZnO NPs significantly reduced the weight loss (23.88%) and the browning index (53.33%) of grapes in comparison to control treatments. The microbial count in artificially inoculated grapes wrapped in gelatin nanocomposite films remained below 4 log CFU/mL until the fifth storage day in comparison to control treatments. The gelatin from poultry byproducts such as chicken feet can serve as an efficient biopolymer to develop biodegradable food packaging to enhance the shelf-life of perishable food products. Full article
(This article belongs to the Special Issue Sustainable Advanced and Smart Polymer Materials)
Show Figures

Figure 1

26 pages, 754 KiB  
Review
Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review
by Nurul Saadah Said and Norizah Mhd Sarbon
Membranes 2022, 12(5), 442; https://doi.org/10.3390/membranes12050442 - 19 Apr 2022
Cited by 114 | Viewed by 12011
Abstract
This review discusses the potential application of gelatin-based film as biodegradable food packaging material from various types of gelatin sources. The exploitation of gelatin as one of the biopolymer packaging in the food industry has rising interest among researchers as the world becomes [...] Read more.
This review discusses the potential application of gelatin-based film as biodegradable food packaging material from various types of gelatin sources. The exploitation of gelatin as one of the biopolymer packaging in the food industry has rising interest among researchers as the world becomes more concerned about environmental problems caused by petroleum-based packaging and increasing consumer demands on food safety. Single gelatin-based film properties have been characterized in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as thickness, color, and biodegradability were much influenced by total solid contents in each film. While, for mechanical and light barrier properties, poultry-based gelatin films have shown better properties compared to mammalian and marine gelatin films. This paper detailed the information on gelatin-based film characterization in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as color, UV-Vis absorption spectra, water vapor permeability, thermal, and moisture properties are discussed along with their mechanical properties, including tensile strength and elongation at break. Full article
(This article belongs to the Special Issue Biodegradable Films Characterization and Food Packaging)
Show Figures

Figure 1

17 pages, 6004 KiB  
Article
Isolation of Bacillus sp. A5.3 Strain with Keratinolytic Activity
by Saniya Aktayeva, Kairat Baltin, Assel Kiribayeva, Zhiger Akishev, Dmitriy Silayev, Yerlan Ramankulov and Bekbolat Khassenov
Biology 2022, 11(2), 244; https://doi.org/10.3390/biology11020244 - 4 Feb 2022
Cited by 19 | Viewed by 3943
Abstract
Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% β-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site [...] Read more.
Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% β-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site of accumulation of rotten feathers and identified as Bacillus. Among them, the Bacillus sp. A5.3 isolate showed the best keratinolytic properties. Scanning electron microscopy indicated that Bacillus sp. A5.3 cells closely adhere to the feather surface while degrading the feather. It was found that Bacillus sp. A5.3 secretes thermostable alkaline proteolytic and keratinolytic enzymes. Zymographic analysis of the enzymatic extract toward bovine serum albumin, casein, gelatin, and β-keratin revealed the presence of proteases and keratinases with molecular weights 20–250 kDa. The proteolytic and keratinolytic enzymes predominantly belong to the serine protease family. Proteome analysis of the secreted proteins by nano-HPLC coupled with Q-TOF mass spectrometry identified 154 proteins, 13 of which are proteases and peptidases. Thus, strain Bacillus sp. A5.3 holds great promise for use in feather-processing technologies and as a source of proteases and keratinases. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

19 pages, 2807 KiB  
Article
One-Pot Process: Microwave-Assisted Keratin Extraction and Direct Electrospinning to Obtain Keratin-Based Bioplastic
by Elena Pulidori, Simone Micalizzi, Emilia Bramanti, Luca Bernazzani, Celia Duce, Carmelo De Maria, Francesca Montemurro, Chiara Pelosi, Aurora De Acutis, Giovanni Vozzi and Maria Rosaria Tinè
Int. J. Mol. Sci. 2021, 22(17), 9597; https://doi.org/10.3390/ijms22179597 - 4 Sep 2021
Cited by 24 | Viewed by 6121
Abstract
Poultry feathers are among the most abundant and polluting keratin-rich waste biomasses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain [...] Read more.
Poultry feathers are among the most abundant and polluting keratin-rich waste biomasses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain keratin-based bioplastics. This microwave-assisted keratin extraction (MAE) was conducted in acetic acid 70% v/v. The effects of extraction time, solvent/feathers ratio, and heating mode (MAE vs. conventional heating) on the extraction yield were investigated. The highest keratin yield (26 ± 1% w/w with respect to initial feathers) was obtained after 5 h of MAE. Waste-derived keratin were blended with gelatin to fabricate keratin-based biodegradable and biocompatible bioplastics via ES, using 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) as a cross-linking agent. A full characterization of their thermal, mechanical, and barrier properties was performed by differential scanning calorimetry, thermogravimetric analysis, uniaxial tensile tests, and water permeability measurements. Their morphology and protein structure were investigated using scanning electron microscopy and attenuated total reflection-infrared spectroscopy. All these characterizations highlighted that the properties of the keratin-based bioplastics can be modulated by changing keratin and GPTMS concentrations. These bioplastics could be applied in areas such as bio-packaging and filtration/purification membranes. Full article
Show Figures

Graphical abstract

19 pages, 2124 KiB  
Article
Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products
by Diana Lindberg, Kenneth Aase Kristoffersen, Sileshi Gizachew Wubshet, Linn Maria Gundersen Hunnes, Marte Dalsnes, Katinka Riiser Dankel, Vibeke Høst and Nils Kristian Afseth
Molecules 2021, 26(17), 5280; https://doi.org/10.3390/molecules26175280 - 31 Aug 2021
Cited by 26 | Viewed by 6417
Abstract
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach [...] Read more.
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products. Full article
Show Figures

Graphical abstract

16 pages, 3889 KiB  
Article
Characterization and Cell Viability of Probiotic/Prebiotics Film Based on Duck Feet Gelatin: A Novel Poultry Gelatin as a Suitable Matrix for Probiotics
by Ahmadreza Abedinia, Faezeh Alimohammadi, Farangis Teymori, Najibeh Razgardani, Mohammad Reza Saeidi Asl, Fazilah Ariffin, Abdorreza Mohammadi Nafchi, Nurul Huda and Jumardi Roslan
Foods 2021, 10(8), 1761; https://doi.org/10.3390/foods10081761 - 30 Jul 2021
Cited by 90 | Viewed by 5539
Abstract
The probiotic viability, physicochemical, mechanical, barrier, and microstructure properties of synbiotic edible films (SEFs) based on duck feet gelatin (DFG) were evaluated. Four synbiotic systems were obtained by mixing four types of prebiotics, namely, dextrin, polydextrose, gum Arabic, and sago starch, with DFG [...] Read more.
The probiotic viability, physicochemical, mechanical, barrier, and microstructure properties of synbiotic edible films (SEFs) based on duck feet gelatin (DFG) were evaluated. Four synbiotic systems were obtained by mixing four types of prebiotics, namely, dextrin, polydextrose, gum Arabic, and sago starch, with DFG to immobilize of probiotic (Lactobacillus casei ATCC). The ability of DFG to create a suitable matrix to increase probiotic viability was compared with those of other commercial gelatins in a preliminary evaluation. The DFG showed proper probiotic viability compared with other gelatins. The addition of prebiotics reduced the transparency of SEFs and increased color differentiation, uniformity, and complete coverage of probiotic cells. The estimated shelf-life of surviving bacteria in the SEFs stored at 4 and 25 °C showed that gum arabic showed the best performance and enhanced the viability of L. casei by 42% and 45%, respectively. Dextrin, polydextrose, and sago starch enhanced the viability of L. casei at 4 and 25 °C by 26% and 35%, 26% and 5%, and 20% and 5%, respectively. The prebiotics improved the physicochemical, mechanical, and barrier properties of all SEFs, except polydextrose film. The viability of L. casei can be increased with the proper selection of gelatin and prebiotics. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

Back to TopTop