Application of Poultry Gelatin to Enhance the Physicochemical, Mechanical, and Rheological Properties of Fish Gelatin as Alternative Mammalian Gelatin Films for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gelatin Specimens
2.3. Preparation of Films
2.4. Characterization of Films
2.4.1. Film Thickness
2.4.2. Mechanical Properties
2.4.3. Heat Seal Strength
2.4.4. Light Transmittance and Color
2.4.5. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Analysis
2.4.6. Water Vapor Permeability (WVP)
2.4.7. Oxygen Permeability Assay (OP)
2.5. Rheological Properties of Film Solutions
2.5.1. Frequency Sweeps
2.5.2. Time Sweeps
2.6. Preparation of Sachets
2.7. Stability Monitoring of Stored Oil
2.8. Statistical Analysis
3. Results
3.1. Mechanical and Heat Seal Strength Properties of Blend Films
3.2. Barrier Properties of Films
3.2.1. Water Vapor Permeability (WVP)
3.2.2. Oxygen Permeability (OP)
3.3. Appearance and Light Barrier
3.4. ATR-FTIR Evaluation
3.5. Rheology Evaluation of Film Solutions
3.5.1. Effect of PG on Viscosity
3.5.2. Effect of PG on Frequency Sweeps
3.5.3. Effect of PG on Time Sweep
3.6. Evaluation of the Stability of Olive Oil in Sachets
Region | Peak Wave Number (cm−1) | Assignment | Reference | |||
---|---|---|---|---|---|---|
PG-FG 100:0 | PG-FG 50:50 | PG-FG 0:100 | BG- | |||
Amide A | 3304 | 3291 | 3292 | 3302 | N-H stretch coupled with H-bond | [17] |
Amide B | 2923 | 2927 | 2927 | 2924 | CH antisymmetric and symmetric stretching | [35] |
2923 | 2927 | 2927 | 2924 | CH2 asymmetrical stretching | [36] | |
Amide Ι | 1643 | 1634 | 1633 | 1638 | C=O stretch/hydrogen bond coupled with COO- | [17] |
Amide ΙΙ | 1542 | 1543 | 1541 | 1541 | NH bend coupled with CN stretch | [37] |
Amide ΙΙΙ | 1219 | 1200 | 1201 | - | NH bend stretch coupled CN stretch | [37] |
Fingerprint | 1097 | 1053 | 1054 | 1002 | C–O skeletal stretch | [37] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A.; Kolotova, D.S. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers 2020, 12, 3051. [Google Scholar] [CrossRef] [PubMed]
- Abedinia, A.; Nafchi, A.M.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhao, Y.; Ding, J.; Lin, S. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties. Food Res Int. 2018, 107, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Tu, Z.-C.; Shangguan, X.; Sha, X.; Wang, H.; Zhang, L.; Bansal, N. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 260–269. [Google Scholar] [CrossRef]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S. Enhancement of hydrophobicity of fish skin gelatin via molecular modification with oxidized linoleic acid. J. Chem. 2019, 2019, 5462471. [Google Scholar] [CrossRef]
- Maryam Adilah, Z.A.; Nur Hanani, Z.A. Active packaging of fish gelatin films with Morinda citrifolia oil. Food Biosci. 2016, 16, 66–71. [Google Scholar] [CrossRef]
- Nurul Syahida, S.; Ismail-Fitry, M.R.; Ainun, Z.M.A.a.; Nur Hanani, Z.A. Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag. Shelf Life 2020, 23, 100437. [Google Scholar] [CrossRef]
- Norfarahin, A.; Sanny, M.; Sulaiman, R.; Hanani, N.Z. Fish gelatin films incorporated with different oils: Effect of thickness on physical and mechanical properties. Int. Food Res. J. 2018, 25, 1036–1043. [Google Scholar]
- Nilsuwan, K.; Guerrero, P.; Caba, K.D.L.; Benjakul, S.; Prodpran, T. Fish gelatin films laminated with emulsified gelatin film or poly(lactic) acid film: Properties and their use as bags for storage of fried salmon skin. Food Hydrocoll. 2021, 111, 106199. [Google Scholar] [CrossRef]
- Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Kan, J.; Liu, J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag. Shelf Life 2019, 22, 100417. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Sun, Z.; Wang, D.; Wu, H.; Du, L.; Wang, D. Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. Int. J. Biol. Macromol. 2020, 164, 3376–3387. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Salem, A.; Nasri, R.; Nasri, M.; Jridi, M. Food applications of bioactive marine gelatin films. Curr. Opin. Food Sci. 2022, 43, 206–215. [Google Scholar] [CrossRef]
- Moreno, H.M.; Pedrosa, M.M.; Tovar, C.A.; Borderías, A.J. Chapter 31—Effect of microbial transglutaminase on the production of fish myofibrillar and vegetable protein-based products. In Value-Addition in Food Products and Processing through Enzyme Tech; Kuddus, M., Aguilar, C.N., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2022; pp. 427–436. [Google Scholar] [CrossRef]
- Cen, S.; Zhang, L.; Liu, L.; Lou, Q.; Wang, C.; Huang, T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem. 2022, 380, 132209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, J.; Huang, S.; Tao, N.; Wang, X.; Zhong, J. Anhydride structures affect the acylation modification and emulsion stabilization ability of mammalian and fish gelatins. Food Chem. 2022, 375, 131882. [Google Scholar] [CrossRef] [PubMed]
- Abedinia, A.; Ariffin, F.; Huda, N.; Nafchi, A.M. Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment. Int. J. Biol. Macromol. 2017, 98, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Abedinia, A.; Ariffin, F.; Huda, N.; Nafchi, A.M. Preparation and characterization of a novel biocomposite based on duck feet gelatin as alternative to bovine gelatin. Int. J. Biol. Macromol. 2018, 109, 855–862. [Google Scholar] [CrossRef]
- Parsaei, E.; Mohammadi Nafchi, A.; Nouri, L.; Al-Hassan, A.A. The effects of tannic and caffeic acid as cross-linking agents on the physicochemical, barrier, and mechanical characteristics of cold-water fish gelatin films. J. Food Meas. Charact. 2022, 16, 3926–3934. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/d0882-18.html (accessed on 17 October 2022).
- Nilsuwan, K.; Arnold, M.; Benjakul, S.; Prodpran, T.; de la Caba, K. Properties of chicken protein isolate/fish gelatin blend film incorporated with phenolic compounds and its application as pouch for packing chicken skin oil. Food Packag. Shelf Life. 2021, 30, 100761. [Google Scholar] [CrossRef]
- ASTM E 96-95; Standard Test Methods for Water Vapor Transmission of Materials. American Society for Testing and Materials: Philadelphia, PA, USA, 1995; pp. 1–8.
- ASTM D3985-1; Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d3985-17.html (accessed on 17 October 2022).
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS: Champaign, IL, USA, 2001. [Google Scholar]
- Tabari, M. Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods 2017, 6, 41. [Google Scholar] [CrossRef]
- Malherbi, N.M.; Schmitz, A.C.; Grando, R.C.; Bilck, A.P.; Yamashita, F.; Tormen, L.; Fakhouri, F.M.; Velasco, J.I.; Bertan, L.C. Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag. Shelf Life 2019, 19, 140–146. [Google Scholar] [CrossRef]
- Hazaveh, P.; Mohammadi Nafchi, A.; Abbaspour, H. The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films. Int. J. Biol. Macromol. 2015, 79, 370–376. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T.; de la Caba, K. Fish gelatin monolayer and bilayer films incorporated with epigallocatechin gallate: Properties and their use as pouches for storage of chicken skin oil. Food Hydrocoll. 2019, 89, 783–791. [Google Scholar] [CrossRef]
- Doyle, B.B.; Bendit, E.; Blout, E.R. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolym. Orig. Res. Biomol. 1975, 14, 937–957. [Google Scholar] [CrossRef]
- Huda, N.; Seow, E.; Normawati, M.; Aisyah, N.N. Preliminary study on physicochemical properties of duck feet collagen. Int. J. Poult. Sci. 2013, 12, 615–621. [Google Scholar] [CrossRef]
- Benjakul, S.; Oungbho, K.; Visessanguan, W.; Thiansilakul, Y.; Roytrakul, S. Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. Food Chem. 2009, 116, 445–451. [Google Scholar] [CrossRef]
- Ruiz-Martínez, I.G.; Rodrigue, D.; Arenas-Ocampo, M.L.; Camacho-Díaz, B.H.; Avila-Reyes, S.V.; Solorza-Feria, J. Production and characterization of gelatin biomaterials based on agave microfibers and bentonite as reinforcements. Foods 2022, 11, 1573. [Google Scholar] [CrossRef]
- WHO. Codex alimentarius, Volume 8: Fats, oils and related products. In Codex Alimentarius, Volume 8: Fats, Oils and Related Products; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001; Available online: https://www.cabdirect.org/cabdirect/abstract/20023079208 (accessed on 17 October 2022).
- Stoll, L.; da Silva, A.M.; Iahnke, A.O.e.S.; Costa, T.M.H.; Flores, S.H.; Rios, A.d.O. Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. J. Food Process. Preserv. 2017, 41, e13218. [Google Scholar] [CrossRef]
- Carpiné, D.; Dagostin, J.L.A.; Bertan, L.C.; Mafra, M.R. Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier, mechanical, and thermal properties. Food Bioprocess Technol. 2015, 8, 1811–1823. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 2004, 86, 325–332. [Google Scholar] [CrossRef]
- Cebi, N.; Dogan, C.E.; Mese, A.E.; Ozdemir, D.; Arıcı, M.; Sagdic, O. A rapid ATR-FTIR spectroscopic method for classification of gelatin gummy candies in relation to the gelatin source. Food Chem. 2019, 277, 373–381. [Google Scholar] [CrossRef]
- Shurvell, H. Spectra–structure correlations in the mid-and far-infrared. In Handbook of Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
PG-FG (Ratio) | T (mm) | TS (MPa) | EB (%) | YM (MPa) | HS (N/m) |
---|---|---|---|---|---|
100:0 | 0.125 ± 0.02 a | 17.03 ± 1.10 b | 29.14 ± 2.68 f | 536.85 ± 74 a | 232.31 ± 10.21 a |
75:25 | 0.121 ± 0.03 a | 10.96 ± 1.63 c | 36.10 ± 3.63 e | 247.25 ± 33 c | 183.15 ± 14.09 b |
50:50 | 0.114 ± 0.01 a | 7.01 ± 0.29 d | 62.22 ± 2.34 c | 111.41 ± 39 d | 152.21 ± 15.32 c |
25:75 | 0.122 ± 0.04 a | 3.11 ± 0.17 e | 73.15 ± 2.62 b | 47.38 ± 11 e | 110.22 ± 18.14 d |
0:100 | 0.118 ± 0.02 a | 1.27 ± 0.32 f | 90.68 ± 4.26 a | 25.72 ± 4 f | 62.19 ± 28.62 e |
BG | 0.123 ± 0.04 a | 18.68 ± 0.17 a | 48.97 ± 3.04 d | 382.81 ± 39 b | 238.15 ± 11.03 a |
PG-FG (Ratio) | WVP × 10−11 [g m−1 s−1 Pa−1] | O.P [cm3 μm/(m2 day)] |
---|---|---|
100:0 | 4.95 ± 0.28 a | 97.46 ± 1.06 a |
50:50 | 2.68 ± 0.18 b | 60.36 ± 1.01 c |
0:100 | 1.21 ± 0.12 c | 48.13 ± 1.13 d |
BG | 5.05 ± 0.04 a | 80.40 ± 1.62 b |
PG-FG (Ratio) | L* | a* | b* | ΔE* | Transparency |
---|---|---|---|---|---|
100:0 | 95.28 ± 0.28 d | −0.46 ± 0.006 c | 3.90 ± 0.09 b | 4.07 ± 0.12 b | 15.19 ± 1.04 a |
50:50 | 95.77 ± 0.18 b | −0.36 ± 0.0001 b | 2.87 ± 0.002 c | 3.49 ± 0.08 c | 15.53 ± 1.03 a |
0:100 | 96.34 ± 0.12 a | 0.13 ± 0.003 a | 1.21 ± 0.04 d | 2.96 ± 0.09 d | 14.77 ± 1.09 b |
BG | 95.57 ± 0.004 c | −0.40 ± 0.002 d | 4.07 ± 0.01 a | 4.32 ± 0.11 a | 15.37 ± 1.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashrafi, A.; Babapour, H.; Johari, S.; Alimohammadi, F.; Teymori, F.; Nafchi, A.M.; Shahrai, N.N.; Huda, N.; Abedinia, A. Application of Poultry Gelatin to Enhance the Physicochemical, Mechanical, and Rheological Properties of Fish Gelatin as Alternative Mammalian Gelatin Films for Food Packaging. Foods 2023, 12, 670. https://doi.org/10.3390/foods12030670
Ashrafi A, Babapour H, Johari S, Alimohammadi F, Teymori F, Nafchi AM, Shahrai NN, Huda N, Abedinia A. Application of Poultry Gelatin to Enhance the Physicochemical, Mechanical, and Rheological Properties of Fish Gelatin as Alternative Mammalian Gelatin Films for Food Packaging. Foods. 2023; 12(3):670. https://doi.org/10.3390/foods12030670
Chicago/Turabian StyleAshrafi, Azam, Hamid Babapour, Simindokht Johari, Faezeh Alimohammadi, Farangis Teymori, Abdorreza Mohammadi Nafchi, Nurul Nuraliya Shahrai, Nurul Huda, and Ahmadreza Abedinia. 2023. "Application of Poultry Gelatin to Enhance the Physicochemical, Mechanical, and Rheological Properties of Fish Gelatin as Alternative Mammalian Gelatin Films for Food Packaging" Foods 12, no. 3: 670. https://doi.org/10.3390/foods12030670