Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (52,064)

Search Parameters:
Keywords = potential targets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 (registering DOI) - 3 Aug 2025
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

25 pages, 4247 KiB  
Article
Mechanical Behavior of Self-Compacting Concrete Incorporating Rubber and Recycled Aggregates for Non-Structural Applications: Optimization Using Response Surface Methodology
by Yaqoob Saif, Jihen Mallek, Bilel Hadrich and Atef Daoud
Buildings 2025, 15(15), 2736; https://doi.org/10.3390/buildings15152736 (registering DOI) - 3 Aug 2025
Abstract
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. [...] Read more.
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. This study investigates the performance of self-compacting concrete (SCC) incorporating up to 20% rubber aggregates (sand and gravel) and 40% recycled concrete aggregate (RCA) for non-structural applications. A series of tests was conducted to assess fresh and hardened properties, including flowability, compressive strength, tensile strength, flexural strength, water absorption, and density. The results indicated that increasing RCA content reduced density and compressive strength, while tensile and flexural strengths were only moderately affected. Response surface methodology (RSM), utilizing a Box–Behnken design, was employed to optimize compressive, tensile, and flexural strength responses. Statistical analysis was used to identify the optimal mix proportions, which balance the mechanical performance and sustainability of SCC with recycled components. Mixtures incorporating moderate rubber content—specifically, 5–5.5% sand rubber and 0–6% coarse rubber—and 40% recycled-concrete aggregate (RCA) achieved the highest predicted performance, with compressive strength ranging from 20.00 to 28.26 MPa, tensile strength from 2.16 to 2.85 MPa, and flexural strength reaching 5.81 MPa, making them suitable for sidewalks and walkways. Conversely, mixtures containing higher rubber proportions (5.5–20% sand rubber and 20% coarse rubber) combined with the same RCA level (40%) showed the lowest mechanical performance, with compressive strength between 5.2 and 10.08 MPa, tensile strength of 1.05–1.41 MPa, and flexural strength from 2.18 to 3.54 MPa. These findings underscore the broad performance range achievable through targeted optimization. They confirm the viability of recycled materials for producing environmentally friendly SCC in non-structural applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

60 pages, 1110 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 (registering DOI) - 3 Aug 2025
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
30 pages, 1819 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 (registering DOI) - 3 Aug 2025
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
17 pages, 1724 KiB  
Article
Effects of Eriobotrya japonica (Thunb.) Lindl. Leaf Extract on Zebrafish Embryogenesis, Behavior, and Biochemical Pathways
by Jorge Barros, Irene Gouvinhas, Carlos Venâncio, Daniel Granato, Ana Novo Barros and Luís Félix
Molecules 2025, 30(15), 3252; https://doi.org/10.3390/molecules30153252 (registering DOI) - 3 Aug 2025
Abstract
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical [...] Read more.
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical parameters. The 96 h LC50 was determined as 189.8 ± 4.5 mg/L, classifying the extract as practically non-toxic, according to OECD guidelines. Thereby, embryos were exposed for 90 h to 75 and 150 mg/L concentrations of the E. japonica leaf extract. While no significant effects were noted at the lowest concentration of 150 mg/L, significant developmental effects were observed, including reduced survival, delayed hatching, underdevelopment of the swim bladder, and retention of the yolk sac. These malformations were accompanied by marked behavioral impairments. Biochemical analysis revealed a concentration-dependent increase in superoxide dismutase (SOD) and catalase (CAT) activity, suggesting the activation of antioxidant defenses, despite no significant change in reactive oxygen species (ROS) levels. This indicates a potential compensatory redox response to a pro-oxidant signal. Additionally, the acetylcholinesterase (AChE) activity was significantly reduced at the highest concentration, which may have contributed to the observed neurobehavioral changes. While AChE inhibition is commonly associated with neurotoxicity, it is also a known therapeutic target in neurodegenerative diseases, suggesting concentration-dependent dual effects. In summary, the E. japonica leaf extract induced concentration-dependent developmental and behavioral effects in zebrafish embryos, while activating antioxidant responses without triggering oxidative damage. These findings highlight the extract’s potential bioactivity and underscore the need for further studies to explore its safety and therapeutic relevance. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
23 pages, 2091 KiB  
Article
Exploring the Impact of Bioactive Compounds Found in Extra Virgin Olive Oil on NRF2 Modulation in Alzheimer’s Disease
by Marilena M. Bourdakou, Eleni M. Loizidou and George M. Spyrou
Antioxidants 2025, 14(8), 952; https://doi.org/10.3390/antiox14080952 (registering DOI) - 2 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis by promoting Aβ accumulation. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the antioxidant response, influencing genes involved in OS mitigation, mitochondrial function, and inflammation. Dysregulation of NRF2 is implicated in AD, making it a promising therapeutic target. Emerging evidence suggests that adherence to a Mediterranean diet (MD), which is particularly rich in polyphenols from extra virgin olive oil (EVOO), is associated with improved cognitive function and a reduced risk of mild cognitive impairment. Polyphenols can activate NRF2, enhancing endogenous antioxidant defenses. This study employs a computational approach to explore the potential of bioactive compounds in EVOO to modulate NRF2-related pathways in AD. We analyzed transcriptomic data from AD and EVOO-treated samples to identify NRF2-associated genes, and used chemical structure-based analysis to compare EVOO’s bioactive compounds with known NRF2 activators. Enrichment analysis was performed to identify common biological functions between NRF2-, EVOO-, and AD-related pathways. Our findings highlight important factors and biological functions that provide new insight into the molecular mechanisms through which EVOO consumption might influence cellular pathways associated with AD via modulation of the NRF2 pathway. The presented approach provides a different perspective in the discovery of compounds that may contribute to neuroprotective mechanisms in the context of AD. Full article
17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 (registering DOI) - 2 Aug 2025
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

12 pages, 1647 KiB  
Article
Detection of Burkholderia mallei in Microbiological Culture: A Comparative Analysis of PCR Primer Sets
by Jéssica Cristine K. Moriya, Paula Adas P. Suniga, Ana Clara L. Araújo, Maria Goretti Santos, Juliana S. G. Rieger, Cynthia Mantovani, Rodrigo Jardim, Márcio Roberto Silva, Flábio R. Araújo and Lenita R. Santos
Pathogens 2025, 14(8), 766; https://doi.org/10.3390/pathogens14080766 (registering DOI) - 2 Aug 2025
Abstract
Glanders is a highly contagious and often fatal zoonotic disease of equids caused by Burkholderia mallei, a pathogen of significant concern due to its potential for bioterrorism. In Brazil, glanders remains endemic, particularly among working equids in the Northeast region. Diagnostic confirmation [...] Read more.
Glanders is a highly contagious and often fatal zoonotic disease of equids caused by Burkholderia mallei, a pathogen of significant concern due to its potential for bioterrorism. In Brazil, glanders remains endemic, particularly among working equids in the Northeast region. Diagnostic confirmation typically involves serology, culture, and polymerase chain reaction (PCR), although false-negative PCR results have been increasingly reported. This study aimed to evaluate the diagnostic performance and analytical sensitivity of four B. mallei-specific PCR primer sets using samples from 30 seropositive equids. Microbiological cultures were obtained from various organs and swabs, followed by PCR targeting four genomic regions: fliP-IS407A(a), fliP-IS407A(b), Burk457, and Bm17. All animals were confirmed positive for B. mallei via culture, but PCR detection rates varied significantly across primer sets. The fliP-IS407A(b) primer set showed the highest sensitivity, detecting 86% of samples, while the WOAH-recommended fliP-IS407A(a) set had the lowest performance (13.4%). Analytical sensitivity assays confirmed that fliP-IS407A(b) and Bm17 primers detected DNA concentrations as low as 0.007 ng, outperforming the others. These findings suggest that certain widely used primer sets may lack sufficient sensitivity for reliable detection of B. mallei, especially in chronically infected animals with low bacterial loads. The study underscores the need for ongoing validation of molecular diagnostics to improve the detection and control of glanders in endemic regions. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

12 pages, 319 KiB  
Communication
Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania
by Răzvan-Dragoș Roșu, Adriana Morar, Alexandra Ban-Cucerzan, Mirela Imre, Sebastian Alexandru Popa, Răzvan-Tudor Pătrînjan, Alexandra Pocinoc and Kálmán Imre
Antibiotics 2025, 14(8), 787; https://doi.org/10.3390/antibiotics14080787 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk [...] Read more.
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk from traditional farming systems remain limited. This study investigated the presence and antimicrobial resistance of S. aureus in 106 raw sheep milk samples collected from traditional farms in the Banat region of western Romania. Methods: Coagulase-positive staphylococci (CPS) were enumerated using ISO 6888-1:2021 protocols. Isolates were identified at the species level using the Vitek 2 system and molecularly confirmed via PCR targeting the 16S rDNA and nuc genes. Methicillin resistance was assessed by detecting the mecA gene. Antimicrobial susceptibility was determined using the Vitek 2 AST-GP79 card. Results: CPS were detected in 69 samples, with S. aureus confirmed in 34.9%. The mecA gene was identified in 13.5% of S. aureus isolates, indicating the presence of methicillin-resistant S. aureus (MRSA). Resistance to at least two antimicrobials was observed in 97.3% of isolates, and 33 strains (89.2%) met the criteria for multidrug resistance (MDR). The most frequent MDR phenotype involved resistance to lincomycin, macrolides, β-lactams, tetracyclines, and aminoglycosides. Conclusions: The high prevalence of S. aureus, including MRSA and MDR strains, in raw sheep milk from traditional farms represents a potential public health risk, particularly in regions where unpasteurized dairy consumption persists. These findings underscore the need for enhanced hygiene practices, prudent antimicrobial use, and AMR monitoring in small-scale dairy systems. Full article
22 pages, 1893 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 (registering DOI) - 2 Aug 2025
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
18 pages, 5391 KiB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 (registering DOI) - 2 Aug 2025
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
27 pages, 1557 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
13 pages, 739 KiB  
Article
Improved Precision of COPD Exacerbation Detection in Night-Time Cough Monitoring
by Albertus C. den Brinker, Susannah Thackray-Nocera, Michael G. Crooks and Alyn H. Morice
J. Pers. Med. 2025, 15(8), 349; https://doi.org/10.3390/jpm15080349 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Targeting individuals with certain characteristics provides improved precision in many healthcare applications. An alert mechanism for COPD exacerbations has recently been validated. It has been argued that its efficacy improves considerably with stratification. This paper provides an in-depth analysis of the cough [...] Read more.
Background/Objectives: Targeting individuals with certain characteristics provides improved precision in many healthcare applications. An alert mechanism for COPD exacerbations has recently been validated. It has been argued that its efficacy improves considerably with stratification. This paper provides an in-depth analysis of the cough data of the stratified cohort to identify options for and the feasibility of improved precision in the alert mechanism for the intended patient group. Methods: The alert system was extended using a system complementary to the existing one to accommodate observed rapid changes in cough trends. The designed system was tested in a post hoc analysis of the data. The trend data were inspected to consider their meaningfulness for patients and caregivers. Results: While stratification was effective in reducing misses, the augmented alert system improved the sensitivity and number of early alerts for the acute exacerbation of COPD (AE-COPD). The combination of stratification and the augmented mechanism led to sensitivity of 86%, with a false alert rate in the order of 1.5 per year in the target group. The alert system is rule-based, operating on interpretable signals that may provide patients or their caregivers with better insights into the respiratory condition. Conclusions: The augmented alert system operating based on cough trends has the promise of increased precision in detecting AE-COPD in the target group. Since the design and testing of the augmented system were based on the same data, the system needs to be validated. Signals within the alert system are potentially useful for improved self-management in the target group. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Graphical abstract

12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 (registering DOI) - 2 Aug 2025
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

Back to TopTop