Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,530)

Search Parameters:
Keywords = potential habitat area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1022 KiB  
Review
Leishmania in Texas: A Contemporary One Health Scoping Review of Vectors, Reservoirs, and Human Health
by Morgan H. Jibowu, Richard Chung, Nina L. Tang, Sarah Guo, Leigh-Anne Lawton, Brendan J. Sullivan, Dawn M. Wetzel and Sarah M. Gunter
Biology 2025, 14(8), 999; https://doi.org/10.3390/biology14080999 (registering DOI) - 5 Aug 2025
Abstract
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to [...] Read more.
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to systematically assess contemporary research on Leishmania in humans, animals, reservoir hosts, or vectors in Texas after 2000. Out of 22 eligible studies, the most prevalent themes were case reports, followed by studies on domestic animals, reservoirs, and vectors, with several studies bridging multiple disciplines. Climate change, urbanization, and habitat encroachment appear to be driving the northward expansion of L. mexicana, which is primarily attributed to shifts in the habitats of key vectors (Lutzomyia anthophora) and reservoirs (Neotoma spp.). Leishmania appears to be expanding into new areas, with potential for further spread. As ecological conditions evolve, strengthening surveillance and clinician awareness is crucial to understanding disease risk and improving early detection and treatment in affected communities. Full article
Show Figures

Figure 1

18 pages, 4841 KiB  
Article
Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions
by Fayi Li, Liangyu Lv, Shancun Bao, Zongcheng Cai, Shouquan Fu and Jianjun Shi
Agronomy 2025, 15(8), 1869; https://doi.org/10.3390/agronomy15081869 - 1 Aug 2025
Viewed by 148
Abstract
Understanding alpine plants’ survival and reproduction is crucial for their conservation in climate change. Based on 423 valid distribution points, this study utilizes the MaxEnt model to predict the potential habitat and distribution dynamics of Leontopodium nanum under both current and future climate [...] Read more.
Understanding alpine plants’ survival and reproduction is crucial for their conservation in climate change. Based on 423 valid distribution points, this study utilizes the MaxEnt model to predict the potential habitat and distribution dynamics of Leontopodium nanum under both current and future climate scenarios, while clarifying the key factors that influence its distribution. The primary ecological drivers of distribution are altitude (2886.08 m–5576.14 m) and the mean temperature of the driest quarter (−6.60–1.55 °C). Currently, the suitable habitat area is approximately 520.28 × 104 km2, covering about 3.5% of the global land area, concentrated mainly in the Tibetan Plateau, with smaller regions across East and South Asia. Under future climate scenarios, low-emission (SSP126), suitable areas are projected to expand during the 2050s and 2070s. High-emission (SSP585), suitable areas may decrease by 50%, with a 66.07% reduction in highly suitable areas by the 2070s. The greatest losses are expected in the south-eastern Tibetan Plateau. Regarding dynamic habitat changes, by the 2050s, newly suitable areas will account for 51.09% of the current habitat, while 68.26% of existing habitat will become unsuitable. By the 2070s, newly suitable areas will rise to 71.86% of the current total, but the loss of existing areas will exceed these gains, particularly under the high-emission scenario. The centroid of suitable habitats is expected to shift northward, with migration distances ranging from 23.94 km to 342.42 km. The most significant shift is anticipated under the SSP126 scenario by the 2070s. This study offers valuable insights into the distribution dynamics of L. nanum and other alpine species under the context of climate change. From a conservation perspective, it is recommended to prioritize the protection and restoration of vegetation in key habitat patches or potential migration corridors, restrict overgrazing and infrastructure development, and maintain genetic diversity and dispersal capacity through assisted migration and population genetic monitoring when necessary. These measures aim to provide a robust scientific foundation for the comprehensive conservation and sustainable management of the grassland ecosystem on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

21 pages, 1379 KiB  
Article
Stream Temperature, Density Dependence, Catchment Size, and Physical Habitat: Understanding Salmonid Size Variation Across Small Streams
by Kyle D. Martens and Warren D. Devine
Fishes 2025, 10(8), 368; https://doi.org/10.3390/fishes10080368 - 1 Aug 2025
Viewed by 219
Abstract
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four [...] Read more.
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four potentially influencing indicators for three species/age classes to assess the relative importance of their influences on body size. The global model containing all indicators was the most parsimonious model for juvenile coho salmon (Oncorhynchus kisutch; R2m = 0.4581, R2c = 0.5859), age-0 trout (R2m = 0.4117, R2c = 0.5968), and age-1 or older coastal cutthroat trout (O. clarkii; R2m = 0.2407, R2c = 0.5188). Contrary to expectations, salmonid density, catchment size, and physical habitat metrics contributed more to the top models for both coho salmon and age-1 or older cutthroat trout than stream temperature metrics. However, a stream temperature metric, accumulated degree days, had the only significant relationship (positive) of the indicators with body size in age-0 trout (95% CI 1.58 to 23.04). Our analysis identifies complex relationships between salmonid body size and environmental influences, such as the importance of physical habitat such as pool size and boulders. However, management or restoration actions aimed at improving or preventing anticipated declines in physical habitat such as adding instream wood or actions that may lead to increasing pool area have potential to ensure a natural range of salmonid body sizes across watersheds. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 103
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

28 pages, 2174 KiB  
Article
Validating Lava Tube Stability Through Finite Element Analysis of Real-Scene 3D Models
by Jiawang Wang, Zhizhong Kang, Chenming Ye, Haiting Yang and Xiaoman Qi
Electronics 2025, 14(15), 3062; https://doi.org/10.3390/electronics14153062 - 31 Jul 2025
Viewed by 197
Abstract
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method [...] Read more.
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method to construct a high-precision, real-scene 3D model based on ground lava tube point cloud data. By employing finite element analysis, this study investigated the impact of real-world cross-sectional geometry, particularly the aspect ratio, on structural stability under surface pressure simulating meteorite impacts. A high-precision 3D reconstruction was achieved using UAV-mounted LiDAR and SLAM-based positioning systems, enabling accurate geometric capture of lava tube profiles. The original point cloud data were processed to extract cross-sections, which were then classified by their aspect ratios for analysis. Experimental results confirmed that the aspect ratio is a significant factor in determining stability. Crucially, unlike the monotonic trends often suggested by idealized models, analysis of real-world geometries revealed that the greatest deformation and structural vulnerability occur in sections with an aspect ratio between 0.5 and 0.6. For small lava tubes buried 3 m deep, the ground pressure they can withstand does not exceed 6 GPa. This process helps identify areas with weaker load-bearing capacity. The analysis demonstrated that a realistic 3D modeling approach provides a more accurate and reliable assessment of lava tube stability. This framework is vital for future evaluations of lunar lava tubes as safe habitats and highlights that complex, real-world geometry can lead to non-intuitive structural weaknesses not predicted by simplified models. Full article
Show Figures

Figure 1

23 pages, 4210 KiB  
Article
CT-Based Habitat Radiomics Combining Multi-Instance Learning for Early Prediction of Post-Neoadjuvant Lymph Node Metastasis in Esophageal Squamous Cell Carcinoma
by Qinghe Peng, Shumin Zhou, Runzhe Chen, Jinghui Pan, Xin Yang, Jinlong Du, Hongdong Liu, Hao Jiang, Xiaoyan Huang, Haojiang Li and Li Chen
Bioengineering 2025, 12(8), 813; https://doi.org/10.3390/bioengineering12080813 - 28 Jul 2025
Viewed by 350
Abstract
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of [...] Read more.
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of surgery in ESCC patients after NAT. A total of 469 ESCC patients from Sun Yat-sen University Cancer Center were retrospectively enrolled and randomized into a training cohort (n = 328) and a test cohort (n = 141). Three signatures were constructed: the tumor-habitat-based signature (Habitat_Rad), derived from radiomic features of three tumor subregions identified via K-means clustering; the multiple instance learning-based signature (MIL_Rad), combining features from 2.5D deep learning models; and the clinicoradiological signature (Clinic), developed through multivariate logistic regression. A combined radiomic nomogram integrating these signatures outperformed the individual models, achieving areas under the curve (AUCs) of 0.929 (95% CI, 0.901–0.957) and 0.852 (95% CI, 0.778–0.925) in the training and test cohorts, respectively. The decision curve analysis confirmed a high net clinical benefit, highlighting the nomogram’s potential for accurate LNM prediction after NAT and guiding individualized therapy. Full article
(This article belongs to the Special Issue Machine Learning Methods for Biomedical Imaging)
Show Figures

Graphical abstract

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 184
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 353
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

29 pages, 6179 KiB  
Article
Assessing the Provision of Ecosystem Services Using Forest Site Classification as a Basis for the Forest Bioeconomy in the Czech Republic
by Kateřina Holušová and Otakar Holuša
Forests 2025, 16(8), 1242; https://doi.org/10.3390/f16081242 - 28 Jul 2025
Viewed by 215
Abstract
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based [...] Read more.
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based on a site classification system at the lowest level—i.e., forest stands, at the forest owner level—as a tool for differentiated management. ESs were assessed within the Czech Republic and are expressed in units in accordance with the very sophisticated Forest Site Classification System. (1) Biomass production: The vertical differentiation of ecological conditions given by vegetation tiers, which reflect the influence of altitude, exposure, and climate, provides a basic overview of biomass production; the highest value is in the fourth vegetation tier, i.e., the Fageta abietis community. Forest stands are able to reach a stock of up to 900–1200 m3·ha−1. The lowest production is found in the eighth vegetation tier, i.e., the Piceeta community, with a wood volume of 150–280 m3·ha−1. (2) Soil conservation function: Geological bedrock, soil characteristics, and the geomorphological shape of the terrain determine which habitats serve a soil conservation function according to forest type sets. (3) The hydricity of the site, depending on the soil type, determines the hydric-water protection function of forest stands. Currently, protective forests occupy 53,629 ha in the Czech Republic; however, two subcategories of protective forests—exceptionally unfavorable locations and natural alpine spruce communities below the forest line—potentially account for 87,578 ha and 15,277 ha, respectively. Forests with an increased soil protection function—a subcategory of special-purpose forests—occupy 133,699 ha. The potential area of soil protection forests could be up to 188,997 ha. Water resource protection zones of the first degree—another subcategory of special-purpose forests—occupy 8092 ha, and there is potentially 289,973 ha of forests serving a water protection function (specifically, a water management function) in the Czech Republic. A separate subcategory of water protection with a bank protection function accounts for 80,529 ha. A completely new approach is presented for practical use by forest owners: based on the characteristics of the habitat, they can obtain information about the fulfillment of the habitat’s ecosystem services and, thus, have basic information for the determination of forest categories and the principles of differentiated management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

21 pages, 3397 KiB  
Article
Climate-Driven Habitat Shifts and Conservation Implications for the Submediterranean Oak Quercus pyrenaica Willd.
by Isabel Passos, Carlos Vila-Viçosa, João Gonçalves, Albano Figueiredo and Maria Margarida Ribeiro
Forests 2025, 16(8), 1226; https://doi.org/10.3390/f16081226 - 25 Jul 2025
Viewed by 1147
Abstract
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible [...] Read more.
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible to shifts in temperature and precipitation patterns. Aiming to assess its potential loss of suitable area under future climate scenarios, we developed high-resolution spatial distribution models to project the future habitat suitability of Q. pyrenaica under two climate change scenarios (SSP3-7.0 and SSP5-8.5) for the periods 2070 and 2100. Our model, which has an excellent predictive performance (AUC of 0.971 and a TSS of 0.834), indicates a predominantly northward shift in the potential distribution of the species, accompanied by substantial habitat loss in southern and lowland regions. Long-term potential suitable area may shrink to 42% of that currently available. This, combined with the limited natural dispersal capacity of the species, highlights the urgency of targeted management and conservation strategies. These results offer critical insights to inform conservation strategies and forest management under ongoing climate change. Full article
Show Figures

Figure 1

27 pages, 792 KiB  
Review
Double-Edged Sword: Urbanization and Response of Amniote Gut Microbiome in the Anthropocene
by Yi Peng, Mengyuan Huang, Xiaoli Sun, Wenqing Ling, Xiaoye Hao, Guangping Huang, Xiangdong Wu, Zheng Chen and Xiaoli Tang
Microorganisms 2025, 13(8), 1736; https://doi.org/10.3390/microorganisms13081736 - 25 Jul 2025
Viewed by 409
Abstract
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These [...] Read more.
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These changes contribute to local species extinction, leading to biodiversity loss and profoundly impacting ecological processes and regional sustainable development. However, within urban settings, certain ‘generalist’ species demonstrate survival capabilities contingent upon phenotypic plasticity. The co-evolution of gut microbiota with their hosts emerges as a key driver of this phenotypic plasticity. The presence of diverse gut microbiota constitutes a crucial adaptive mechanism essential for enabling hosts to adjust to rapid environmental shifts. This review comprehensively explores amniote gut microbial changes in the context of urbanization, examining potential drivers of these changes (including diet and environmental pollutants) and their potential consequences for host health (such as physiology, metabolism, immune function, and susceptibility to infectious and non-infectious diseases). Ultimately, the implications of the gut microbiome are highlighted for elucidating key issues in ecology and evolution. This understanding is expected to enhance our comprehension of species adaptation in the Anthropocene. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 356
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 286
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

31 pages, 386 KiB  
Review
Risk Assessment Approaches for Ophraella communa as a Biological Control Agent for Ambrosia artemisiifolia in Agricultural Landscapes of Southeastern Central Europe: A Review
by Patrice Nduwayo, Urs Schaffner, Sri Ita Tarigan, Zita Dorner, Jozsef Kiss, Nicolas Desneux, Vincent Lesieur, Zoé Rousset, Heinz Müller-Schärer and Stefan Toepfer
Agronomy 2025, 15(8), 1771; https://doi.org/10.3390/agronomy15081771 - 23 Jul 2025
Viewed by 462
Abstract
Common ragweed, Ambrosia artemisiifolia (Asteraceae), is an invasive weed that causes problems in cropping systems and to human health both in its native range in North and Central America and the introduced range in Europe, Asia, Africa, and Australia. Ophraella communa, an [...] Read more.
Common ragweed, Ambrosia artemisiifolia (Asteraceae), is an invasive weed that causes problems in cropping systems and to human health both in its native range in North and Central America and the introduced range in Europe, Asia, Africa, and Australia. Ophraella communa, an herbivorous chrysomelid beetle from North America, was accidentally introduced into East Asia and Europe, where it significantly reduces weed populations and pollen production. Despite extensive research on its host specificity and risk assessment, the potential environmental risk of this biological control agent in southeastern Central Europe, one of the most heavily invaded areas by A. artemisiifolia, remains to be determined. This literature review attempts to summarize the results of host-range testing conducted so far and identifies plant taxa native to southeastern Central Europe that have not been tested yet. The results suggest that the host range of O. communa is not yet entirely clear, but may include some plant species from the tribes Heliantheae, Inuleae, Anthemideae, Cardueae, Astereae, and/or Coreopsideae. So far, only some of the 21 genera from those tribes with species in southeastern Central Europe have been tested. We therefore suggest further host specificity studies with representatives of these plant genera to fully assess the potential non-target risks by O. communa in agricultural and natural habitats. Full article
(This article belongs to the Special Issue Ecology and Management of Weeds in Different Situations)
35 pages, 6030 KiB  
Review
Common Ragweed—Ambrosia artemisiifolia L.: A Review with Special Regards to the Latest Results in Protection Methods, Herbicide Resistance, New Tools and Methods
by Bence Knolmajer, Ildikó Jócsák, János Taller, Sándor Keszthelyi and Gabriella Kazinczi
Agronomy 2025, 15(8), 1765; https://doi.org/10.3390/agronomy15081765 - 23 Jul 2025
Viewed by 419
Abstract
Common ragweed (Ambrosia artemisiifolia L.) has been identified as one of the most harmful invasive weed species in Europe due to its allergenic pollen and competitive growth in diverse habitats. In the first part of this review [Common Ragweed—Ambrosia artemisiifolia L.: [...] Read more.
Common ragweed (Ambrosia artemisiifolia L.) has been identified as one of the most harmful invasive weed species in Europe due to its allergenic pollen and competitive growth in diverse habitats. In the first part of this review [Common Ragweed—Ambrosia artemisiifolia L.: A Review with Special Regards to the Latest Results in Biology and Ecology], its biological characteristics and ecological behavior were described in detail. In the current paper, control strategies are summarized, focusing on integrated weed management adapted to the specific habitat where the species causes damage—arable land, semi-natural vegetation, urban areas, or along linear infrastructures. A range of management methods is reviewed, including agrotechnical, mechanical, physical, thermal, biological, and chemical approaches. Particular attention is given to the spread of herbicide resistance and the need for diversified, habitat-specific interventions. Among biological control options, the potential of Ophraella communa LeSage, a leaf beetle native to North America, is highlighted. Furthermore, innovative technologies such as UAV-assisted weed mapping, site-specific herbicide application, and autonomous weeding robots are discussed as environmentally sustainable tools. The role of legal regulations and pollen monitoring networks—particularly those implemented in Hungary—is also emphasized. By combining traditional and advanced methods within a coordinated framework, effective and ecologically sound ragweed control can be achieved. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

Back to TopTop