Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = potassium transport regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7534 KiB  
Article
Investigation of Pharmacological Mechanisms and Active Ingredients of Cichorium intybus L. in Alleviating Renal Urate Deposition via lncRNA H19/miR-21-3p Regulation to Enhance ABCG2 Expression
by Xiaoye An, Yi Xu, Qiuyue Mao, Chengjin Lu, Xiaoyang Yin, Siying Chen, Bing Zhang, Zhijian Lin and Yu Wang
Int. J. Mol. Sci. 2025, 26(16), 7892; https://doi.org/10.3390/ijms26167892 - 15 Aug 2025
Viewed by 153
Abstract
Renal urate deposition is a pathological inflammatory condition characterized by the accumulation of urate crystals in the kidneys, resulting from uric acid supersaturation. Cichorium intybus L. (chicory) is a traditional medicinal herb recognized for its efficacy in treating hyperuricemia and gout; however, its [...] Read more.
Renal urate deposition is a pathological inflammatory condition characterized by the accumulation of urate crystals in the kidneys, resulting from uric acid supersaturation. Cichorium intybus L. (chicory) is a traditional medicinal herb recognized for its efficacy in treating hyperuricemia and gout; however, its effectiveness and underlying mechanisms in mitigating renal urate deposition remain inadequately understood. This study investigates the role of the ATP-binding cassette sub-family G member 2 (ABCG2) transporter and the lncRNA H19/miR-21-3p in renal urate deposition, while also validating the therapeutic effects and mechanisms of chicory extract. Renal urate deposition was induced in rats through the administration of potassium oxonate, adenine, yeast extract, and lipopolysaccharide. The levels of serum uric acid (SUA), urate deposition, inflammation, renal function, and histological changes were analyzed. Dual-luciferase assays, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry were utilized to elucidate the relationship among ABCG2, lncRNA H19, and miR-21-3p. The chemical composition and active ingredients of chicory were analyzed using UPLC-LTQ-Orbitrap-MS, along with molecular docking and cell experiments. In rats with renal urate deposition, serum UA levels were elevated, renal UA excretion was reduced, and levels of low inflammatory factors, such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and hypersensitivity C-reactive protein (hs-CRP), were increased. Additionally, significant renal tissue damage accompanied the urate deposition. Notably, these abnormalities were substantially reversed following treatment with chicory extract. A dual-luciferase reporter assay confirmed the regulatory relationships among miR-21-3p, lncRNA H19, and ABCG2. Immunohistochemical analysis and RT-qPCR demonstrated a significant upregulation of miR-21-3p expression, alongside a downregulation of lncRNA H19, ABCG2 mRNA, and ABCG2 expression in the kidney tissue of rats with renal urate deposition. Chicory extract may exert its inhibitory effect on renal urate deposition by regulating the lncRNA H19/miR-21-3p axis to enhance ABCG2 expression. Furthermore, UPLC-LTQ-Orbitrap-MS identified 69 components in the chicory extract, including scopoletin, quercetin-3-O-β-D-glucuronide, 11β,13-dihydrolactucopicrin, and kaempferol-3-O-β-D-glucuronide, which were absorbed into the blood of both normal rats and those with renal urate deposition. Molecular docking and cell experiment further validated the effective regulation of 11β,13-dihydrolactucopicrin in ABCG2 and the lncRNA H19/miR-21-3p axis. The downregulation of ABCG2, mediated by the lncRNA H19/miR-21-3p axis, may represent a critical pathogenic mechanism in renal urate deposition. Chicory alleviates this deposition by modulating the lncRNA H19/miR-21-3p axis to enhance ABCG2 expression, potentially through its component, 11β,13-dihydrolactucopicrin, thereby revealing novel therapeutic insights for renal urate deposition. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

19 pages, 1726 KiB  
Review
Influence of Olive Oil Components on Ion Channels
by Hascibe Mijares-Andrade, Ismael Carreño-Diaz, Osmel La-Llave-Leon, Ivan Meneses-Morales, Estela Ruiz-Baca and Angelica Lopez-Rodriguez
Molecules 2025, 30(16), 3336; https://doi.org/10.3390/molecules30163336 - 11 Aug 2025
Viewed by 347
Abstract
Olive oil, a cornerstone of the Mediterranean diet, contains a saponifiable lipid fraction rich in oleic acid, and a non-saponifiable fraction composed of minor bioactive constituents such as squalene, vitamin E, oleuropein aglycone, hydroxytyrosol, oleocanthal, and oleacein, among other phenolic and triterpenic compounds. [...] Read more.
Olive oil, a cornerstone of the Mediterranean diet, contains a saponifiable lipid fraction rich in oleic acid, and a non-saponifiable fraction composed of minor bioactive constituents such as squalene, vitamin E, oleuropein aglycone, hydroxytyrosol, oleocanthal, and oleacein, among other phenolic and triterpenic compounds. These components are well-documented for their cardiovascular, anti-inflammatory, antioxidant, and neuroprotective activities. This review explores the physiological relevance of olive oil lipids and their derivatives on cellular membranes and ion transport systems, by combining biochemical and electrophysiological insights. We discuss how oleic acid and its metabolites influence membrane lipid composition, modulate fluidity, and reorganize lipid rafts—key elements for the proper localization and function of ion channels. Additionally, we examine evidence showing that several olive oil components regulate ion channels such as TRP, potassium, calcium, and chloride channels, as well as other transporters, thereby influencing ionic homeostasis, oxidative balance, and signal transduction in excitable and non-excitable cells. By combining these findings, we propose a conceptual framework in which olive oil lipids and their derivatives act as multimodal regulators of bioelectrical signaling. By modulating cell membrane dynamics, these functional molecules help maintain cellular communication and homeostasis. This integrative view not only strengthens our understanding of olive oil’s health-promoting effects but also opens new avenues for targeting ion-regulatory mechanisms in metabolic, cardiovascular, and neurological diseases. Full article
Show Figures

Figure 1

17 pages, 780 KiB  
Review
Progress in the Study of Plant Nitrogen and Potassium Nutrition and Their Interaction Mechanisms
by Weiyu Cao, Hai Sun, Cai Shao, Yue Wang, Jiapeng Zhu, Hongjie Long, Xiaomeng Geng and Yayu Zhang
Horticulturae 2025, 11(8), 930; https://doi.org/10.3390/horticulturae11080930 - 7 Aug 2025
Viewed by 446
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key [...] Read more.
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key physiological functions of N and K individually and their respective absorption and transport mechanisms involving transporters such as NRTs and HAKs/KUPs. The review discusses the types of nutrient interactions (synergism and antagonism), with a primary focus on the physiological basis of N–K interactions and their interplay in root absorption and transport (e.g., K+-NO3 co-transport; NH4+ inhibition of K+ uptake), photosynthesis (jointly optimizing CO2 conductance, mesophyll conductance, and N allocation within photosynthetic machinery to enhance photosynthetic N use efficiency, PNUE), as well as sensing, signaling, co-regulation, and metabolism. This review emphasizes that N–K balance is crucial for improving crop yield and quality, enhancing fertilizer use efficiency (NUE/KUE), and reducing environmental pollution. Consequently, developing effective N–K management strategies based on these interaction mechanisms and implementing Balanced Fertilization Techniques (BFT) to optimize N–K ratios and application strategies in agricultural production represent vital pathways for ensuring food security, addressing resource constraints, and advancing green, low-carbon agriculture, including through coordinated management of greenhouse gas emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 491
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

14 pages, 2027 KiB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 457
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

16 pages, 5674 KiB  
Article
Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress
by Ze Yuan, Xiaofeng Zhou, Yuyang Zhang, Yan Wang, Haoyu Yan, Wu Sun, Min Yan and Cuiyun Wu
Horticulturae 2025, 11(7), 726; https://doi.org/10.3390/horticulturae11070726 - 22 Jun 2025
Viewed by 423
Abstract
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of [...] Read more.
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of 10-year old steer jujube trees were watered using a saline and alkaline gradient solution simulating the main salt (NaCl) and alkali (NaHCO3) of Aral with NaCl:NaHCO3 = 3:1 gradient of 0, 60, 180, and 300 mM, and three jujube trees with uniform growth were taken as samples in each treatment plot, and the ion contents of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and carbon (C) in each organ of the fruit at the dot red period (S1) and full-red period (S2) were determined, in order to elucidate the relationship between physiological adaptation mechanisms of saline-alkali tolerance and the characteristics of mineral nutrient uptake and utilisation in jujube fruit. The results showed that under saline-alkali stress, Na was stored in large quantities in the roots, Ca and Mg in the perennial branches at S1, Na and Fe in the leaves at S2, and K, Mg and Mn in the perennial branches. There was no significant difference in the distribution of C content in various organs of ‘Junzao’. Compared with CK (0 mM), under salinity stress, the K content in the leaves was significantly reduced at S1 and S2, and the K/Na ratios remained > 1.0. At S2, under medium and high concentrations of saline-alkali stress (180–300 mM), the K/Na is less than 1, and the ionic homeostasis was disrupted, and the leaves die and fall off, and the Na is excreted from the body. The selective transport coefficients SK/Na, SCa/Na and SMg/Na from root to leaf showed a downward trend at S1, but still maintained positive transport capacity. At S2, this stage is close to leaf fall, the nutrient transport coefficient is less than 1, and a large amount of nutrients are returned to the perennial branches and roots occurred. These results indicated that the mechanism of nutrient regulation and salt tolerance in jujube trees was different at different growth stages. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

19 pages, 2408 KiB  
Article
Spatiotemporal Regulation of Starch–Sugar Metabolism by Potassium Enhances Carbon Partitioning and Processing Quality in Potatoes
by Jin-Li Li, Shu-Lei Feng, Rong Guo, Hong-Yu Yang, Li-Xiang Cheng, Bin Yu and Juan Liu
Agronomy 2025, 15(6), 1481; https://doi.org/10.3390/agronomy15061481 - 18 Jun 2025
Viewed by 604
Abstract
To investigate the role of potassium in the regulation of potato growth, dynamic changes in starch–sugar metabolism, and processing quality. In this study, “Gannong Potato No. 9” was used as the test material, and five potassium concentration treatments of 0, 9.4, 23.5, 28.5, [...] Read more.
To investigate the role of potassium in the regulation of potato growth, dynamic changes in starch–sugar metabolism, and processing quality. In this study, “Gannong Potato No. 9” was used as the test material, and five potassium concentration treatments of 0, 9.4, 23.5, 28.5, and 37.6 mmol/L were set. The results showed that moderate application of potassium (23.5 mmol/L) significantly enhanced plant height, stem thickness, and tuber yield. It also promotes starch accumulation in all tissues and reduces sucrose, fructose, and glucose content, thus optimizing processing quality. Dynamic analyses showed that potassium affects carbohydrate transport and partitioning among tissues by regulating the direction of carbon partitioning and the rate of conversion. Correlation analysis confirmed the synergistic effect of starch–sugar metabolism among tissues, forming a spatio-temporally linked carbon allocation network. This study reveals the pivotal role of potash in potato starch–sugar metabolism and provides a theoretical basis for precision potassium application and quality improvement. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 3329 KiB  
Article
Deep Fertilization Enhances Crude Protein Content in Forage Maize by Modulating Key Enzymes of Protein Synthesis Across Plant Organs in Semi-Arid Regions of China
by Hongli Wang, Guoping Zhang, Sicun Yang, Mingsheng Ma, Yanjie Fang, Huizhi Hou, Kangning Lei and Jiade Yin
Biology 2025, 14(5), 535; https://doi.org/10.3390/biology14050535 - 12 May 2025
Viewed by 461
Abstract
Appropriate fertilization depth promotes the absorption and transport of nutrients, crop growth and yield. However, little is known about whether deep fertilization improves crude protein synthesis and how to regulate it. A two-year field experiment was conducted with various fertilization depths: (1) conventional [...] Read more.
Appropriate fertilization depth promotes the absorption and transport of nutrients, crop growth and yield. However, little is known about whether deep fertilization improves crude protein synthesis and how to regulate it. A two-year field experiment was conducted with various fertilization depths: (1) conventional fertilization (CF), (2) fertilization application depth at 30 cm (DF), and (3) fertilizer average application at depths of 15 cm and 30 cm (AF). The fertilization rates under all treatments were 300 kg N ha−1 nitrogen fertilizer (urea, 46% N), 150 kg P2O5 ha−1 calcium superphosphate (16% P2O5), and 135 kg K2O ha−1 potassium sulfate (51% K2O). The nitrogen/potassium (N/K) ratio, the activities of nitrate reductase [NR], glutamine synthetase [GS], and glutamic pyruvic transaminase [GPT], crude protein content in leaves, stems, and grains, as well as the relationships among the parameters were explored. The result showed that deep fertilization (DF) significantly improved the N/K ratio. NR activity in DF increased by 26.30%, 35.56%, and 57.30% in leaves, stems, and grains, respectively, when compared to conventional fertilization (CF), and by 54.22%, 43.27%, and 28.44% when compared to average fertilization (AF). GS activity in DF increased by 29.67%, 47.96%, and 47.46% in leaves, stems, and grains when compared to CF, and by 40.05%, 31.51%, and 40.62% when compared to AF. GPT activity in DF was significantly higher than CF and AF in grains, and differences between treatments were significant. Crude protein content was significantly correlated with NR and GS activities in leaves, GPT activity in stems, as well as GS and GPT activities in grains. The crude protein content of leaves and grains in DF was significantly higher than in CF and AF. In conclusion, DF significantly improved crude protein synthesis and increased the crude protein content of forage maize by increasing the whole plant N/K ratio, NR and GS activities in leaves, as well as GS and GPT activities in grains. It is a highly efficient cultivation technology that significantly improves the quality of forage maize. Full article
Show Figures

Figure 1

23 pages, 6115 KiB  
Article
Root Response to K+-Deprivation in Wheat (Triticum aestivum L.): Coordinated Roles of HAK Transporters, AKT2 and SKOR K+-Channels, and Phytohormone Regulation
by Yuan Huang, Naiyue Hu, Xiwen Yang, Sumei Zhou, Miao Song, Jiemei Zhang, Xu Chen, Xihe Du and Dexian He
Agriculture 2025, 15(9), 993; https://doi.org/10.3390/agriculture15090993 - 3 May 2025
Viewed by 467
Abstract
Potassium cation (K+) is essential for wheat (Triticum aestivum L.) growth, but the regulatory mechanisms of root response to K+ deficiency are not well understood. This study examines how varying durations of K+-deprivation affect root K+ [...] Read more.
Potassium cation (K+) is essential for wheat (Triticum aestivum L.) growth, but the regulatory mechanisms of root response to K+ deficiency are not well understood. This study examines how varying durations of K+-deprivation affect root K+ transport and homeostasis in two wheat varieties, XN979 and YM68. Field pot experiments over three growing seasons showed that XN979 has significantly higher K uptake and productive efficiency than YM68 at a K fertilizer application rate of 60 kg hm−2. Hydroponic experiments revealed that XN979 has a lower Km (K+ concentrations at which 1/2 of Vmax) and a higher Vmax (maximum rate of K+ uptake) in K+ uptake kinetics, indicating better adaptation to K+-deficient environments. RNA-seq analysis after different durations of K+ deficiency (0, 6, 12, 24, 48 h) showed that genes encoding the Arabidopsis K+ Transporter 1 (AKT1) K+-channel in both varieties were not significantly upregulated. Instead, K+ transport in root primarily depended on high-affinity K+ (HAK) transporters. Genes encoding the Arabidopsis K+ Transporter 2 (AKT2) K+-channel in phloem cells were significantly upregulated under K+-deprivation. KOR1 and KOR2, encoding the Stelar K+ Outward Rectifier (SKOR) K+-channel in xylem cells, were significantly downregulated after 6 h and 12 h of K+-deprivation, respectively. Significant changes in the expression levels of the Calcineurin B-Like protein–CBL-Interacting Protein Kinase (CBL-CIPK) signaling system and phytohormones synthesis-related genes suggest their involvement in the root response to K+-deprivation. These findings clarify the regulation of wheat root responses to K deficiency. Full article
Show Figures

Figure 1

20 pages, 6404 KiB  
Article
Effects of Arbuscular Mycorrhizal Fungi on the Growth and Nutrient Uptake in Wheat Under Low Potassium Stress
by An-Qi Han, Shuai-Bo Chen, Dan-Dan Zhang, Jin Liu, Meng-Chuan Zhang, Bin Wang, Yue Xiao, Hai-Tao Liu, Tian-Cai Guo, Guo-Zhang Kang and Ge-Zi Li
Plants 2025, 14(9), 1288; https://doi.org/10.3390/plants14091288 - 24 Apr 2025
Viewed by 881
Abstract
Potassium (K) plays important roles in plant growth and development processes, while low K (LK) stress inhibits plant growth by altering reactive oxygen species accumulation. Arbuscular mycorrhizal fungi (AMF) promote nutrient absorption and transport in plants. However, the roles of AMF in affecting [...] Read more.
Potassium (K) plays important roles in plant growth and development processes, while low K (LK) stress inhibits plant growth by altering reactive oxygen species accumulation. Arbuscular mycorrhizal fungi (AMF) promote nutrient absorption and transport in plants. However, the roles of AMF in affecting K nutrition are less well studied than those of other nutrients, especially in wheat. In this study, the effects of AMF on four wheat varieties were evaluated; results showed that the inoculation with the AMF-Rhizophagus intraradices significantly increased mycorrhizal colonization, fresh and dry weights, ascorbic acid, and glutathione contents, while decreasing malondialdehyde contents under both normal and LK stress treatments. It is worth noting that the contents of K and several nutrient elements were more significantly increased in roots than in shoots, suggesting that AMF mainly affect the uptake of K and other nutrient elements in the roots. Moreover, the expression levels of K transporter genes were higher than those of nitrogen and phosphorus transporter genes, especially under AMF combined with LK stress treatments. These results indicate that AMF improves wheat growth and antioxidant activity by regulating K transporter gene expression and affecting K uptake and transport. Therefore, AMF could be used as a sustainable agricultural alternative in wheat under LK soils. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Graphical abstract

18 pages, 5384 KiB  
Article
A Major Latex Protein-Encoding Gene from Populus simonii × P. nigra (PsnMLP328) Contributes to Defense Responses to Salt and Cadmium Stress
by Xin Sun, Lei Wang, Shuang Liu, Yao Li, Yao Sun, Qiong Wu and Di Fu
Int. J. Mol. Sci. 2025, 26(7), 3350; https://doi.org/10.3390/ijms26073350 - 3 Apr 2025
Viewed by 522
Abstract
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 [...] Read more.
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 from Populus simonii × P. nigra and demonstrated its role in mitigating salt and cadmium stress. PsnMLP328 expression was up-regulated under both stress conditions, and its overexpression in tobacco enhanced resistance to these stresses, albeit through distinct mechanisms. Transgenic plants exhibited increased Cd2+ uptake and a higher biomass, alleviating Cd2+-induced growth inhibition. Additionally, PsnMLP328 boosted proline content, chlorophyll levels, and antioxidative enzyme activities (POD, SOD) under Cd2+ stress, likely by protecting cells from oxidative damage. Expression analysis revealed that PsnMLP328 down-regulated the cadmium transporter Nramp2 while up-regulating YSL2 (another cadmium transporter) and potassium channels (AKT1 and AKT2/3), suggesting its role in modulating K+ and Cd2+ homeostasis. These findings indicate that PsnMLP328 enhances tobacco resistance to salt and cadmium stress, particularly the latter. This study is the first to elucidate the function of poplar MLP family genes under salt and cadmium stress, advancing our understanding of MLP gene roles in heavy metal stress and offering new insights for remediating salinized and heavy metal-contaminated soils. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 3336 KiB  
Article
Effects and Mechanism of Auxin and Its Inhibitors on Root Growth and Mineral Nutrient Absorption in Citrus (Trifoliate Orange, Poncirus trifoliata) Seedlings via Its Synthesis and Transport Pathways
by Yuwei Yang, Yidong Shi, Cuiling Tong and Dejian Zhang
Agronomy 2025, 15(3), 719; https://doi.org/10.3390/agronomy15030719 - 16 Mar 2025
Cited by 1 | Viewed by 1021
Abstract
As an endogenous hormone, auxin plays a crucial role in regulating plants’ growth and development, and also in the responses to abiotic stresses. However, the effects and mechanism of auxin and its inhibitors on plant growth and mineral nutrient absorption in citrus have [...] Read more.
As an endogenous hormone, auxin plays a crucial role in regulating plants’ growth and development, and also in the responses to abiotic stresses. However, the effects and mechanism of auxin and its inhibitors on plant growth and mineral nutrient absorption in citrus have not been thoroughly studied. Therefore, we used trifoliate orange (citrus’s rootstock, Poncirus trifoliata) as the experimental material to supplement the research content in this area. The trifoliate orange seedlings were treated with exogenous auxin (indolebutyric acid, IBA) and auxin inhibitor (2-naphthoxyacetic acid, 2-NOA) in a sand culture system. The results showed that compared to the control, exogenous auxin (1.0 µmol L−1 IBA) significantly enhanced the taproot length, lateral root length, and lateral root number by 17.56%, 123.07%, and 88.89%, respectively, while also markedly elevating the levels of nitrogen (N), phosphorus (P), potassium (K), copper (Cu), and zinc (Zn) by 14.29%, 45.61%, 23.28%, 42.86%, and 59.80%, respectively. Again compared to the control, the auxin inhibitor (50.0 µmol L−1 2-NOA) dramatically reduced the taproot length, lateral root length, and lateral root number by 21.37%, 10.25%, and 43.33%, respectively, while also markedly decreasing the levels of N, magnesium (Mg), iron (Fe), Cu, and Zn by 7.94%, 10.42%, 24.65%, 39.25%, and 18.76%, respectively. Furthermore, IBA increased auxin accumulation in the root hair, stele, and epidermal tissues of citrus taproots, and promoted the up-regulation of auxin synthesis genes (TAR2, YUC3, YUC4, YUC6, YUC8) and transport genes (ABCB1, ABCB19, AUX1, LAX1, LAX2, PIN1, PIN3, PIN4). In contrast, 2-NOA decreased auxin levels in the root hair, stele, and epidermal tissues of citrus taproots, and was involved in the down-regulation of auxin synthesis genes (TAR2, YUC3, YUC4, YUC6) and transport genes (ABCB1, AUX1, LAX1, LAX2, LAX3, PIN3). Interestingly, 2-NOA dramatically elevated auxin level specifically in the root tip of citrus taproot. Therefore, 2-NOA disrupts auxin reflux from the root tip to root hair and epidermal tissues in citrus taproot through down-regulation of auxin transport genes, thereby creating localized (i.e., root hair zone and epidermal tissues) auxin deficiencies that compromise root system architecture and nutrient acquisition capacity. According to the results of this study, exogenous auxin analogs could regulate citrus growth and mineral nutrient absorption through the auxin synthesis and transport pathways. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

14 pages, 7785 KiB  
Article
Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes
by Naoko Nishii, Tomoko Kawai, Hiroki Yasuoka, Tadashi Abe, Nanami Tatsumi, Yuika Harada, Takaaki Miyaji, Shunai Li, Moemi Tsukano, Masami Watanabe, Daisuke Ogawa, Jun Wada, Kohji Takei and Hiroshi Yamada
Int. J. Mol. Sci. 2025, 26(6), 2485; https://doi.org/10.3390/ijms26062485 - 11 Mar 2025
Viewed by 961
Abstract
Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes [...] Read more.
Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases. Full article
(This article belongs to the Special Issue Molecular Advances in Glomerular Diseases)
Show Figures

Figure 1

21 pages, 34315 KiB  
Article
Mutation of ZmDIR5 Reduces Maize Tolerance to Waterlogging, Salinity, and Drought
by Zhixiong Zhao, Tao Qin, Hongjian Zheng, Yuan Guan, Wei Gu, Hui Wang, Diansi Yu, Jingtao Qu, Jihui Wei and Wen Xu
Plants 2025, 14(5), 785; https://doi.org/10.3390/plants14050785 - 4 Mar 2025
Cited by 1 | Viewed by 982
Abstract
The DIR (Dirigent) gene family plays a multifaceted role in plant growth, development, and stress responses, making it one of the key gene families for plant adaptation to environmental changes. However, research on ZmDIRs in maize remains limited. In this study, we identified [...] Read more.
The DIR (Dirigent) gene family plays a multifaceted role in plant growth, development, and stress responses, making it one of the key gene families for plant adaptation to environmental changes. However, research on ZmDIRs in maize remains limited. In this study, we identified a member of the maize DIR gene family, ZmDIR5, whose promoter region contains numerous elements associated with responses to abiotic stresses. ZmDIR5 is upregulated in response to waterlogging, salt, and drought stresses, and its protein is localized in the endoplasmic reticulum. Subsequent studies revealed that ZmDIR5-EMS (ethyl methane sulfonate) mutant lines exhibited reduced growth compared to WT (wild-type) plants under waterlogging, salt, and drought stress conditions. The mutant lines also demonstrated a relatively higher accumulation of malondialdehyde and reactive oxygen species, lower synthesis of proline and total lignans, and decreased antioxidant enzyme activity under these stress conditions. Additionally, the mutant lines displayed impaired sodium and potassium ion transport capabilities, reduced synthesis of abscisic acid and zeatin, and decreased expression of related genes. The mutation of ZmDIR5 also inhibited the phenylpropanoid biosynthesis pathway in maize. These results indicate that ZmDIR5 serves as a positive regulator of maize tolerance to waterlogging, salt, and drought stresses. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 4205 KiB  
Article
Lacticaseibacillus paracasei LT12—A Probiotic Strain That Reduces Hyperuricemia via Inhibiting XO Activity and Regulating Renal Uric Acid Transportation Protein
by Wei-Ting Tseng, Xiang-Ru Kong, Yu-Tsung Han, Wen-Yang Lin, Deyi Yin, Lei Du, Jingli Xie and Tien-Hung Chang
Fermentation 2025, 11(2), 96; https://doi.org/10.3390/fermentation11020096 - 13 Feb 2025
Viewed by 1371
Abstract
Hyperuricemia (HUA), characterized by elevated serum uric acid (UA) levels, is a key risk factor for gout. In human purine metabolism, approximately 70% of UA is excreted via the kidneys, while the remaining 30% is eliminated through the intestines. Thus, the intestinal microbiota [...] Read more.
Hyperuricemia (HUA), characterized by elevated serum uric acid (UA) levels, is a key risk factor for gout. In human purine metabolism, approximately 70% of UA is excreted via the kidneys, while the remaining 30% is eliminated through the intestines. Thus, the intestinal microbiota plays a crucial role in regulating UA metabolism through the gut–kidney axis. However, the detailed mechanisms by which the microbiota reduces serum UA levels and supports kidney health remain unclear. In this study, researchers investigated the potential of Lacticaseibacillus paracasei LT12, a strain exhibiting xanthine oxidase (XO) inhibition activity and the ability to degrade inosine and guanosine, in reducing UA levels in a hyperuricemia mouse model. Hyperuricemia was induced by gavaging mice with 300 mg/kg of potassium oxonate and hypoxanthine for two weeks. The subsequent 4-week intervention included five groups: a normal control group, a model group, a positive control group receiving allopurinol (5 mg/kg body weight), a low-dose LT12 group (1.5 × 10⁶ CFU/kg), and a high-dose LT12 group (4.5 × 10⁹ CFU/kg). The results demonstrated that L. paracasei LT12 effectively reduced serum UA levels, inhibited serum and hepatic XO activity, regulated renal uric acid transporter proteins (OAT1, URAT1, GLUT9, and ABCG2), and reduced the abundance of the intestinal pathogenic bacterium Corynebacterium stationis in both the low-dose and high-dose groups. Notably, only the high-dose LT12 group significantly increased gut butyrate levels. In conclusion, L. paracasei LT12 shows promise as a potential probiotic strain for ameliorating hyperuricemia. Future human clinical studies are needed to validate its efficacy. Full article
Show Figures

Figure 1

Back to TopTop