Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = postharvest classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5369 KiB  
Article
Smart Postharvest Management of Strawberries: YOLOv8-Driven Detection of Defects, Diseases, and Maturity
by Luana dos Santos Cordeiro, Irenilza de Alencar Nääs and Marcelo Tsuguio Okano
AgriEngineering 2025, 7(8), 246; https://doi.org/10.3390/agriengineering7080246 - 1 Aug 2025
Abstract
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, [...] Read more.
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, covering eight quality categories, including anthracnose, gray mold, powdery mildew, uneven ripening, and physical defects. Data augmentation techniques, such as rotation and Gaussian blur, were applied to enhance model generalization and robustness. The model was trained over 100 and 200 epochs, and its performance was evaluated using standard metrics: Precision, Recall, and mean Average Precision (mAP). The 200-epoch model achieved the best results, with a mAP50 of 0.79 and an inference time of 1 ms per image, demonstrating suitability for real-time applications. Classes with distinct visual features, such as anthracnose and gray mold, were accurately classified. In contrast, visually similar categories, such as ‘Good Quality’ and ‘Unripe’ strawberries, presented classification challenges. Full article
Show Figures

Figure 1

28 pages, 2789 KiB  
Review
A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
by Zhijie Cao, Shantong Sun and Xu Bao
Appl. Sci. 2025, 15(15), 8438; https://doi.org/10.3390/app15158438 - 30 Jul 2025
Viewed by 309
Abstract
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly [...] Read more.
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly critical. In recent years, deep learning and computer vision have developed rapidly. Key areas in computer vision—such as deep learning-based image processing, object detection, and multimodal fusion—are rapidly transforming traditional agricultural practices. Processes in agriculture, including planting planning, growth management, harvesting, and post-harvest handling, are shifting from experience-driven methods to digital and intelligent approaches. This paper systematically reviews applications of deep learning and computer vision in agricultural growth management over the past decade, categorizing them into four key areas: crop identification, grading and classification, disease monitoring, and weed detection. Additionally, we introduce classic methods and models in computer vision and deep learning, discussing approaches that utilize different types of visual information. Finally, we summarize current challenges and limitations of existing methods, providing insights for future research and promoting technological innovation in agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

17 pages, 1794 KiB  
Article
Detection of Cumulative Bruising in Prunes Using Vis–NIR Spectroscopy and Machine Learning: A Nonlinear Spectral Response Approach
by Lisi Lai, Hui Zhang, Jiahui Gu and Long Wen
Appl. Sci. 2025, 15(15), 8190; https://doi.org/10.3390/app15158190 - 23 Jul 2025
Viewed by 166
Abstract
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. [...] Read more.
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. A self-developed impact simulation device was designed to induce progressive damage under controlled energy levels, simulating realistic postharvest handling conditions. Spectral data were collected from the equatorial region of each fruit and processed using a hybrid modeling framework comprising continuous wavelet transform (CWT) for spectral enhancement, uninformative variable elimination (UVE) for optimal wavelength selection, and support vector machine (SVM) for classification. The proposed CWT-UVE-SVM model achieved an overall classification accuracy of 93.22%, successfully distinguishing intact, mildly bruised, and cumulatively damaged samples. Notably, the results revealed nonlinear reflectance variations in the near-infrared region associated with repeated low-energy impacts, highlighting the capacity of spectral response patterns to capture progressive physiological changes. This research not only advances nondestructive detection methods for prune grading but also provides a scalable modeling strategy for cumulative mechanical damage assessment in soft horticultural products. Full article
Show Figures

Figure 1

24 pages, 9379 KiB  
Article
Performance Evaluation of YOLOv11 and YOLOv12 Deep Learning Architectures for Automated Detection and Classification of Immature Macauba (Acrocomia aculeata) Fruits
by David Ribeiro, Dennis Tavares, Eduardo Tiradentes, Fabio Santos and Demostenes Rodriguez
Agriculture 2025, 15(15), 1571; https://doi.org/10.3390/agriculture15151571 - 22 Jul 2025
Viewed by 483
Abstract
The automated detection and classification of immature macauba (Acrocomia aculeata) fruits is critical for improving post-harvest processing and quality control. In this study, we present a comparative evaluation of two state-of-the-art YOLO architectures, YOLOv11x and YOLOv12x, trained on the newly constructed [...] Read more.
The automated detection and classification of immature macauba (Acrocomia aculeata) fruits is critical for improving post-harvest processing and quality control. In this study, we present a comparative evaluation of two state-of-the-art YOLO architectures, YOLOv11x and YOLOv12x, trained on the newly constructed VIC01 dataset comprising 1600 annotated images captured under both background-free and natural background conditions. Both models were implemented in PyTorch and trained until the convergence of box regression, classification, and distribution-focal losses. Under an IoU (intersection over union) threshold of 0.50, YOLOv11x and YOLOv12x achieved an identical mean average precision (mAP50) of 0.995 with perfect precision and recall or TPR (true positive rate). Averaged over IoU thresholds from 0.50 to 0.95, YOLOv11x demonstrated superior spatial localization performance (mAP50–95 = 0.973), while YOLOv12x exhibited robust performance in complex background scenarios, achieving a competitive mAP50–95. Inference throughput averaged 3.9 ms per image for YOLOv11x and 6.7 ms for YOLOv12x, highlighting a trade-off between speed and architectural complexity. Fused model representations revealed optimized layer fusion and reduced computational overhead (GFLOPs), facilitating efficient deployment. Confusion-matrix analyses confirmed YOLOv11x’s ability to reject background clutter more effectively than YOLOv12x, whereas precision–recall and F1-score curves indicated both models maintain near-perfect detection balance across thresholds. The public release of the VIC01 dataset and trained weights ensures reproducibility and supports future research. Our results underscore the importance of selecting architectures based on application-specific requirements, balancing detection accuracy, background discrimination, and computational constraints. Future work will extend this framework to additional maturation stages, sensor fusion modalities, and lightweight edge-deployment variants. By facilitating precise immature fruit identification, this work contributes to sustainable production and value addition in macauba processing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 5294 KiB  
Article
Non-Invasive Bioelectrical Characterization of Strawberry Peduncles for Post-Harvest Physiological Maturity Classification
by Jonnel Alejandrino, Ronnie Concepcion, Elmer Dadios, Ryan Rhay Vicerra, Argel Bandala, Edwin Sybingco, Laurence Gan Lim and Raouf Naguib
AgriEngineering 2025, 7(7), 223; https://doi.org/10.3390/agriengineering7070223 - 8 Jul 2025
Viewed by 314
Abstract
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) [...] Read more.
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) and 100 commercially mature (CM) strawberries were distinguished. Spectra from their peduncles were measured from 1 kHz to 1 MHz, collecting four parameters (magnitude (Z(f)), phase angle (θ(f)), resistance (R(f)), and reactance (X(f))), resulting in 80,000 raw data points. Through systematic spectral preprocessing, Bode and Cole–Cole plots revealed a distinction between PR and CM strawberries. Frequency selection identified seven key frequencies (1, 5, 50, 75, 100, 250, 500 kHz) for deriving 37 engineered features from spectral, extrema, and derivative parameters. Feature selection reduced these to 6 parameters: phase angle at 50 kHz (θ (50 kHz)); relaxation time (τ); impedance ratio (|Z1k/Z250k|); dispersion coefficient (α); membrane capacitance (Cm); and intracellular resistivity (ρi). Four algorithms (TabPFN, CatBoost, GPC, EBM) were evaluated with Monte Carlo cross-validation with five iterations, ensuring robust evaluation. CatBoost achieved the highest accuracy at 93.3% ± 2.4%. Invasive reference metrics showed strong correlations with bioelectrical parameters (r = 0.74 for firmness, r = −0.71 for soluble solids). These results demonstrate a solution for precise harvest classification, reducing post-harvest losses without compromising marketability. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

36 pages, 15335 KiB  
Article
An Application of Deep Learning Models for the Detection of Cocoa Pods at Different Ripening Stages: An Approach with Faster R-CNN and Mask R-CNN
by Juan Felipe Restrepo-Arias, María José Montoya-Castaño, María Fernanda Moreno-De La Espriella and John W. Branch-Bedoya
Computation 2025, 13(7), 159; https://doi.org/10.3390/computation13070159 - 2 Jul 2025
Viewed by 645
Abstract
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates [...] Read more.
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates the performance of R-CNN-based deep learning models—Faster R-CNN and Mask R-CNN—for the detection and segmentation of cocoa pods across four ripening stages (0–2 months, 2–4 months, 4–6 months, and >6 months) using the RipSetCocoaCNCH12 dataset, which is publicly accessible, comprising 4116 labeled images collected under real-world field conditions, in the context of precision agriculture. Initial experiments using pretrained weights and standard configurations on a custom COCO-format dataset yielded promising baseline results. Faster R-CNN achieved a mean average precision (mAP) of 64.15%, while Mask R-CNN reached 60.81%, with the highest per-class precision in mature pods (C4) but weaker detection in early stages (C1). To improve model robustness, the dataset was subsequently augmented and balanced, followed by targeted hyperparameter optimization for both architectures. The refined models were then benchmarked against state-of-the-art YOLOv8 networks (YOLOv8x and YOLOv8l-seg). Results showed that YOLOv8x achieved the highest mAP of 86.36%, outperforming YOLOv8l-seg (83.85%), Mask R-CNN (73.20%), and Faster R-CNN (67.75%) in overall detection accuracy. However, the R-CNN models offered valuable instance-level segmentation insights, particularly in complex backgrounds. Furthermore, a qualitative evaluation using confidence heatmaps and error analysis revealed that R-CNN architectures occasionally missed small or partially occluded pods. These findings highlight the complementary strengths of region-based and real-time detectors in precision agriculture and emphasize the need for class-specific enhancements and interpretability tools in real-world deployments. Full article
Show Figures

Figure 1

13 pages, 2065 KiB  
Article
Machine Learning-Based Shelf Life Estimator for Dates Using a Multichannel Gas Sensor: Enhancing Food Security
by Asrar U. Haque, Mohammad Akeef Al Haque, Abdulrahman Alabduladheem, Abubakr Al Mulla, Nasser Almulhim and Ramasamy Srinivasagan
Sensors 2025, 25(13), 4063; https://doi.org/10.3390/s25134063 - 29 Jun 2025
Viewed by 559
Abstract
It is a well-known fact that proper nutrition is essential for human beings to live healthy lives. For thousands of years, it has been considered that dates are one of the best nutrient providers. To have better-quality dates and to enhance the shelf [...] Read more.
It is a well-known fact that proper nutrition is essential for human beings to live healthy lives. For thousands of years, it has been considered that dates are one of the best nutrient providers. To have better-quality dates and to enhance the shelf life of dates, it is vital to preserve dates in optimal conditions that contribute to food security. Hence, it is crucial to know the shelf life of different types of dates. In current practice, shelf life assessment is typically based on manual visual inspection, which is subjective, error-prone, and requires considerable expertise, making it difficult to scale across large storage facilities. Traditional cold storage systems, whilst being capable of monitoring temperature and humidity, lack the intelligence to detect spoilage or predict shelf life in real-time. In this study, we present a novel IoT-based shelf life estimation system that integrates multichannel gas sensors and a lightweight machine learning model deployed on an edge device. Unlike prior approaches, our system captures the real-time emissions of spoilage-related gases (methane, nitrogen dioxide, and carbon monoxide) along with environmental data to classify the freshness of date fruits. The model achieved a classification accuracy of 91.9% and an AUC of 0.98 and was successfully deployed on an Arduino Nano 33 BLE Sense board. This solution offers a low-cost, scalable, and objective method for real-time shelf life prediction. This significantly improves reliability and reduces postharvest losses in the date supply chain. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

11 pages, 762 KiB  
Article
Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images
by Omar Martínez-Mora, Oscar Capuñay-Uceda, Luis Caucha-Morales, Raúl Sánchez-Ancajima, Iván Ramírez-Morales, Sandra Córdova-Márquez and Fabián Cuenca-Mayorga
Processes 2025, 13(7), 1982; https://doi.org/10.3390/pr13071982 - 23 Jun 2025
Viewed by 848
Abstract
The accurate classification of banana ripeness is essential for optimising agricultural practices and enhancing food industry processes. This study investigates the classification of banana ripeness using Machine Learning (ML) and Deep Learning (DL) techniques. The dataset consisted of 1565 high-resolution images of bananas [...] Read more.
The accurate classification of banana ripeness is essential for optimising agricultural practices and enhancing food industry processes. This study investigates the classification of banana ripeness using Machine Learning (ML) and Deep Learning (DL) techniques. The dataset consisted of 1565 high-resolution images of bananas captured over a 20-day ripening period using a Canon EOS 90D camera under controlled lighting and background conditions. High-resolution images of bananas at different ripeness stages were classified into ‘unripe’, ‘ripe’, and ‘overripe’ categories. The training set consisted of 1398 images (89.33%), and the validation set consisted of 167 images (10.67%), allowing for robust model evaluation. Various ML models, including Decision Tree, Random Forest, KNN, SVM, CNN, and VGG models, were trained and evaluated for ripeness classification. Among these, DL models, particularly CNN and VGG, outperformed traditional ML algorithms, with the CNN and VGG achieving accuracy rates of 90.42% and 89.22%, respectively. These rates surpassed those of Decision Trees (71.86%), Random Forests (85.63%), KNNs (86.83%), and SVMs (89.22%). The study points out the importance of dataset quality, model selection, and preprocessing techniques in achieving accurate ripeness classification. Practical applications of these results include optimised harvesting practices, enhanced post-harvest handling, improved consumer experience, streamlined supply chain logistics, and automation in sorting systems. These results confirm the feasibility of using deep learning for the automated classification of ripening stages, with implications for reducing postharvest losses and improving supply chain logistics. These findings have significant implications for stakeholders in the banana industry, from farmers to consumers, and pave the way for the development of innovative solutions for banana ripeness classification. Full article
(This article belongs to the Special Issue Innovative Strategies and Applications in Sustainable Food Processing)
Show Figures

Figure 1

17 pages, 1610 KiB  
Article
Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy
by Mariana Santos-Rivera, Lakshmanan Viswanathan and Faris Sheibani
Spectrosc. J. 2025, 3(2), 20; https://doi.org/10.3390/spectroscj3020020 - 19 Jun 2025
Viewed by 486
Abstract
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to [...] Read more.
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to classify green coffee beans based on PHP. For the first time, seven distinct PHP categories—Alchemy, Anaerobic Processing (Deep Fermentation), Dry-Hulled, Honey, Natural, Washed, and Wet-Hulled—were discriminated using NIRS, encompassing 20 different processing protocols under varying environmental and fermentation conditions. The NIR spectra (350–2500 nm) of 524 green Arabica coffee samples were analyzed using PCA-LDA models (750–2450 nm), achieving classification accuracies up to 100% for underrepresented categories and strong performance (91–95%) for dominant PHP groups in an independent test set. These results demonstrate that NIRS can detect subtle chemical signatures associated with diverse PHP techniques, offering a scalable tool for quality assurance, fraud prevention, and traceability in global coffee supply chains. While limited sample sizes for some PHP categories may influence model generalization, this study lays the foundation for future work involving broader datasets and integration with digital traceability systems. The approach has direct implications for producers, traders, and certifying bodies seeking reliable, real-time PHP verification. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

24 pages, 9889 KiB  
Article
An Intelligent Management System and Advanced Analytics for Boosting Date Production
by Shaymaa E. Sorour, Munira Alsayyari, Norah Alqahtani, Kaznah Aldosery, Anfal Altaweel and Shahad Alzhrani
Sustainability 2025, 17(12), 5636; https://doi.org/10.3390/su17125636 - 19 Jun 2025
Viewed by 660
Abstract
The date palm industry is a vital pillar of agricultural economies in arid and semi-arid regions; however, it remains vulnerable to challenges such as pest infestations, post-harvest diseases, and limited access to real-time monitoring tools. This study applied the baseline YOLOv11 model and [...] Read more.
The date palm industry is a vital pillar of agricultural economies in arid and semi-arid regions; however, it remains vulnerable to challenges such as pest infestations, post-harvest diseases, and limited access to real-time monitoring tools. This study applied the baseline YOLOv11 model and its optimized variant, YOLOv11-Opt, to automate the detection, classification, and monitoring of date fruit varieties and disease-related defects. The models were trained on a curated dataset of real-world images collected in Saudi Arabia and enhanced through advanced data augmentation techniques, dynamic label assignment (SimOTA++), and extensive hyperparameter optimization. The experimental results demonstrated that YOLOv11-Opt significantly outperformed the baseline YOLOv11, achieving an overall classification accuracy of 99.04% for date types and 99.69% for disease detection, with ROC-AUC scores exceeding 99% in most cases. The optimized model effectively distinguished visually complex diseases, such as scale insert and dry date skin, across multiple date types, enabling high-resolution, real-time inference. Furthermore, a visual analytics dashboard was developed to support strategic decision-making by providing insights into production trends, disease prevalence, and varietal distribution. These findings underscore the value of integrating optimized deep learning architectures and visual analytics for intelligent, scalable, and sustainable precision agriculture. Full article
(This article belongs to the Special Issue Sustainable Food Processing and Food Packaging Technologies)
Show Figures

Figure 1

25 pages, 877 KiB  
Review
A Comprehensive Review of Phenolic Compounds in Horticultural Plants
by Lili Xu and Xianpu Wang
Int. J. Mol. Sci. 2025, 26(12), 5767; https://doi.org/10.3390/ijms26125767 - 16 Jun 2025
Viewed by 903
Abstract
Phenolic compounds (PCs) are key secondary metabolites in horticultural plants that are structurally categorized into flavonoids, simple phenols, stilbenes, and tannins. Synthesized via the shikimate and phenylpropanoid pathways, the metabolism of PCs is regulated by transcription factors (e.g., MYB and bZIP) and influenced [...] Read more.
Phenolic compounds (PCs) are key secondary metabolites in horticultural plants that are structurally categorized into flavonoids, simple phenols, stilbenes, and tannins. Synthesized via the shikimate and phenylpropanoid pathways, the metabolism of PCs is regulated by transcription factors (e.g., MYB and bZIP) and influenced by genetic backgrounds and environmental stresses (e.g., temperature and UV), thereby leading to species- or tissue-specific distribution patterns. Advanced extraction/separation techniques (e.g., ultrasonic-assisted and HPLC) have enabled systematic PC characterization. Functionally, PCs enhance plant stress resistance (abiotic/biotic) through antioxidant activity, cell wall reinforcement, and defense signaling. Their dual roles as reactive oxygen species scavengers, and signaling molecules are integral. This review synthesizes the classification, metabolic regulation, and biological functions of PCs, providing a scientific basis for improving PC content in horticultural plants with the aim of enhancing stress resilience, postharvest and storage quality, and nutritional value for sustainable agriculture. Full article
(This article belongs to the Special Issue Molecular Research on Plant Natural Products)
Show Figures

Figure 1

17 pages, 1029 KiB  
Article
Portable NIR Spectroscopy Combined with Machine Learning for Kiwi Ripeness Classification: An Approach to Precision Farming
by Giuseppe Altieri, Sabina Laveglia, Mahdi Rashvand, Francesco Genovese, Attilio Matera, Alba Nicoletta Mininni, Maria Calabritto and Giovanni Carlo Di Renzo
Appl. Sci. 2025, 15(11), 6233; https://doi.org/10.3390/app15116233 - 1 Jun 2025
Cited by 1 | Viewed by 621
Abstract
This study aims to evaluate and classify the ripening stages of yellow-fleshed kiwifruit by integrating spectral and physicochemical data collected from the pre-harvest phase through 60 days of storage. A portable near-infrared (NIR) spectrometer (900–1700 nm) was used to develop predictive models for [...] Read more.
This study aims to evaluate and classify the ripening stages of yellow-fleshed kiwifruit by integrating spectral and physicochemical data collected from the pre-harvest phase through 60 days of storage. A portable near-infrared (NIR) spectrometer (900–1700 nm) was used to develop predictive models for soluble solids content (SSC) and firmness (FF), testing multiple preprocessing methods within a Partial Least Squares Regression (PLSR) framework. SNV preprocessing achieved the best predictions for FF (R2P = 0.74, RMSEP = 12.342 ± 0.274 N), while the Raw-PLS model showed optimal performance for SSC (R2P = 0.93, RMSEP = 1.142 ± 0.022°Brix). SSC was more robustly predicted than FF, as reflected by RPD values of 2.6 and 1.7, respectively. For ripening stage classification, an Artificial Neural Network (ANN) outperformed other models, correctly classifying 97.8% of samples (R2 = 0.95, RMSE = 0.08, MAE = 0.03). These results demonstrate the potential of combining NIR spectroscopy with AI techniques for non-destructive quality assessment and accurate ripeness discrimination. The integration of regression and classification models further supports the development of intelligent decision-support systems to optimize harvest timing and postharvest handling. Full article
(This article belongs to the Special Issue Technologies and Techniques for the Enhancement of Agriculture 4.0)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Fusion of Acoustic and Vis-NIRS Information for High-Accuracy Online Detection of Moldy Core in Apples
by Nan Chen, Xiaoyu Zhang, Zhi Liu, Tianyu Zhang, Qingrong Lai, Bin Li, Yeqing Lu, Bo Hu, Xiaogang Jiang and Yande Liu
Agriculture 2025, 15(11), 1202; https://doi.org/10.3390/agriculture15111202 - 31 May 2025
Viewed by 353
Abstract
Moldy core is a common disease of apples, and non-destructive, rapid and accurate detection of moldy core apples is essential to ensure food safety and reduce post-harvest economic losses. In this study, the acoustic method was used for the first time for the [...] Read more.
Moldy core is a common disease of apples, and non-destructive, rapid and accurate detection of moldy core apples is essential to ensure food safety and reduce post-harvest economic losses. In this study, the acoustic method was used for the first time for the online detection of moldy core apples, and we explore the feasibility of integrating acoustic and visible–near-infrared spectroscopy (Vis–NIRS) technologies for precise, real-time detection of moldy core in apples. The sound and Vis–NIRS signals of apples were collected using a novel acoustic online detection device and a traditional Vis–NIRS online sorter, respectively. Based on this, traditional machine learning and deep learning classification models were developed for the prediction of healthy, mild, moderate, and severe moldy apples. The results show that the acoustic detection method significantly outperforms the Vis–NIRS method in terms of moldy apple identification accuracy, and the fusion of acoustic and Vis–NIRS data can further improve the model prediction performance. The MLP-Transformer shows the best prediction performance, with the overall classification accuracies for the fusion of Vis–NIRS, acoustic, Vis–NIRS and acoustic reached 89.66%, 96.55%, and 98.62%, respectively. This study demonstrates the excellent performance of acoustic online detection for intra-fruit lesion identification and shows the potential of the fusion of acoustics and Vis–NIRS. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

23 pages, 11275 KiB  
Review
The Role and Regulatory Mechanism of Methionine Sulfoxide Reductase (Msr) in the Process of Chilling Injury of Fruits and Vegetables: A Review
by Feilong Yin, Liang Shuai, Mohd Termizi Yusof, Nurul Shazini Ramli, Azizah Misran, Yunfen Liu, Meiying He, Yuanli Liang and Mohd Sabri Pak Dek
Horticulturae 2025, 11(4), 422; https://doi.org/10.3390/horticulturae11040422 - 15 Apr 2025
Viewed by 670
Abstract
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox [...] Read more.
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox proteins that reduce methionine sulfoxide (MetSO) in oxidized proteins back to methionine (Met), thereby restoring protein function. In recent years, the role of Msr in protecting fruits and vegetables from CI has attracted increasing research interest. This review summarizes the classification, distribution, and subcellular localization of Msr in plants and examines its roles and regulatory mechanisms in mitigating CI. The discussion focuses on postharvest CI, ROS dynamics, and Msr-related regulatory pathways. This review provides insights into improving plant quality and enhancing cold resistance through genetic engineering. Full article
Show Figures

Figure 1

27 pages, 5073 KiB  
Review
A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production
by Meng Lv, Yi-Xiao Xu, Yu-Hang Miao and Wen-Hao Su
Sensors 2025, 25(8), 2433; https://doi.org/10.3390/s25082433 - 12 Apr 2025
Viewed by 1600
Abstract
The high nutritional and medicinal value of apples has contributed to their widespread cultivation worldwide. Unfavorable factors in the healthy growth of trees and extensive orchard work are threatening the profitability of apples. This study reviewed deep learning combined with computer vision for [...] Read more.
The high nutritional and medicinal value of apples has contributed to their widespread cultivation worldwide. Unfavorable factors in the healthy growth of trees and extensive orchard work are threatening the profitability of apples. This study reviewed deep learning combined with computer vision for monitoring apple tree growth and fruit production processes in the past seven years. Three types of deep learning models were used for real-time target recognition tasks: detection models including You Only Look Once (YOLO) and faster region-based convolutional network (Faster R-CNN); classification models including Alex network (AlexNet) and residual network (ResNet); segmentation models including segmentation network (SegNet), and mask regional convolutional neural network (Mask R-CNN). These models have been successfully applied to detect pests and diseases (located on leaves, fruits, and trunks), organ growth (including fruits, apple blossoms, and branches), yield, and post-harvest fruit defects. This study introduced deep learning and computer vision methods, outlined in the current research on these methods for apple tree growth and fruit production. The advantages and disadvantages of deep learning were discussed, and the difficulties faced and future trends were summarized. It is believed that this research is important for the construction of smart apple orchards. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

Back to TopTop