Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Physicochemical Analyses Processing
2.2. Image Acquisition
2.3. Image Retrieving and Processing
2.4. Model Training
2.5. Model Assessment and Evalidation
3. Results
3.1. Physicochemical Analyses
3.2. Image Processing
3.3. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Symmank, C.; Zahn, S.; Rohm, H. Visually suboptimal bananas: How ripeness affects consumer expectation and perception. Appetite 2018, 120, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Mazen, F.; Nashat, A. Ripeness classification of bananas using an artificial neural network. Arab. J. Sci. Eng. 2019, 44, 6901–6910. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Mavromatis, A. Banana cultivars, cultivation practices, and physicochemical properties. Crit. Rev. Food Sci. Nutr. 2009, 49, 113–135. [Google Scholar] [CrossRef]
- Pathare, P.; Al-Dairi, M. Effect of mechanical damage on the quality characteristics of banana fruits during short-term storage. Discov. Food 2022, 2, 4. [Google Scholar] [CrossRef]
- Singh, A.; Vaidya, G.; Jagota, V.; Darko, D.A.; Agarwal, R.K.; Debnath, S.; Potrich, E. Recent advancement in postharvest loss mitigation and quality management of fruits and vegetables using machine learning frameworks. J. Food Qual. 2022, 2022, 6447282. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, Y.; Luo, H.; Yu, P.; Chen, Z. Optimizing decisions for post-harvest ripening agricultural produce supply chain management: A dynamic quality-based model. Int. Trans. Oper. Res. 2023, 30, 3625–3653. [Google Scholar] [CrossRef]
- Almeyda, E.; Ipanaqué, W. Recent developments of artificial intelligence for banana: Application areas, learning algorithms, and future challenges. Eng. Agríc. 2022, 42, e20210144. [Google Scholar] [CrossRef]
- Mohamedon, M.F.; Rahman, F.A.; Mohamad, S.Y.; Khalifa, O.O. Banana Ripeness Classification Using Computer Vision-based Mobile Application. In Proceedings of the 8th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 22–23 June 2021; pp. 1–6. [Google Scholar]
- Raghavendra, S.; Souvik, G.P.T.; Mitali Madhusmita, N.; Sushovan, C.; Randell, U.E.; Isaac, O. Deep Learning Based Dual Channel Banana Grading System Using Convolution Neural Network. J. Food Qual. 2022, 6050284. [Google Scholar] [CrossRef]
- Seyed-Hassan, M.A.; Shima, J.; Mehrdad, J.; Martynenko, A.; Verbeek, F.J. Detection of Mulberry Ripeness Stages Using Deep Learning Models. IEEE Access 2021, 9, 100380–100394. [Google Scholar]
- Cahya, Z.; Cahya, D.; Nugroho, T.; Zuhri, A.; Agusta, W. CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification. In Proceedings of the IC3INA ‘22, Virtual, 22–23 November 2022; pp. 90–94. [Google Scholar]
- Weiwen, H.; Hongyuan, H.; Wang, F.; Wang, S.; Li, R.; Chang, J.; Li, C. Rapid and Uninvasive Characterization of Bananas by Hyperspectral Imaging with Extreme Gradient Boosting (XGBoost). Anal. Lett. 2022, 55, 620–633. [Google Scholar]
- Wankhade, M.; Hore, U.W. Banana Ripeness Classification Based on Image Processing with Machine Learning. IJARSCT 2021, 6, 1390–1398. [Google Scholar] [CrossRef]
- AOAC International. Official Method 942.15: Acidity (Titratable) of Fruit Products. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- AOAC International. Official Method 932.12: Solids (Soluble) in Fruits and Fruit Products—Refractometer Method. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 1932; 1932 (First Action); Final Action 1980. [Google Scholar]
- Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130. [Google Scholar]
- Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008; pp. 400–405. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, P.; Jain, N.; Tekchandani, R.; Kumar, N. Data dimensionality reduction techniques for Industry 4.0: Research results, challenges, and future research directions. Soft. Pract. Exper. 2022, 52, 658–688. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1, 1097–1105. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kohavi, R.; Provost, F. Glossary of terms. Mach. Learn. 1998, 30, 271–274. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Hinton, G. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Kaelbling, L.P.; Bengio, Y. Generalization in deep learning. arXiv 2017, arXiv:1710.05468. [Google Scholar]
- Prechelt, L. Neural Networks: Tricks of the Trade; Springer: Heidelberg, Germany, 1998; pp. 53–67. [Google Scholar]
- Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci. 2016, 340, 250–261. [Google Scholar] [CrossRef]
- Paterakis, N.; Mocanu, E.; Gibescu, M.; Stappers, B.; van Alst, W. Deep learning versus traditional machine learning methods for aggregated energy demand prediction. In Proceedings of the IEEE PES ISGT-Europe, Turin, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Rahimzad, M.; Moghaddam Nia, A.; Zolfonoon, H.; Soltani, J.; Danandeh Mehr, A.; Kwon, H. Performance comparison of an LSTM-based deep learning model versus conventional machine learning algorithms for streamflow forecasting. Water Resour. Manag. 2021, 35, 4167–4187. [Google Scholar] [CrossRef]
- Shuprajhaa, T.; Raj, J.M.; Paramasivam, S.K.; Sheeba, K.N.; Uma, S. Deep learning based intelligent identification system for ripening stages of banana. Postharvest Biol. Technol. 2023, 203, 112410. [Google Scholar] [CrossRef]
- Francisco, R.S.; Pedroso, G.S.G.; Ventura, T.M. Multi-Class CNN Models for Banana Ripeness Classification. J. Syst. Eng. Inf. Technol. 2025, 4, 1. [Google Scholar]
- Arunima, P.L.; Gopinath, P.P.; Lekshmi, P.R.G.; Esakkimuthu, M. Digital Assessment of Post-Harvest Nendran Banana for Faster Grading: CNN-Based Ripeness Classification Model. Postharvest Biol. Technol. 2024, 214, 112972. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
Xtrain | Physicochemical parameters for training (acidity, °Brix, and ‘un’) |
Xtest | Physicochemical parameters for validation (acidity, °Brix, and ‘un’) |
Ytrain | Banana ripeness status (‘un’, ‘ri’, and ‘or’) in training |
Ytest | Banana ripeness status (‘un’, ‘ri’, and ‘or’) in validation |
Parameter | D0 | D2 | D4 | D6 | D8 | D10 | D12 | D14 | D16 | D18 | D20 |
---|---|---|---|---|---|---|---|---|---|---|---|
Acidity (%) | 0.10 (0.03) | 0.20 (0.04) | 0.25 (0.01) | 0.30 (0.03) | 0.33 (0.01) | 0.39 (0.04) | 0.40 (0.02) | 0.43 (0.02) | 0.45 (0.03) | 0.48 (0.02) | 0.50 (0.01) |
Soluble solids (°Brix) | 2 (0.01) | 5 (0.01) | 7 (0.02) | 9 (0.01) | 11 (0.03) | 14 (0.02) | 15 (0.01) | 17 (0.01) | 20 (0.03) | 25 (0.04) | 27 (0.01) |
Ripeness index | 20 | 25 | 28 | 30 | 33 | 36 | 38 | 40 | 47 | 52 | 54 |
Stage | Un | un | un | un | un | ri | ri | ri | ri | or | or |
Parameter | D0 | D2 | D4 | D6 | D8 | D10 | D12 | D14 | D16 | D18 | D20 |
---|---|---|---|---|---|---|---|---|---|---|---|
Acidity (%) | 0.12 (0.02) | 0.24 (0.01) | 0.25 (0.03) | 0.28 (0.03) | 0.37 (0.01) | 0.38 (0.05) | 0.42 (0.02) | 0.44 (0.07) | 0.47 (0.02) | 0.48 (0.02) | 0.52 (0.05) |
Soluble solids (°Brix) | 1 (0.03) | 4 (0.02) | 6 (0.02) | 10 (0.01) | 14 (0.05) | 16 (0.02) | 18 (0.07) | 20 (0.01) | 23 (0.07) | 26 (0.09) | 29 (0.04) |
Ripeness index | 8 | 17 | 24 | 35 | 37 | 42 | 43 | 45 | 49 | 54 | 56 |
Stage | un | un | un | un | ri | ri | ri | ri | ri | or | or |
Repository | ‘un’ | ‘ri’ | ‘or’ | Total | Percentage (%) |
---|---|---|---|---|---|
Training | 537 | 372 | 489 | 1389 | 89.33 |
Validation | 97 | 18 | 42 | 167 | 10.67 |
Total | - | - | - | 1565 | 100 |
Model | Accuracy (%) |
---|---|
DT | 71.86 |
RF | 85.63 |
KNN | 86.83 |
SVM | 89.22 |
CNN | 90.42 |
VGG | 89.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Mora, O.; Capuñay-Uceda, O.; Caucha-Morales, L.; Sánchez-Ancajima, R.; Ramírez-Morales, I.; Córdova-Márquez, S.; Cuenca-Mayorga, F. Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images. Processes 2025, 13, 1982. https://doi.org/10.3390/pr13071982
Martínez-Mora O, Capuñay-Uceda O, Caucha-Morales L, Sánchez-Ancajima R, Ramírez-Morales I, Córdova-Márquez S, Cuenca-Mayorga F. Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images. Processes. 2025; 13(7):1982. https://doi.org/10.3390/pr13071982
Chicago/Turabian StyleMartínez-Mora, Omar, Oscar Capuñay-Uceda, Luis Caucha-Morales, Raúl Sánchez-Ancajima, Iván Ramírez-Morales, Sandra Córdova-Márquez, and Fabián Cuenca-Mayorga. 2025. "Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images" Processes 13, no. 7: 1982. https://doi.org/10.3390/pr13071982
APA StyleMartínez-Mora, O., Capuñay-Uceda, O., Caucha-Morales, L., Sánchez-Ancajima, R., Ramírez-Morales, I., Córdova-Márquez, S., & Cuenca-Mayorga, F. (2025). Artificial Vision-Based Dual CNN Classification of Banana Ripeness and Quality Attributes Using RGB Images. Processes, 13(7), 1982. https://doi.org/10.3390/pr13071982