Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (444)

Search Parameters:
Keywords = posterior stabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 (registering DOI) - 1 Aug 2025
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

11 pages, 3023 KiB  
Article
Comparison of Lower Limb COP and Muscle Activation During Single-Leg Deadlift Using Elastic and Inelastic Barbells
by Jihwan Jeong and Ilbong Park
Sports 2025, 13(8), 242; https://doi.org/10.3390/sports13080242 - 24 Jul 2025
Viewed by 326
Abstract
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs [...] Read more.
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs using both elastic and inelastic barbells under three lifting speeds (normal, fast, and power). Center of pressure (COP) displacement in the anterior–posterior (AP) and medial–lateral (ML) directions and electromyographic (EMG) activity of eight lower limb muscles were measured. Results: COP displacement was significantly lower when using elastic barbells (AP: F = 6.509, p = 0.017, η2 = 0.200, ω2 = 0.164; ML: F = 9.996, p = 0.004, η2 = 0.278, ω2 = 0.243). EMG activation was significantly higher for the gluteus medius, biceps femoris, semitendinosus, and gastrocnemius (all p < 0.01), especially under power conditions. Significant interactions between barbell type and speed were found for the gluteus medius (F = 13.737, p < 0.001, η2 = 0.346, ω2 = 0.176), semitendinosus (F = 6.757, p = 0.002, η2 = 0.206, ω2 = 0.080), and tibialis anterior (F = 3.617, p = 0.034, η2 = 0.122, ω2 = 0.029). Conclusions: The findings suggest that elastic barbells improve postural control and enhance neuromuscular activation during the SLDL, particularly at higher speeds. These results support the integration of elastic resistance in dynamic balance and injury prevention programs. Full article
Show Figures

Figure 1

18 pages, 774 KiB  
Article
Bayesian Inertia Estimation via Parallel MCMC Hammer in Power Systems
by Weidong Zhong, Chun Li, Minghua Chu, Yuanhong Che, Shuyang Zhou, Zhi Wu and Kai Liu
Energies 2025, 18(15), 3905; https://doi.org/10.3390/en18153905 - 22 Jul 2025
Viewed by 141
Abstract
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and [...] Read more.
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and creating significant technical challenges in maintaining operational reliability. This paper addresses these challenges through a novel Bayesian inference framework that synergistically integrates PMU data with an advanced MCMC sampling technique, specifically employing the Affine-Invariant Ensemble Sampler. The proposed methodology establishes a probabilistic estimation paradigm that systematically combines prior engineering knowledge with real-time measurements, while the Affine-Invariant Ensemble Sampler mechanism overcomes high-dimensional computational barriers through its unique ensemble-based exploration strategy featuring stretch moves and parallel walker coordination. The framework’s ability to provide full posterior distributions of inertia parameters, rather than single-point estimates, helps for stability assessment in renewable-dominated grids. Simulation results on the IEEE 39-bus and 68-bus benchmark systems validate the effectiveness and scalability of the proposed method, with inertia estimation errors consistently maintained below 1% across all generators. Moreover, the parallelized implementation of the algorithm significantly outperforms the conventional M-H method in computational efficiency. Specifically, the proposed approach reduces execution time by approximately 52% in the 39-bus system and by 57% in the 68-bus system, demonstrating its suitability for real-time and large-scale power system applications. Full article
Show Figures

Figure 1

26 pages, 2658 KiB  
Article
An Efficient and Accurate Random Forest Node-Splitting Algorithm Based on Dynamic Bayesian Methods
by Jun He, Zhanqi Li and Linzi Yin
Mach. Learn. Knowl. Extr. 2025, 7(3), 70; https://doi.org/10.3390/make7030070 - 21 Jul 2025
Viewed by 241
Abstract
Random Forests are powerful machine learning models widely applied in classification and regression tasks due to their robust predictive performance. Nevertheless, traditional Random Forests face computational challenges during tree construction, particularly in high-dimensional data or on resource-constrained devices. In this paper, a novel [...] Read more.
Random Forests are powerful machine learning models widely applied in classification and regression tasks due to their robust predictive performance. Nevertheless, traditional Random Forests face computational challenges during tree construction, particularly in high-dimensional data or on resource-constrained devices. In this paper, a novel node-splitting algorithm, BayesSplit, is proposed to accelerate decision tree construction via a Bayesian-based impurity estimation framework. BayesSplit treats impurity reduction as a Bernoulli event with Beta-conjugate priors for each split point and incorporates two main strategies. First, Dynamic Posterior Parameter Refinement updates the Beta parameters based on observed impurity reductions in batch iterations. Second, Posterior-Derived Confidence Bounding establishes statistical confidence intervals, efficiently filtering out suboptimal splits. Theoretical analysis demonstrates that BayesSplit converges to optimal splits with high probability, while experimental results show up to a 95% reduction in training time compared to baselines and maintains or exceeds generalization performance. Compared to the state-of-the-art MABSplit, BayesSplit achieves similar accuracy on classification tasks and reduces regression training time by 20–70% with lower MSEs. Furthermore, BayesSplit enhances feature importance stability by up to 40%, making it particularly suitable for deployment in computationally constrained environments. Full article
Show Figures

Figure 1

12 pages, 1747 KiB  
Article
The Effects of an Acute Exposure of Virtual vs. Real Slip and Trip Perturbations on Postural Control
by Nathan O. Conner, Harish Chander, Hunter Derby, William C. Pannell, Jacob B. Daniels and Adam C. Knight
Virtual Worlds 2025, 4(3), 34; https://doi.org/10.3390/virtualworlds4030034 - 21 Jul 2025
Viewed by 148
Abstract
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to [...] Read more.
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to identify if virtual slip and trip perturbations can be used as an exposure paradigm in place of real slip and trip perturbations to improve postural control. Methods: Fifteen healthy young adults were included in this study. Two paradigms, real gait exposure (real) and virtual environment gait exposure (virtual), consisting of real and virtual slip and trip trials, were performed by each participant in a counterbalanced order to avoid order effects. At baseline and following real and virtual paradigms, the modified clinical test for sensory integration and balance (mCTSIB), limits of stability (LOS), and single-leg stance (SLS) using BTracks balance plate were administered. Separate one-way (baseline vs. Real vs. Virtual) repeated measures analysis of variance were conducted on response variables. Results: In the posterior left quadrant of the LOS, significant differences were found after the real paradigm compared to baseline (p = 0.04). For the anterior left quadrant and total LOS, significant differences post real paradigm (p = 0.002 and p < 0.001) and virtual paradigm (p = 0.007 and p < 0.001) compared to baseline were observed. For the SLS, the left-leg significant differences were observed post real paradigm (p = 0.019) and virtual paradigm (p = 0.009) compared to BL in path length, while significant main effects were found for mean sway velocity for the left leg only (p = 0.004). For the right leg, significant differences were only observed after the virtual paradigm (p = 0.01) compared to BL. Conclusions: Both virtual and real paradigms were identified to improve postural control. The virtual paradigm led to increased postural control in the right-leg SLS condition, while the real paradigm did not, without any adverse effects. Findings suggest virtual reality perturbation exposure acutely improves postural control ability compared to baseline among healthy young adults. Full article
Show Figures

Figure 1

11 pages, 1461 KiB  
Article
Volumetric Bone Mineral Density Assessed by Dual-Energy CT Predicts Bone Strength Suitability for Cementless Total Knee Arthroplasty
by Dong Hwan Lee, Dai-Soon Kwak, Sheen-Woo Lee, Yong Deok Kim, Nicole Cho and In Jun Koh
Medicina 2025, 61(7), 1305; https://doi.org/10.3390/medicina61071305 - 20 Jul 2025
Viewed by 247
Abstract
Background and Objectives: Adequate bone quality is essential for promoting initial bone ingrowth and preventing early migration during cementless total knee arthroplasty (TKA). However, gold-standard criteria for identifying suitable bone strength have yet to be established. Dual-energy computed tomography (DECT)-based volumetric bone [...] Read more.
Background and Objectives: Adequate bone quality is essential for promoting initial bone ingrowth and preventing early migration during cementless total knee arthroplasty (TKA). However, gold-standard criteria for identifying suitable bone strength have yet to be established. Dual-energy computed tomography (DECT)-based volumetric bone mineral density (vBMD) is an emerging tool for assessing bone quality. This study aimed to determine whether DECT-derived vBMD can accurately predict suitable bone strength for cementless TKA. Materials and Methods: A total of 190 patients undergoing primary TKA with a standardized posterior-stabilized implant were prospectively enrolled. Prior to TKA, DECT-derived vBMD was measured in the femoral box region. Actual bone strength was evaluated using an indentation test on resected femoral box specimens. Correlation and linear regression analyses were performed to assess the relationship between DECT vBMD and actual bone strength. Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) calculations were used to determine the optimal cut-off value and diagnostic accuracy of DECT vBMD in identifying candidates suitable for cementless TKA. Results: DECT-derived vBMD exhibited a strong correlation with actual bone strength (correlation coefficient = 0.719, p < 0.01), while linear regression analysis revealed a moderate association (R2 = 0.51, p < 0.01). In addition, it demonstrated excellent diagnostic performance in predicting adequate bone quality for cementless TKA, yielding an AUC of 0.984, with a sensitivity of 91.9% and a specificity of 92.0%. Conclusions: DECT-derived vBMD is a reliable and accurate tool for assessing bone strength around the knee and predicting the suitable bone quality for cementless TKA. Full article
(This article belongs to the Special Issue Clinical Research in Orthopaedics and Trauma Surgery)
Show Figures

Figure 1

10 pages, 3728 KiB  
Technical Note
Cervical Lateral Mass and Pedicle Fracture Reduced with a Herbert Screw: A Technical Note
by Antonio Colamaria, Francesco Carbone, Augusto Leone, Giuseppe Palmieri, Savino Iodice, Bianca Maria Baldassarre, Giovanni Cirrottola, Valeria Ble, Uwe Spetzger and Giuseppe Di Perna
Med. Sci. 2025, 13(3), 92; https://doi.org/10.3390/medsci13030092 - 19 Jul 2025
Viewed by 296
Abstract
Background: Traumatic fractures of the cervical spine pose significant challenges in management, particularly in young patients, where preserving mobility is crucial. Patient Characteristics: A 30-year-old woman presented with a C3 lateral mass and pedicle fracture following a motor vehicle collision. Initial conservative management [...] Read more.
Background: Traumatic fractures of the cervical spine pose significant challenges in management, particularly in young patients, where preserving mobility is crucial. Patient Characteristics: A 30-year-old woman presented with a C3 lateral mass and pedicle fracture following a motor vehicle collision. Initial conservative management with a rigid cervical collar for three months failed to reduce the diastasis, and the debilitating neck pain worsened. Preoperative imaging confirmed fracture instability without spinal cord compression. Intervention and Outcome: Preoperative screw trajectory planning was conducted with the My Spine MC system (Medacta), and fine-tuning was achieved on a 3D-printed model of the vertebra. A posterior midline approach was employed to expose the C3 vertebra, and a Herbert screw was inserted under fluoroscopic guidance. Imaging at three months demonstrated significant fracture reduction and early bone fusion. The patient achieved substantial improvement in functional mobility without complications. Conclusion: Herbert screw fixation holds potential as a less-invasive alternative to conventional posterior stabilization for selected cervical fractures. This technical note provides the reader with the required information to support surgical planning and execution. Full article
Show Figures

Figure 1

8 pages, 2016 KiB  
Case Report
Reverse Total Shoulder Arthroplasty for Proximal Humerus Nonunion
by James Tyler Frix, Maria Kammire, Nainisha Chintalapudi and Patrick Connor
J. Clin. Med. 2025, 14(14), 5130; https://doi.org/10.3390/jcm14145130 - 18 Jul 2025
Viewed by 299
Abstract
Background: Surgical neck nonunions of the proximal humerus present a complex clinical challenge, especially in elderly patients with pre-existing glenohumeral arthritis. Reverse total shoulder arthroplasty (RTSA) offers a reliable treatment option in these cases; however, resection of the tuberosities may compromise joint stability, [...] Read more.
Background: Surgical neck nonunions of the proximal humerus present a complex clinical challenge, especially in elderly patients with pre-existing glenohumeral arthritis. Reverse total shoulder arthroplasty (RTSA) offers a reliable treatment option in these cases; however, resection of the tuberosities may compromise joint stability, increase the risk of postoperative dislocation and compromise postoperative function. This article describes a reproducible RTSA technique that preserves and repairs the greater and lesser tuberosities, aiming to enhance construct stability and optimize outcomes. Methods: We present a 74-year-old female with underlying glenohumeral arthritis who underwent RTSA for a symptomatic surgical neck nonunion via an extended deltopectoral approach. The nonunion is first mobilized, and tuberosity osteotomies are performed. After implant placement, the tuberosities are secured to the implant, to each other, and to the humeral shaft. A cerclage suture is also passed circumferentially to reinforce the repair and prevent posterior gapping. Results: The patient regained her pre-injury level of function by her last follow-up. She had pain-free, active forward elevation to 110 degrees and radiographic evidence of maintained tuberosity reduction and healing. There was no evidence of instability. Conclusions: In conclusion, incorporating tuberosity preservation and repair into RTSA for proximal humerus nonunion may reduce dislocation risk and improve functional recovery in elderly, low-demand patients. Full article
(This article belongs to the Special Issue Clinical Updates on Shoulder Arthroplasty)
Show Figures

Figure 1

23 pages, 4725 KiB  
Tutorial
Fragility Fractures of the Pelvis—Current Understanding and Open Questions
by Amber Gordon, Michela Saracco, Peter V. Giannoudis and Nikolaos K. Kanakaris
J. Clin. Med. 2025, 14(14), 5122; https://doi.org/10.3390/jcm14145122 - 18 Jul 2025
Viewed by 782
Abstract
Fragility fractures of the pelvis (FFPs) are common in elderly patients, particularly those with osteoporosis. FFPs can be associated with high mortality, morbidity, and functional decline. Known risk factors include being over 80 years old and delays in surgical intervention when this is [...] Read more.
Fragility fractures of the pelvis (FFPs) are common in elderly patients, particularly those with osteoporosis. FFPs can be associated with high mortality, morbidity, and functional decline. Known risk factors include being over 80 years old and delays in surgical intervention when this is required. While the role of surgery in FFPs remains less defined than in proximal femoral fractures in the elderly, studies indicate that surgical fixation offers improved survival and functional outcomes. Similarly, the choice of fixation method, whether posterior or anterior, and their combinations, vary between clinicians. It depends on the fracture type and patient-specific factors, such as bone quality and comorbidities, as well as the surgeon’s experience and the availability of resources. Additionally, orthobiologic adjuncts such as cement augmentation and sacroplasty can enhance the stability of an osteoporotic fracture during surgical intervention. Furthermore, medical treatments for osteoporosis, especially the use of teriparatide, have demonstrated beneficial effects in reducing fractures and promoting healing of the FFPs. Return to pre-injury activities is often limited, with independence rates remaining low at mid-term follow-up. Factors that influence clinical outcomes include fracture type, with Type III and IV fractures generally leading to poorer outcomes, and patient age, functional reserve, and comorbidities. The present tutorial aims to summarise the relevant evidence on all aspects of FFPs, inform an updated management strategy, and provide a template of the reconstruction ladder referring to the most available surgical techniques and treatment methods. Further research, based on large-scale studies, is needed to address the open questions described in this manuscript and refine surgical techniques, as well as determine optimal treatment pathways for this vulnerable patient population. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

15 pages, 2730 KiB  
Article
The Influence of Insertion Torque on Stress Distribution in Peri-Implant Bones Around Ultra-Short Implants: An FEA Study
by Mario Ceddia, Lorenzo Montesani, Luca Comuzzi, Alessandro Cipollina, Douglas A. Deporter, Natalia Di Pietro and Bartolomeo Trentadue
J. Funct. Biomater. 2025, 16(7), 260; https://doi.org/10.3390/jfb16070260 - 14 Jul 2025
Viewed by 816
Abstract
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which [...] Read more.
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which affects implant stability and long-term success. Materials and Methods: This study used finite element analysis (FEA) to examine how different insertion torques (35 N·cm and 75 N·cm) affect stress distribution in cortical and trabecular bone types D2 and D4 surrounding ultra-short implants. Von Mises equivalent stress values were compared with ultimate bone strength thresholds to evaluate the potential for microdamage during insertion. Results: The findings demonstrate that increasing IT from 35 N·cm to 75 N·cm led to a significant increase in peri-implant bone stress. Specifically, cortical bone stress in D4 bone increased from approximately 79 MPa to 142 MPa with higher IT, exceeding physiological limits and elevating the risk of microfractures and bone necrosis. In contrast, lower IT values kept stress within safe limits, ensuring optimal primary stability without damaging the bone. These results underscore the need to strike a balance between achieving sufficient implant stability and avoiding mechanical trauma to the surrounding bone. Conclusions: Accurate control of insertion torque during the placement of ultra-short dental implants is crucial to minimize bone damage and promote optimal osseointegration. Excessive torque, especially in low-density bone, can compromise implant success by inducing excessive stress, thereby increasing the risk of early failure. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

17 pages, 341 KiB  
Article
Study of Force Changes Based on Orthotic Elements Under the First Ray
by Marina Ballesteros-Mora, Pedro V. Munuera-Martínez, Natalia Tovaruela-Carrión, Antonia Sáez-Díaz and Javier Ramos-Ortega
Appl. Sci. 2025, 15(14), 7708; https://doi.org/10.3390/app15147708 - 9 Jul 2025
Viewed by 264
Abstract
The first ray plays a fundamental role in foot biomechanics, particularly in stabilizing the medial longitudinal arch and enabling efficient weight transfer during the mid-stance and propulsion phases of gait. When dorsiflexed—a condition known as metatarsus primus elevatus—especially in its flexible form, this [...] Read more.
The first ray plays a fundamental role in foot biomechanics, particularly in stabilizing the medial longitudinal arch and enabling efficient weight transfer during the mid-stance and propulsion phases of gait. When dorsiflexed—a condition known as metatarsus primus elevatus—especially in its flexible form, this structure disrupts load distribution, impairs propulsion, and contributes to various clinical symptoms. Despite its clinical importance, the biomechanical impact of orthotic elements placed beneath the first ray remains underexplored. This study aimed to quantify the variations in medio-lateral (Fx), antero-posterior (Fy), and vertical (Fz) force vectors generated during gait in response to different orthotic elements positioned under the first ray. A quasi-experimental, post-test design was conducted involving 22 participants (10 men and 12 women) diagnosed with flexible metatarsus primus elevatus. Each participant was evaluated using custom-made insoles incorporating various orthotic elements, while gait data were collected using a dynamometric platform during the mid-stance and propulsion phases. Significant gait-phase-dependent force alterations were observed. A cut-out (E) reduced medio-lateral forces during propulsion (p < 0.05), while a kinetic wedge (F) was correlated with late-stance stability (r = −0.526). The foot posture index (FPI)/body mass index (BMI) mediated the vertical forces. The effect sizes reached 0.45–0.42 for antero-posterior force modulation. Phase-targeted orthoses (a cut-out for propulsion, a kinetic wedge for late stance) and patient factors (FPI/BMI) appear to promote biomechanical efficacy in metatarsus primus elevatus, enabling personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Foot Biomechanics and Gait Analysis, 2nd Edition)
Show Figures

Figure 1

30 pages, 3032 KiB  
Article
A Bayesian Additive Regression Trees Framework for Individualized Causal Effect Estimation
by Lulu He, Lixia Cao, Tonghui Wang, Zhenqi Cao and Xin Shi
Mathematics 2025, 13(13), 2195; https://doi.org/10.3390/math13132195 - 4 Jul 2025
Viewed by 382
Abstract
In causal inference research, accurate estimation of individualized treatment effects (ITEs) is at the core of effective intervention. This paper proposes a dual-structure ITE-estimation model based on Bayesian Additive Regression Trees (BART), which constructs independent BART sub-models for the treatment and control groups, [...] Read more.
In causal inference research, accurate estimation of individualized treatment effects (ITEs) is at the core of effective intervention. This paper proposes a dual-structure ITE-estimation model based on Bayesian Additive Regression Trees (BART), which constructs independent BART sub-models for the treatment and control groups, estimates ITEs using the potential outcome framework and enhances posterior stability and estimation reliability through Markov Chain Monte Carlo (MCMC) sampling. Based on psychological stress questionnaire data from graduate students, the study first integrates BART with the Shapley value method to identify employment pressure as a key driving factor and reveals substantial heterogeneity in ITEs across subgroups. Furthermore, the study constructs an ITE model using a dual-structured BART framework (BART-ITE), where employment pressure is defined as the treatment variable. Experimental results show that the model performs well in terms of credible interval width and ranking ability, demonstrating superior heterogeneity detection and individual-level sorting. External validation using both the Bootstrap method and matching-based pseudo-ITE estimation confirms the robustness of the proposed model. Compared with mainstream meta-learning methods such as S-Learner, X-Learner and Bayesian Causal Forest, the dual-structure BART-ITE model achieves a favorable balance between root mean square error and bias. In summary, it offers clear advantages in capturing ITE heterogeneity and enhancing estimation reliability and individualized decision-making. Full article
(This article belongs to the Special Issue Bayesian Learning and Its Advanced Applications)
Show Figures

Figure 1

11 pages, 3920 KiB  
Article
The Effectiveness and Practical Application of Different Reduction Techniques in Burst Fractures of the Thoracolumbar Spine
by Jan Cerny, Jan Soukup, Lucie Loukotova, Marek Zrzavecky and Tomas Novotny
J. Clin. Med. 2025, 14(13), 4700; https://doi.org/10.3390/jcm14134700 - 3 Jul 2025
Viewed by 280
Abstract
Background: The objective was to evaluate and compare the efficacy of direct fragment impaction, indirect reduction through ligamentotaxis, and the combination of both techniques in burst fractures of the thoracolumbar (TL) spine. Methods: The fractures were categorized using the Arbeitsgemeinschaft für Osteosynthesefragen (AO) [...] Read more.
Background: The objective was to evaluate and compare the efficacy of direct fragment impaction, indirect reduction through ligamentotaxis, and the combination of both techniques in burst fractures of the thoracolumbar (TL) spine. Methods: The fractures were categorized using the Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and assessed via standard computed tomography (CT) scans for spinal canal area (SCA) and mid-sagittal diameter (MSD). The Frankel classification was used to assess neurological deficits. Only single vertebrae AO types A3 and A4 thoracic or lumbar fractures were included. All patients received bisegmental posterior stabilization, one of the reduction techniques, and, if neurological deficits were present, a spinal decompression. Mean preoperative (µSCApre/µMSDpre), postoperative (µSCApost/µMSDpost) and difference (∆SCA/∆MSD) in radiographic values were obtained and analyzed using the Mumford formula. The significance of the reduction from preoperative stenosis was assessed using a t-test, while the effectiveness of the reduction techniques was compared using the Kruskal–Wallis test and Dunn’s post hoc test. The manuscript was focused primarily on radiographic outcomes; therefore, aside from the neurostatus, no other clinical parameters were statistically analyzed. Results: Thirteen patients (38.2%) received stand-alone indirect reduction, 13 patients (38.2%) underwent direct reduction, and a combined reduction was used in eight patients (23.6%). All methods resulted in a statistically significant reduction in spinal canal stenosis (p < 0.05), with a minimal mean ∆SCA of 19%. Patients in the direct reduction group had significantly higher µSCApre values compared to those in the indirect reduction group (p = 0.02). Conclusions: All of the tested reduction techniques provided a significant reduction in spinal canal stenosis. Patients who underwent mere direct reduction had significantly higher preoperative spinal canal stenosis compared to the indirect reduction group. Full article
(This article belongs to the Special Issue Clinical Advancements in Spine Surgery: Best Practices and Outcomes)
Show Figures

Figure 1

11 pages, 712 KiB  
Article
Bone Stability After Immediate Implants and Alveolar Ridge Preservation: A 15-Year Retrospective Clinical Study
by Nicola De Angelis, Paolo Pesce, Catherine Yumang, Domenico Baldi and Maria Menini
Dent. J. 2025, 13(7), 299; https://doi.org/10.3390/dj13070299 - 2 Jul 2025
Viewed by 490
Abstract
Background: In modern dentistry, alveolar socket preservation after tooth extraction plays a critical role in maintaining the alveolar ridge for future dental implants. This retrospective clinical study evaluated bone-level changes 15 years after immediate implant placement, coupled with alveolar ridge preservation. Methods: Fifty [...] Read more.
Background: In modern dentistry, alveolar socket preservation after tooth extraction plays a critical role in maintaining the alveolar ridge for future dental implants. This retrospective clinical study evaluated bone-level changes 15 years after immediate implant placement, coupled with alveolar ridge preservation. Methods: Fifty non-smoking patients aged 25 to 75 (30 males and 20 females) who underwent single-implant rehabilitation in both anterior and posterior regions of the upper and lower jaws were included. The study examined bone levels and implant survival over time, using standardized intraoral radiographs at 1, 5, and 15 years post-loading. Implants were placed immediately after atraumatic extraction, and the residual gap was grafted with bovine hydroxyapatite and covered with a collagen membrane. The primary outcome was bone-level stability, while secondary outcomes included implant failure. No temporary crowns or removable dentures were provided during healing. Radiographs were digitized for detailed analysis. Results: The results for 50 patients with immediate implant placement showed that bone-resorption levels were significantly higher in the upper jaw than in the lower jaw. Conclusions: Posterior implants exhibited greater bone loss than anterior implants, particularly at 1 year and 15 years, while no implant failures occurred. Full article
(This article belongs to the Topic Oral Health Management and Disease Treatment)
Show Figures

Figure 1

17 pages, 7769 KiB  
Article
Design and Experimentation of a Height-Adjustable Management Platform for Pineapple Fields
by Sili Zhou, Fengguang He, Ganran Deng, Ye Dai, Xilin Wang, Bin Yan, Pinlan Chen, Zehua Liu, Bin Li and Dexuan Pan
Agriculture 2025, 15(13), 1420; https://doi.org/10.3390/agriculture15131420 - 30 Jun 2025
Viewed by 277
Abstract
To address the challenges of inadequate adaptability, insufficient power, high ground clearance, and limited functionality in existing pineapple field machinery, this study proposes a height-adjustable pineapple field management platform based on previously established cultivation patterns and agronomic requirements. The structural configuration and operational [...] Read more.
To address the challenges of inadequate adaptability, insufficient power, high ground clearance, and limited functionality in existing pineapple field machinery, this study proposes a height-adjustable pineapple field management platform based on previously established cultivation patterns and agronomic requirements. The structural configuration and operational principles of the platform’s power chassis are elucidated, with specific emphasis on the development of the traction power system and modular operational systems. Theoretical and experimental analyses of steering parameters, stability, and field performance were conducted. Finite element simulation analysis of the frame revealed that under full-load conditions, the equivalent elastic strains during descent and ascent phases were 0.000317 and 0.00125, respectively. Maximum equivalent stresses (48.27 MPa and 231.6 MPa for descent and ascent, respectively) were localized at the beam–plate junctions, while peak deformations of 1.14 mm (descent) and 4.31 mm (ascent) occurred at mid-frame and posterior–mid regions, respectively. Field validation demonstrated operational velocities of 0.16–1.77 m/s (forward) and 0.11–0.28 m/s (reverse), with a maximum gradability of 20°. The platform exhibited multifunctional capabilities including weeding, spraying, fertilization, flower induction, harvesting, and transportation, demonstrating its potential to fulfill the operational requirements for pineapple field management. Simultaneously, the overall work efficiency is increased by more than 50%, compared to manual labor. Full article
Show Figures

Figure 1

Back to TopTop