Study of Force Changes Based on Orthotic Elements Under the First Ray
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of Participants
2.3. Orthotic Interventions
2.4. Gait Data Collection
2.5. Descriptive and Statistical Analysis
3. Results
4. Discussion
5. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munuera-Martínez, P.V. Exploración biomecánica del primer radio y primera articulación metatarsofalángica. In El Primer Radio: Biomecánica y Ortopodología; Exa Editores: Cádiz, Spain, 2009; pp. 105–117. [Google Scholar]
- Lambrinudi, C. Metatarsus Primus Elevatus. Proc. R. Soc. Med. 1938, 31, 1273. [Google Scholar] [CrossRef]
- Alcorisa, O.; Prats, B.; Vázquez, F.X.; Vergés, C.; Vila, R.M. Alteraciones del primer radio en el plano sagital. Trat. Ortopodol. Rev. Esp. Podol. 2004, 15, 240–243. [Google Scholar]
- Munuera-Martínez, P.V.; Távara-Vidalón, P.; Monge-Vera, M.A.; Sáez-Díaz, A.; Lafuente-Sotillos, G. The validity and reliability of a new simple instrument for the measurement of first ray mobility. Sensors 2020, 20, 2207. [Google Scholar] [CrossRef] [PubMed]
- Munuera-Martínez, P.V. El Primer Radio: Biomecánica y Ortopodología; Exa Editores: Cádiz, Spain, 2009. [Google Scholar]
- Michaud, T.C. Foot Orthoses and Other Forms of Conservative Foot Care; Williams & Wilkins: Waltham, MA, USA, 1996. [Google Scholar]
- Kido, M.; Ikoma, K.; Sotozono, Y.; Ikeda, R.; Imai, K.; Maki, M.; Ohashi, S.; Kubo, T. The influence of hallux valgus and flatfoot deformity on metatarsus primus elevatus: A radiographic study. J. Orthop. Sci. 2020, 25, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Z.B.; Myerson, M.S.; Tracey, J.; Vulcano, E. Weightbearing CT Scan Assessment of Foot Alignment in Patients with Hallux Rigidus. Foot Ankle Int. 2018, 39, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Anwander, H.; Alkhatatba, M.; Lerch, T.; Schmaranzer, F.; Krause, F.G. Evaluation of Radiographic Features Including Metatarsus Primus Elevatus in Hallux Rigidus. J. Foot Ankle Surg. 2022, 61, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Root, M.L.; Orien, W.P.; Weed, J.H.; Hughes, R.J. Normal and Abnormal Function of the Foot; Clinical Biomechanics Corp.: Los Angeles, CA, USA, 1977. [Google Scholar]
- Cornwall, M.W.; McPoil, T.G. Three-dimensional movement of the foot during the stance phase of walking. J. Am. Podiatr. Med Assoc. 1999, 89, 56–66. [Google Scholar] [CrossRef]
- Glasoe, W.M.; Allen, M.K.; Saltzman, C.L.; Ludewig, P.M.; Sublett, S.H. Comparison of two methods used to assess first-ray mobility. Foot Ankle Int. 2002, 23, 248–252. [Google Scholar] [CrossRef]
- Glasoe, W.M.; Yack, H.J.; Saltzman, C.L. Anatomy and biomechanics of the first ray. Phys. Ther. 1999, 79, 854–859. [Google Scholar] [CrossRef]
- Shirk, C.; Eilbert, W. Reliability of first ray position and mobility measurements in experienced and inexperienced examiners. J. Athl. Train. 2006, 29, 213–218. [Google Scholar] [CrossRef]
- Rico, R. Biomecánica del primer radio. Deformidad en flexión plantar. Caso clínico. Rev. Int. Cienc. Podol. 2009, 3, 53–66. [Google Scholar]
- Greisberg, J.; Sperber, L.; Prince, D.E. Mobility of the First Ray in Various Foot Disorders. Foot Ankle Int. 2012, 33, 44–49. [Google Scholar] [CrossRef]
- Payen, E.; Acien, M.; Isabelle, P.L.; Turcot, K.; Begon, M.; Abboud, J.; Moisan, G. Impact of different foot orthoses on gait biomechanics in individuals with chronic metatarsalgia. Gait Posture 2025, 118, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, J.; Pu, J.; Ma, F. Biomechanical investigation of a custom-made insole to decrease plantar pain of children with flatfoot: A technical note. Med Eng. Phys. 2023, 121, 104070. [Google Scholar] [CrossRef] [PubMed]
- Hernández, R. Definición del alcance de la investigación a realizar: Exploratoria, descriptiva, correlacional o explicativa. In Metodología de la Investigación; McGraw-Hill: Ciudad de México, México, 2006; pp. 99–118. [Google Scholar]
- Root, M.L. Exploración Biomecánica del Pie; Ortocen Editores: Madrid, Spain, 1991. [Google Scholar]
- Benhamú, S.B.; González, R.; Martínez-Camuña, L.; Munuera-Martínez, P.V.; Guerrero, A. Protocolo de toma de moldes en espuma fenólica. Rev. Esp. Podol. 2004, 15, 184–194. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mylonas, V.; Chalitsios, C.; Nikodelis, T. Validation of a Portable Wireless Force Platform System to Measure Ground Reaction Forces During Various Tasks. Int. J. Sports Phys. Ther. 2023, 18, 1283–1289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walsh, M.S.; Ford, K.R.; Bangen, K.J.; Myer, G.D.; Hewett, T.E. The validation of a portable force plate for measuring force-time data during jumping and landing tasks. J. Strength Cond. Res. 2006, 20, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Moreno de la Fuente, J. El organismo humano en movimiento. In Podología General y Biomecánica; Masson: Barcelona, Spain, 2009; pp. 267–280. [Google Scholar]
- Redmond, A.C.; Crane, Y.Z.; Menz, H.B. Normative values for the foot posture index. Foot Ankle Res. 2008, 1, 6. [Google Scholar] [CrossRef]
- Redmond, A.C.; Crosbie, J.; Ouvrier, R.A. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clin. Biomech. 2006, 21, 89–98. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Collado, S. La marcha: Historia de los procedimientos de análisis. Rev. Cienc. Salud. 2004, 2, 1–15. [Google Scholar]
- Collado, S. Plataformas dinamométricas. Apl. Rev. Fac. Cienc. Salud. 2005, 3, 1–18. [Google Scholar]
- Collado, S. Análisis de la marcha humana con plataformas dinamométricas. In Influencia del Transporte de Carga; Facultad de Medicina de la Universidad Complutense de Madrid: Madrid, Spain, 2002. [Google Scholar]
- Collado, S.; Pérez, C.; Carrillo, J. Métodos de estudio de la marcha. In Motricidad Fundamentos y aplicaciones; Dykinson: Madrid, Spain, 2004; pp. 281–288. [Google Scholar]
- Scherer, P.R.; Sanders, J.; Eldredge, D.E.; Duffy, S.J.; Lee, R.Y. Effect of functional foot orthoses on first metatarsophalangeal joint dorsiflexion in stance and gait. J. Am. Podiatr. Med. Assoc. 2006, 96, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rico, M.; Gijon-Nogueron, G.; Ortega-Avila, A.B.; Roche-Seruendo, L.E.; Climent-Pedrosa, A.; Deschamps, K.; Sanchis-Sales, E. Effect of custom-made foot orthotics on multi-segment foot kinematics and kinetics in individuals with structural hallux limitus. Clin. Biomech. 2025, 122, 106423. [Google Scholar] [CrossRef]
- Munuera, P.V.; Domínguez, G.; Palomo, I.C.; Lafuente, G. Effects of rearfoot-controlling orthotic treatment on dorsiflexion of the hallux in feet with abnormal subtalar pronation: A preliminary report. J. Am. Podiatr. Med Assoc. 2006, 96, 283–289. [Google Scholar] [CrossRef]
- Becerro de Bengoa, R.; Sanchez, R.; Losa, M.E. Clinical improvement in functional hallux limitus using a cut-out orthosis. Prosthet. Orthot. Int. 2016, 40, 215–223. [Google Scholar] [CrossRef]
- Prats, B.; Vázquez, F.X.; Vergés, C.; Vila, R.M. Deformidad de hallux limitus y rigidus. Trat. Ortopodol. Rev. Esp. Podol. 2000, 11, 35–40. [Google Scholar]
- Kirby, A. Foot and Lower Extremity Biomechanics: A 10 Year Collection of Precision Intricast Newsletters; Intricast Newsletters: Payson, Arizona, 1997. [Google Scholar]
- Munuera-Martínez, P.V. Tratamiento ortopodológico de las alteraciones del primer segmento metatarso-digital. In El Primer Radio: Biomecánica y Ortopodología; Exa Editores: Cádiz, Spain, 2009; pp. 213–240. [Google Scholar]
- Dananberg, H.J. Functional hallux limitus and its relationship to gait efficiency. J. Am. Podiatr. Med. Assoc. 1986, 76, 648–652. [Google Scholar] [CrossRef]
- Beltrán, I. Plantillas posturales exteroceptivas. Rev. IPP 2008, 1, 1–16. [Google Scholar]
- Grady, J.F.; Axe, T.M.; Zager, E.J.; Sheldon, L.A. A retrospective analysis of 772 patients with hallux limitus. J. Am. Podiatr. Med. Assoc. 2002, 92, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Chang, M.C. Forefoot disorders and conservative treatment. Yeungnam Univ. J. Med. 2019, 36, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Dananberg, H.J. The kinetic wedge. J. Am. Podiatr. Me. Assoc. 1988, 78, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, S.E.; Bassed, A.D. Effect of foot posture and inverted foot orthoses on hallux dorsiflexion. J. Am. Podiatr. Med. Assoc. 2006, 96, 32–37. [Google Scholar] [CrossRef]
- Mulroney, S.M. El sistema nervioso y el músculo. In Netter Fundamentos de Fisiología; Elsevier: Barcelona, Spain, 2016; pp. 25–93. [Google Scholar]
Mean ± SD | Median | RIQ | |
---|---|---|---|
Age (years) | 28.9 ± 10.6 | 24.5 | 22.8–28.5 |
Body mass (kg) | 70.5 ± 16.2 | 67.0 | 59.5–82.3 |
Height (m) | 1.70 ± 0.09 | 1.70 | 1.63–1.78 |
BMI (kg/m2) | 24.1 ± 4.1 | 23.3 | 21.8–25.9 |
Shoe size | 40.5 ± 3.0 | 40.5 | 38–43 |
FPI | 3.6 ± 3.1 | 4 | 2–6 |
R2 | ||||
---|---|---|---|---|
Fx | Fy | Fz | ||
WFO | G1 | 0.312 | 0.117 | 0 |
L1 | 0 | 0 | 0 | |
G2 | 0 | 0.204 | 0.172 | |
L2 | 0.110 | 0.095 | 0.090 | |
A | G1 | 0 | 0.420 | 0.185 |
L1 | 0 | 0.081 | 0.304 | |
G2 | 0.493 | 0.190 | 0 | |
L2 | 0 | 0 | 0.425 | |
B | G1 | 0 | 0.390 | 0.304 |
L1 | 0.394 | 0.126 | 0.424 | |
G2 | 0 | 0.372 | 0.065 | |
L2 | 0.401 | 0.328 | 0.108 | |
C | G1 | 0 | 0.108 | 0 |
L1 | 0 | 0 | 0 | |
G2 | 0.507 | 0 | 0 | |
L2 | 0.219 | 0 | 0.169 | |
D | G1 | 0 | 0.090 | 0 |
L1 | 0 | 0.081 | 0 | |
G2 | 0.132 | 0 | 0.082 | |
L2 | 0.394 | 0.257 | 0.173 | |
E | G1 | 0.259 | 0.113 | 0.096 |
L1 | 0.275 | 0.131 | 0.141 | |
G2 | 0 | 0.211 | 0 | |
L2 | 0.254 | 0.113 | 0 | |
F | G1 | 0 | 0.515 | 0 |
L1 | 0 | 0 | 0 | |
G2 | 0.470 | 0.104 | 0 | |
L2 | 0.392 | 0 | 0.172 |
FORCE | Fx | Fy | Fz | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEAN | SD | MED | IQR | MEAN | SD | MED | IQR | MEAN | SD | MED | IQR | ||
WFO | G1 | 3.9 | 6.2 | 6.1 | −3.2–9.4 | 7.0 | 5.4 | 9 | 1.5–10.5 | 82.0 | 31.1 | 91.1 | 58.7–105.4 |
L1 | 0.8 | 6.3 | 2.7 | −5.8–6.6 | −5.0 | 3.1 | −4.8 | −6.4; −3.6 | 55.5 | 27.6 | 56.4 | 32.2–83.9 | |
G2 | 4.7 | 4.1 | 4.9 | 0.8–8.5 | 3.5 | 4.6 | 1.1 | 0.3–2.8 | 109.3 | 33.1 | 109.9 | 98.0–138.1 | |
L2 | −2.5 | 4.2 | −1.9 | −5.7–1.0 | −16.1 | 7.0 | −16.3 | −20.8; −13.0 | 15.5 | 17.4 | 1.1 | 0.7–33.3 | |
A | G1 | 3.9 | 6.3 | 6 | −8–9.0 | 7.0 | 5.7 | 7.5 | 3.5–11.1 | 92.0 | 29.0 | 98.4 | 74.1–105.1 |
L1 | 0.3 | 5.9 | 1.2 | −5.4–4.2 | −7.1 | 7.5 | −5 | −6.4; −3.2 | 59.5 | 26.4 | 70.4 | 32.9–80.6 | |
G2 | 4.8 | 4.3 | 5.2 | 0.3–9.0 | 2.6 | 5.3 | 0.4 | −0.01–4.0 | 106.1 | 21.9 | 105.2 | 98.9–112.9 | |
L2 | −1.7 | 5.4 | −1.6 | −6.5–1.5 | −14.2 | 6.9 | −14.4 | −20.2; −7.2 | 15.2 | 17.0 | 1.0 | 0.7–32.8 | |
B | G1 | 2.8 | 5.9 | 2.6 | −3.4–8.1 | 8.9 | 6.0 | 10.8 | 4.6–12.7 | 89.0 | 36.3 | 98.2 | 75.5–106.6 |
L1 | −0.7 | 5.1 | −0.8 | −5.1–3.3 | −4.6 | 2.2 | −4.5 | −6.5; −2.9 | 54.9 | 27.4 | 56.7 | 31.7–79.6 | |
G2 | 4.1 | 4.2 | 2.9 | 0.3–8.4 | 2.6 | 3.4 | 0.7 | −0.1–5.6 | 104.6 | 25.3 | 107.4 | 99–113 | |
L2 | −2.9 | 4.3 | −2.4 | −5.8–0.3 | −14.9 | 6.5 | −14.9 | −20.2; −9.5 | 14.1 | 16.4 | 1 | 0.8–29.6 | |
C | G1 | 3.7 | 6.2 | 5.1 | −3.2–9.5 | 8.5 | 7.4 | 11.2 | 2.5–12.7 | 82.9 | 36.2 | 94.9 | 38.8–104.5 |
L1 | 0.3 | 6.0 | 0.1 | −4.8–5.5 | −5.4 | 5.4 | −3.9 | −5.2; −2.9 | 49.5 | 23.4 | 39 | 29.7–71.4 | |
G2 | 4.8 | 4.4 | 4.1 | 0.5–9.0 | 3.4 | 5.7 | 0.6 | −0.2–5.6 | 99.3 | 35.4 | 105.4 | 83.3–114.6 | |
L2 | −2.6 | 5.5 | −2.6 | −5.8–0.5 | −15.5 | 6.6 | −15.6 | −20.6; −10.4 | 16.8 | 17.3 | 10.6 | 0.7–33.2 | |
D | G1 | 3.5 | 6.2 | 5 | −3.9–9.5 | 8.5 | 6.7 | 10.2 | 4.3–14.2 | 83.9 | 30.2 | 92.4 | 53.1–105.5 |
L1 | 0.3 | 6.2 | 1.7 | −5.7–5.6 | −4.8 | 1.8 | −4.6 | −6.1; −3.5 | 51.6 | 24.2 | 42 | 32.1–77.0 | |
G2 | 5.1 | 4.6 | 5.4 | 0.1–9.0 | 3.0 | 4.6 | 1.3 | −0.2–5.9 | 102.7 | 34.1 | 106.5 | 88.5–112.8 | |
L2 | −2.4 | 5.0 | −0.6 | −7.3–1.8 | −15.6 | 6.7 | −17.3 | −19.7; −8.9 | 16.8 | 17.3 | 10.6 | 0.7–33.2 | |
E | G1 | 3.4 | 6.5 | 5.4 | −3.9–8.7 | 9.2 | 5.3 | 10.1 | 4.9–13.0 | 91.5 | 27.3 | 99 | 84.4–106.3 |
L1 | −0.03 | 5.9 | 0.7 | −6.2–4.2 | −4.4 | 1.9 | −4.1 | −5.8; −3.1 | 55.7 | 26.3 | 57.2 | 32.2–80.0 | |
G2 | 4.3 | 4.3 | 4.8 | −0.03–8.4 | 2.1 | 3.8 | 0.7 | −0.04–3.6 | 98.9 | 23.5 | 104.5 | 91.0–109.8 | |
L2 | −2.4 | 5.1 | −0.6 | −7.6–2.5 | −15.1 | 6.3 | −16.7 | −20.3; −8.1 | 13.8 | 15.4 | 1.1 | 0.7–30.7 | |
F | G1 | 3.3 | 6.2 | 5.3 | −3.4–9.0 | 8.8 | 6.2 | 10.3 | 2.7–14.1 | 92.5 | 25.0 | 97.2 | 70.9–107.0 |
L1 | −0.1 | 6.5 | −0.1 | −5.9–6.2 | −4.6 | 3.3 | −4.3 | −5.3; −2.8 | 56.1 | 24.2 | 63.6 | 32.8–77.3 | |
G2 | 4.7 | 4.4 | 4.4 | 0.1–9.0 | 3.2 | 5.8 | 0.8 | −0.1–5.9 | 105.6 | 21.9 | 105.4 | 95.1–111.3 | |
L2 | −2.6 | 5.6 | −2.4 | −7.8–1.9 | −14.6 | 6.1 | −15.5 | −18.9; −8.7 | 16.9 | 17.2 | 10.6 | 0.8–33.2 |
Fx Correlations | Age | BMI | Shoe Size | FPI | |||||
r | p | r | p | r | p | r | p | ||
B | L1 | 0.248 | 0.265 2 | 0.162 | 0.470 1 | −0.028 | 0.900 1 | −0.563 | 0.006 1 |
L2 | 0.086 | 0.704 2 | 0.136 | 0.547 2 | 0.056 | 0.806 2 | −0.608 | 0.003 1 | |
C | L2 | −0.028 | 0.902 2 | 0.029 | 0.897 2 | 0.108 | 0.633 1 | −0.436 | 0.043 1 |
D | L2 | 0.108 | 0.633 2 | −0.022 | 0.924 2 | −0.072 | 0.751 1 | −0.489 | 0.021 1 |
E | L1 | 0.146 | 0.516 2 | −0.022 | 0.921 2 | −0.049 | 0.829 1 | −0.444 | 0.039 1 |
L2 | 0.130 | 0.565 2 | 0.084 | 0.709 2 | 0.155 | 0.491 2 | −0.475 | 0.026 2 | |
F | L2 | 0.024 | 0.914 2 | 0.029 | 0.897 2 | −0.018 | 0.936 1 | −0.526 | 0.012 1 |
Fy Correlations | Age | BMI | Shoe Size | FPI | |||||
r | p | r | p | r | p | r | p | ||
B | G1 | −0.093 | 0.679 2 | −0.380 | 0.081 1 | −0.024 | 0.914 1 | 0.570 | 0.006 1 |
E | L2 | 0.463 | 0.030 2 | 0.223 | 0.318 2 | −0.265 | 0.234 2 | −0.346 | 0.115 2 |
Fz Correlations | Age | BMI | Shoe Size | FPI | |||||
r | p | r | p | r | p | r | p | ||
WFO | G2 | −0.383 | 0.078 2 | −0.523 | 0.012 2 | −0.239 | 0.284 2 | 0.178 | 0.428 2 |
L2 | −0.157 | 0.485 2 | −0.492 | 0.020 2 | −0.323 | 0.143 2 | −0.065 | 0.775 2 | |
B | G1 | −0.034 | 0.880 2 | −0.477 | 0.025 1 | 0.007 | 0.974 1 | 0.580 | 0.005 1 |
G2 | 0.112 | 0.619 2 | −0.295 | 0.183 2 | −0.179 | 0.425 2 | 0.426 | 0.048 2 | |
L2 | 0.259 | 0.245 2 | −0.190 | 0.397 2 | −0.458 | 0.032 2 | 0.003 | 0.991 2 | |
E | L1 | −0.285 | 0.199 2 | −0.086 | 0.7042 | −0.123 | 0.586 2 | 0.436 | 0.043 2 |
F | L2 | −0.117 | 0.603 2 | −0.508 | 0.016 2 | −0.457 | 0.033 2 | 0.053 | 0.816 2 |
FX | FY | FZ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WFO-A p1 | WFO-B p1 | WFO-C p1 | WFO-D p1 | WFO-E p1 | WFO-F p1 | WFO-A p1 | WFO-B p1 | WFO-C p1 | WFO-D p1 | WFO-E p1 | WFO-F p1 | WFO-A p1 | WFO-B p1 | WFO-C p1 | WFO-D p1 | WFO-E p1 | WFO-F p1 | |
G1 | 0.897 2 | 0.485 2 | 0.455 2 | 0.110 2 | 0.758 2 | 0.173 2 | 0.958 1 | 0.201 1 | 0.308 1 | 0.033 2 | 0.093 1 | 0.089 1 | 0.116 1 | 0.508 1 | 0.917 1 | 0.465 2 | 0.381 2 | 0.061 1 |
L1 | 0.429 1 | 0.072 1 | 0.545 1 | 0.543 1 | 0.523 1 | 0.114 1 | 0.299 2 | 0.745 2 | 0.230 2 | 0.795 2 | 0.322 2 | 0.148 2 | 0.211 2 | 0.811 1 | 0.188 2 | 0.167 2 | 0.931 2 | 0.758 2 |
G2 | 0.456 2 | 0.236 2 | 0.404 2 | 0.302 1 | 0.052 2 | 0.258 2 | 0.363 2 | 0.338 2 | 0.709 2 | 0.426 2 | 0.049 2 | 0.602 2 | 0.527 2 | 0.426 2 | 0.527 2 | 0.506 2 | 0.101 2 | 0.306 2 |
L2 | 0.370 1 | 0.492 1 | 0.872 1 | 0.931 1 | 0.661 2 | 0.890 1 | 0.196 1 | 0.433 1 | 0.693 1 | 0.600 1 | 0.223 2 | 0.426 2 | 0.486 2 | 0.794 2 | 0.614 2 | 0.922 2 | 0.672 2 | 0.266 2 |
Force Measurement | Fx | Fy | Fz |
---|---|---|---|
G1 (Mid-Stance) | 0.140 2 | 0.004 2 | 0.140 2 |
L1 (Mid-Stance) | 0.480 1 | 0.015 2 | 0.107 2 |
G2 (Propulsion) | 0.032 2 | 0.640 2 | 0.620 2 |
L2 (Propulsion) | 0.436 2 | 0.930 2 | 0.411 2 |
FX | WFO-E | WFO-F | A–D | A–F |
G2 | 0.031 | >0.999 | >0.999 | >0.999 |
FY | WFO-F | A–E | A–F | |
G1 | 0.040 | 0.490 | 0.057 | |
L1 | >0.999 | 0.031 | 0.025 |
FY | ||
---|---|---|
p1 | Effect Size | |
WFO-D G1 | 0.033 | 0.453 |
WFO-E G2 | 0.049 | 0.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros-Mora, M.; Munuera-Martínez, P.V.; Tovaruela-Carrión, N.; Sáez-Díaz, A.; Ramos-Ortega, J. Study of Force Changes Based on Orthotic Elements Under the First Ray. Appl. Sci. 2025, 15, 7708. https://doi.org/10.3390/app15147708
Ballesteros-Mora M, Munuera-Martínez PV, Tovaruela-Carrión N, Sáez-Díaz A, Ramos-Ortega J. Study of Force Changes Based on Orthotic Elements Under the First Ray. Applied Sciences. 2025; 15(14):7708. https://doi.org/10.3390/app15147708
Chicago/Turabian StyleBallesteros-Mora, Marina, Pedro V. Munuera-Martínez, Natalia Tovaruela-Carrión, Antonia Sáez-Díaz, and Javier Ramos-Ortega. 2025. "Study of Force Changes Based on Orthotic Elements Under the First Ray" Applied Sciences 15, no. 14: 7708. https://doi.org/10.3390/app15147708
APA StyleBallesteros-Mora, M., Munuera-Martínez, P. V., Tovaruela-Carrión, N., Sáez-Díaz, A., & Ramos-Ortega, J. (2025). Study of Force Changes Based on Orthotic Elements Under the First Ray. Applied Sciences, 15(14), 7708. https://doi.org/10.3390/app15147708