Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (942)

Search Parameters:
Keywords = positive temperature coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 10070 KiB  
Article
The Influence of MoS2 Coatings on the Subsurface Stress Distribution in Bearing Raceways
by Bing Su, Chunhao Lu and Zeyu Gong
Lubricants 2025, 13(8), 336; https://doi.org/10.3390/lubricants13080336 (registering DOI) - 30 Jul 2025
Viewed by 189
Abstract
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there [...] Read more.
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there is no international research regarding the influence of bearing coatings on the subsurface stress distribution in raceways. The Lundberg–Palmgren (L-P) theory states that subsurface stress variations govern bearing lifespan. Therefore, this paper utilizes existing formulas and Python programming to calculate the subsurface stress field of the inner raceway in a MoS2 solid-lubricated angular contact ball bearing. Furthermore, it analyzes the impacts of factors such as coating material properties, slide-to-roll ratio, traction coefficient, and load on its subsurface stress field. The results reveal that for solid-lubricated ball bearings, as the load increases, the maximum subsurface stress shifts closer to the center of the contact area, and the maximum subsurface shear stress becomes more concentrated. As the traction coefficient increases, the stress on the XZ-plane side increases and its position moves closer to the surface, while the opposite trend is observed on the other side. Additionally, the maximum value of the subsurface von Mises stress is approximately 0.64P0, and the maximum value of the orthogonal shear stress component τyz in the subsurface is approximately 0.25P0. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

24 pages, 7736 KiB  
Article
Integrating Remote Sensing and Ground Data to Assess the Effects of Subsoiling on Drought Stress in Maize and Sunflower Grown on Haplic Chernozem
by Milena Kercheva, Dessislava Ganeva, Zlatomir Dimitrov, Atanas Z. Atanasov, Gergana Kuncheva, Viktor Kolchakov, Plamena Nikolova, Stelian Dimitrov, Martin Nenov, Lachezar Filchev, Petar Nikolov, Galin Ginchev, Maria Ivanova, Iliana Ivanova, Katerina Doneva, Tsvetina Paparkova, Milena Mitova and Martin Banov
Agriculture 2025, 15(15), 1644; https://doi.org/10.3390/agriculture15151644 - 30 Jul 2025
Viewed by 89
Abstract
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the [...] Read more.
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the contrasting responses of C3 (sunflower) and C4 (maize) crops to subsoiling under drought stress. This study addresses this knowledge gap by assessing the effectiveness of subsoiling as a drought mitigation practice on Haplic Chernozem in Northern Bulgaria, integrating ground-based and remote sensing data. Soil physical parameters, leaf area index (LAI), canopy temperature, crop water stress index (CWSI), soil moisture, and yield were evaluated under both conventional tillage and subsoiling for the two crops. A variety of optical and radar descriptive remote sensing products derived from Sentinel-1 and Sentinel-2 satellite data were calculated for different crop types. Consequently, the use of machine learning, utilizing all the processed remote sensing products, enabled the reasonable prediction of LAI, achieving a coefficient of determination (R2) after a cross-validation greater than 0.42 and demonstrating good agreement with in situ observations. Results revealed differing responses: subsoiling had a positive effect on sunflower, improving LAI, water status, and slightly increasing yield, while it had no positive effect on maize. These findings highlight the importance of crop-specific responses in evaluating subsoiling practices and demonstrate the added value of integrating unmanned aerial systems (UAS) and satellite-based remote sensing data into agricultural drought monitoring. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

14 pages, 3968 KiB  
Article
Investigating the Coherence Between Motor Cortex During Rhythmic Finger Tapping Using OPM-MEG
by Hao Lu, Yong Li, Yang Gao, Ying Liu and Xiaolin Ning
Photonics 2025, 12(8), 766; https://doi.org/10.3390/photonics12080766 - 29 Jul 2025
Viewed by 105
Abstract
Optically pumped magnetometer OPM-MEG has the potential to replace the traditional low-temperature superconducting quantum interference device SQUID-MEG. Coherence analysis can be used to evaluate the functional connectivity and reflect the information transfer process between brain regions. In this paper, a finger tapping movement [...] Read more.
Optically pumped magnetometer OPM-MEG has the potential to replace the traditional low-temperature superconducting quantum interference device SQUID-MEG. Coherence analysis can be used to evaluate the functional connectivity and reflect the information transfer process between brain regions. In this paper, a finger tapping movement paradigm based on auditory cues was used to measure the functional signals of the brain using OPM-MEG, and the coherence between the primary motor cortex (M1) and the primary motor area (PM) was calculated and analyzed. The results demonstrated that the coherence of the three frequency bands of Alpha (8–13 Hz), Beta (13–30 Hz), and low Gamma (30–45 Hz) and the selected reference signal showed roughly the same position, the coherence strength and coherence range decreased from Alpha to low Gamma, and the coherence coefficient changed with time. It was inferred that the change in coherence indicated different neural patterns in the contralateral motor cortex, and these neural patterns also changed with time, thus reflecting the changes in the connection between different functional areas in the time-frequency domain. In summary, OPM-MEG has the ability to measure brain coherence during finger movements and can characterize connectivity between brain regions. Full article
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 208
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 234
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 241
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

17 pages, 1837 KiB  
Article
The Impact of Meteorological Variables on Particulate Matter Concentrations
by Amaury de Souza, José Francisco de Oliveira-Júnior, Kelvy Rosalvo Alencar Cardoso, Widinei A. Fernandes and Hamilton Germano Pavao
Atmosphere 2025, 16(7), 875; https://doi.org/10.3390/atmos16070875 - 17 Jul 2025
Viewed by 276
Abstract
This study assessed the influence of meteorological conditions on particulate matter (PM) concentrations in Campo Grande, Brazil, from May to December 2021. Using statistical analyses, including Pearson’s correlation coefficient and multivariate regression, we analyzed secondary data on PM2.5 and PM10 concentrations and meteorological [...] Read more.
This study assessed the influence of meteorological conditions on particulate matter (PM) concentrations in Campo Grande, Brazil, from May to December 2021. Using statistical analyses, including Pearson’s correlation coefficient and multivariate regression, we analyzed secondary data on PM2.5 and PM10 concentrations and meteorological variables from the Federal University of Mato Grosso do Sul’s Physics Department. Daily PM concentrations complied with Brazil’s National Ambient Air Quality Standards (PQAr). The PM2.5/PM10 ratios averaged 0.436 (hourly) and 0.442 (daily), indicating a mix of fine and coarse particles. Significant positive correlations were found with temperature, while relative humidity showed a negative correlation, reducing PM levels through deposition. Wind speed had no significant impact. Meteorological influences suggest that air quality management should be tailored to regional conditions, particularly addressing local emission sources like vehicular traffic and biomass burning. Full article
Show Figures

Figure 1

23 pages, 2642 KiB  
Article
Evaluating of Four Irrigation Depths on Soil Moisture and Temperature, and Seed Cotton Yield Under Film-Mulched Drip Irrigation in Northwest China
by Xianghao Hou, Wenhui Hu, Quanqi Li, Junliang Fan and Fucang Zhang
Agronomy 2025, 15(7), 1674; https://doi.org/10.3390/agronomy15071674 - 10 Jul 2025
Viewed by 249
Abstract
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is [...] Read more.
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is essential for optimizing irrigation strategies. This study investigated the effects of four irrigation depths based on crop evapotranspiration (ETc): 60, 80, 100, and 120% (W0.6, W0.8, W1.0, and W1.2, respectively) on the soil moisture content (SMC), soil temperature and seed cotton yield in mulched cotton fields. Results revealed that when the irrigation depth increased from 60%ETc to 120%ETc, seed cotton yield increased by 12.04% in 2018 and 17.00% in 2019 at the cost of irrigation water use efficiency (IWUE), which decreased from 2.53 kg m−3 to 1.54 kg m−3 in 2018 and 2.60 kg m−3 to 1.58 kg m−3 in 2019. Soil temperature exhibited a temporal trend of initial increase followed by decline, and it was positively affected by soil mulching. Notably, W0.6 treatment maintained significantly higher soil temperature than other treatments. Soil moisture content was positively affected by irrigation depth, while soil water storage first decreased and then increased over time, reaching the minimum at the flowering and boll setting stages during the two growing seasons. Higher irrigation amount reduced the total spatial variability (C0 + C) of soil but did not significantly alter the distribution characteristics of soil moisture, as indicated by stable coefficients of variation (CVs) and stratification ratios (SRs). The variability of soil moisture diminished with soil depth with the lowest CV obtained at a 60 cm soil layer across the growth stages. Correlation analysis results showed that the seed cotton yield was mainly affected by irrigation depth and soil water storage. Soil temperature at the flowering and boll setting stage negatively affected seed cotton yield and was inversely correlated with soil water storage. The structural equation model (SEM) further indicated that both soil water storage and soil temperature primarily influenced seed cotton yield boll weight rather than boll number. Furthermore, 100%ETc (W1.0) can be considered as the recommended irrigation depth based on the soil moisture and temperature, seed cotton yield and water use efficiency in this region. Full article
Show Figures

Figure 1

15 pages, 3329 KiB  
Article
Identification of Chicken Bone Paste in Starch-Based Sausages Using Laser-Induced Breakdown Spectroscopy
by Haoyu Li, Li Shen, Xiang Han, Yu Liu and Yutong Wang
Sensors 2025, 25(13), 4226; https://doi.org/10.3390/s25134226 - 7 Jul 2025
Viewed by 356
Abstract
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken [...] Read more.
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R2) of each element’s spectral lines have significantly improved. Specifically, the R2 values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision. Full article
(This article belongs to the Special Issue Optical Sensing Technologies for Food Quality and Safety)
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 262
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 3424 KiB  
Article
Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia?
by Milos Gostimirovic, Ljiljana Gojkovic Bukarica, Jovana Rajkovic, Igor Zivkovic, Ana Bukarica and Dusko Terzic
Healthcare 2025, 13(13), 1589; https://doi.org/10.3390/healthcare13131589 - 2 Jul 2025
Viewed by 445
Abstract
Background: The aim of the study is to determine whether environmental and climatic factors (air quality, precipitation rates, and air temperatures) alongside specific public health measures (social distancing and vaccination) have influenced total number of SARS CoV-2 positive cases (TOTAL CASES) and [...] Read more.
Background: The aim of the study is to determine whether environmental and climatic factors (air quality, precipitation rates, and air temperatures) alongside specific public health measures (social distancing and vaccination) have influenced total number of SARS CoV-2 positive cases (TOTAL CASES) and deaths (TOTAL DEATHS) from COVID-19 infection in the Republic of Serbia (RS). Method: An observational, retrospective study was conducted, covering the following three-year period in the RS: I (1 March 2020–1 March 2021); II (1 March 2021–1 March 2022); and III (1 March 2022–1 March 2023). Air quality was expressed as the values of the air quality index (AQI) and the concentrations of particulate matter 2.5 µm (PM2.5). Precipitation rates (PREC) were expressed as the average monthly amount of rainfall (mm), while average air temperatures (AIR TEMP) were expressed in °C. Data were collected from relevant official and publicly available national and international resources. Data regarding the COVID-19 pandemic were collected from the World Health Organization. Results: No differences between the periods were observed for the average values of AIR TEMP (11.2–12.2 °C), PREC (56.1–66.8 mm), and AQI (57.2–58.8), while the average values of PM2.5 significantly decreased in the III period (21.2 compared to 25.2, p = 0.03). Both TOTAL CASES and TOTAL DEATHS from COVID-19 infection showed positive correlation with the AQI and PM2.5 and a negative correlation with the AIR TEMP. The correlation coefficient was strongest between TOTAL DEATHS and the AIR TEMP in the II period (r = −0.7; p = 0.007). The extent of rainfall and vaccination rates did not affect any of the observed variables. No differences in TOTAL CASES and TOTAL DEATHS were observed between the periods of increased social measures and other months, while both statistically significantly increased during the vaccination period compared to months without the vaccination campaign (p < 0.02, for both). Conclusions: Air quality, more precisely AQI and PM2.5 and average air temperatures, but no precipitation rates, influenced the number of TOTAL CASES and TOTAL DEATHS from COVID-19 infection. These were the highest during the vaccination period, but vaccination could be considered as a confounding factor since the intensive vaccination campaign was conducted during the most severe phase of the COVID-19 pandemic. Social distancing measures did not reduce the number of TOTAL CASES or TOTAL DEATHS during the COVID-19 pandemic. Full article
(This article belongs to the Collection COVID-19: Impact on Public Health and Healthcare)
Show Figures

Figure 1

28 pages, 9583 KiB  
Article
Eco-Engineered Biopolymer–Clay Composite for Phosphate IonRemoval: Synergistic Insights from Statistical and AI Modeling
by Rachid Aziam, Daniela Simina Stefan, Safa Nouaa, Mohamed Chiban and Mircea Stefan
Polymers 2025, 17(13), 1805; https://doi.org/10.3390/polym17131805 - 28 Jun 2025
Viewed by 364
Abstract
This research aims to synthesize a novel hydrogel bio-composite based on natural clay, sodium alginate (Na-AL), and iota-carrageenan as adsorbents to remove phosphate ions from aqueous solutions. The adsorbents were characterized by a variety of techniques, such as Fourier-transform infrared (FTIR) spectroscopy, scanning [...] Read more.
This research aims to synthesize a novel hydrogel bio-composite based on natural clay, sodium alginate (Na-AL), and iota-carrageenan as adsorbents to remove phosphate ions from aqueous solutions. The adsorbents were characterized by a variety of techniques, such as Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX), and the determination of point zero charge (PZC). This research investigated how the adsorption process is influenced by parameters such as adsorbent dose, contact time, solution pH, and temperature. In this study, we used four isotherms and four kinetic models to investigate phosphate ion removal on the prepared bio-composite. The results showed that the second-order kinetic (PSO) model is the best model for describing the adsorption process. The findings demonstrate that the R2 values are highly significant in both the Langmuir and Freundlich models (very close to 1). This suggests that Langmuir and Freundlich models, with a diversity of adsorption sites, promote the adsorption of phosphate ions. The maximum adsorbed amounts of phosphate ions by the bio-composite used were 140.84 mg/g for H2PO4 ions and 105.26 mg/g for HPO42− ions from the batch system. The positive ∆H° confirms the endothermic and physical nature of adsorption, in agreement with experimental results. Negative ∆G° values indicate spontaneity, while the positive ∆S° reflects increased disorder at the solid–liquid interface during phosphate uptake. The main parameters, including adsorbent dosage (mg), contact time (min), and initial concentration (mg/L), were tuned using the Box–Behnken design of the response surface methodology (BBD-RSM) to achieve the optimum conditions. The reliability of the constructed models is demonstrated by their high correlation coefficients (R2). An R2 value of 0.9714 suggests that the model explains 97.14% of the variability in adsorption efficiency (%), which reflects its strong predictive capability and reliability. Finally, the adsorption behavior of phosphate ions on the prepared bio-composite beads was analyzed using an artificial neural network (ANN) to predict the process efficiency. The ANN model accurately predicted the adsorption of phosphate ions onto the bio-composite, with a strong correlation (R2 = 0.974) between the predicted and experimental results. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Figure 1

17 pages, 2057 KiB  
Article
An Analytical Study on the Correlations Between Natural Gas Pipeline Network Scheduling Decisions and External Environmental Factors
by Changhao Wang, Bohong Wang, Ning Jia, Wen Zhao, Ning Xu and Bosen Wang
Energies 2025, 18(13), 3274; https://doi.org/10.3390/en18133274 - 23 Jun 2025
Viewed by 291
Abstract
A pipeline network is an important transportation mode of natural gas, and different external factors will affect the development of natural gas scheduling plans to different degrees. However, the specific correlation between each external environmental factor and pipeline network scheduling decision is not [...] Read more.
A pipeline network is an important transportation mode of natural gas, and different external factors will affect the development of natural gas scheduling plans to different degrees. However, the specific correlation between each external environmental factor and pipeline network scheduling decision is not clear at this stage. This paper developed a hybrid method with Pearson’s correlation coefficient and Spearman’s correlation coefficient to study the correlations between climate temperature, total gas supply, economic conditions, other energy consumption and natural gas pipeline scheduling plans. The results showed that the correlation between natural gas pipeline output and climate temperature is good, presenting a significance level of 5% and below; in contrast, the correlations with economic conditions and other factors are less significant but still reach a significance level of 10%. Meanwhile, taking energy consumption as the object of study, it was found that the correlation between natural gas consumption and electric energy, crude oil and crude coal is good, showing a significance level of 5% and below. Among them, there is a significant positive correlation between natural gas consumption and electric energy consumption, and between natural gas consumption and crude oil consumption, which reveals the synergistic effects within the energy system. Full article
Show Figures

Figure 1

12 pages, 1412 KiB  
Article
Development and Application of Indirect ELISA for IBDV VP2 Antibodies Detection in Poultry
by Wenying Zhang, Yulong Wang, Guodong Wang, Hangbo Yu, Mengmeng Huang, Yulong Zhang, Runhang Liu, Suyan Wang, Hongyu Cui, Yanping Zhang, Yuntong Chen, Yulong Gao and Xiaole Qi
Viruses 2025, 17(7), 871; https://doi.org/10.3390/v17070871 - 20 Jun 2025
Viewed by 493
Abstract
Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viruses in poultry, causing the global spread of infectious bursal disease (IBD). It poses a significant threat to the healthy development of the poultry industry. Vaccination is an effective approach for [...] Read more.
Infectious bursal disease virus (IBDV) is one of the most important immunosuppressive viruses in poultry, causing the global spread of infectious bursal disease (IBD). It poses a significant threat to the healthy development of the poultry industry. Vaccination is an effective approach for controlling IBDV infection. Therefore, reliable immune monitoring for IBDV is critical for maintaining poultry health. The enzyme-linked immunosorbent assay (ELISA) is a common technique used to detect specific antibodies in clinical serum testing and for the serological evaluation of IBDV vaccines. Among the currently available and under development IBDV vaccines, IBD VP2 subunit-based vaccines account for a considerable proportion. These vaccines stimulate the production of antibodies that are specific only to VP2. However, most IBDV antibody ELISA kits approved for use have applied the whole virus as the coating antigen, which does not adequately meet the diverse requirements for IBDV detection across different conditions. This study utilized a prokaryotic expression system to express the VP2 protein of the IBDV epidemic strain, assembling it into virus-like particles to be used as coating antigens. This approach enabled the establishment of an indirect ELISA method for detecting IBDV VP2 antibody (VP2-ELISA). The optimal coated antigen concentration was determined to be 2.5 μg/mL, with overnight coating at 4 °C; sealing with 5% skim milk at 37 °C for 4 h; serum dilution at 1:500 with incubation at 37 °C for 30 min; secondary antibody dilution at 1:4000 with incubation at 37 °C for 40 min; and then incubation with the substrate solution 3,3′,5,5′-tetramethylbenzidine at room temperature for 20 min. The criterion for interpreting the detection results was OD450nm ≥ 0.111 indicates IBDV antibody positivity, while OD450nm < 0.111 indicates negativity. The established VP2-ELISA can specifically detect IBDV-positive sera at the lowest serum dilution of 1:6400, with intra- and inter-batch coefficients of variation of <2%. This indicates that the VP2-ELISA exhibits good specificity, sensitivity, and stability. Detection experiments using 20 laboratory-immunized chicken serum samples and 273 clinical serum samples demonstrated that the results of VP2-ELISA were consistent with those of commercial ELISA kits coated with whole virus. In summary, the VP2-ELISA developed in this study offers advantages in immune response detection for IBD VP2 subunit-based vaccines and is appropriate for evaluating the efficacy of IBD vaccines and detecting clinical serum samples. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

19 pages, 4647 KiB  
Article
The Prediction of High-Temperature Bulging Deformations in Non-Uniform Welded Tubes and Its Application to Complex-Shaped Tubular Parts
by Zhenyu Zhang, Yanli Lin, Xianggang Ruan, Jiangkai Liang, Tianyu Wang, Junzhuo Wang and Zhubin He
Materials 2025, 18(12), 2882; https://doi.org/10.3390/ma18122882 - 18 Jun 2025
Viewed by 291
Abstract
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation [...] Read more.
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation during the bulging process. This inconsistency hampers precise predictions of the deformation behavior of the welded tubes at high temperatures. Accordingly, this research explored the flow characteristics and mechanical properties of PHS1500 boron steel welded tubes. This research was conducted at 850 °C and 900 °C, with strain rates of 0.01 s−1–1 s−1. The Johnson–Cook model was modified for both the base metal and the weld using experimental stress–strain data. Meanwhile, to assess the model precisions, the correlation coefficient r and the average absolute relative error (AARE) were employed. Finally, hot gas forming of PHS1500 boron steel welded tubular parts with complex shapes was predicted through a finite element analysis. This research showed a positive correlation of the strain rate with both the yield and tensile strengths in the base metal and the weld. The average yield strength and tensile strength of the weld were 12.8% and 3.9% higher than those of the base metal, respectively. The r and AARE of the modified Johnson–Cook constitutive model for the base metal’s and the weld’s flow stress were 0.99 and 2.23% and 0.982 and 5.31%, respectively. The maximum deviation in the predictions of the distribution of the wall thickness of a typical cross-section of the formed complex-shaped tubular parts was less than 8%. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop