Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia?
Abstract
1. Introduction
2. Material and Methods
2.1. Research Design
- Period I (1 March 2020–1 March 2021);
- Period II (1 March 2021–1 March 2022);
- Period III (1 March 2022–1 March 2023).
2.2. Data Collection
- Environmental factors: Air pollution, objectified as air quality index (AQI) and concentrations of particulate matter 2.5 µm (PM2.5). Specifically, the concentrations of other pollutants: particulate matter 10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) (in µg/m3), and heavy metals (lead (Pb), arsenic (As), cadmium (Cd), and nickel (Ni)) (in ng/m3).
- Climatic factors: AIR TEMP and PREC are objectified as average air temperatures (in °C) and average precipitation rates (in mm).
- Period 1 (March–May 2020: official lockdown period, state of emergency),
- Period 2 (July–August 2020: stricter measures),
- Period 3 (November 2020–January 2021: partial closures),
- Period 4 (March–April 2021: “mini” lockdown period).
2.3. Statistical Analysis
3. Results
3.1. Air Quality Index (AQI) and the Concentrations of Pollutants in the Air
3.2. Average Air Temperatures (AIR TEMP) and Precipitation Rates (PREC)
Period/Climate Factors | I | II | III | ΔII/I | ΔIII/II | ΔIII/I |
---|---|---|---|---|---|---|
AIR TEMP (°C, ± SD) | 11.8 ± 7.1 | 11.2 ± 8.1 | 12.2 ± 7.7 | p > 0.05 | p > 0.05 | p > 0.05 |
PREC (mm, ± SD) | 66.8 ± 36.3 | 56.1 ± 25.2 | 61.7 ± 30.4 | p > 0.05 | p > 0.05 | p > 0.05 |
3.3. The Consequences of the COVID-19 Pandemic in the RS—Total Cases and Total Deaths
3.4. The Influence of the Environmental and Climate Factors on the Number of Total Cases and Total Deaths
3.5. Testing for Autocorrelation and Multicolinearity Among Independent Variables
3.6. The Influence of Public Health Measures on the Total Cases and Total Deaths from COVID-19 Pandemic in the RS
3.6.1. Months of Increased Social Distancing
3.6.2. Vaccination Period
The Influence of Vaccination Rates on Total Cases and Total Deaths from COVID-19 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haldane, V.; De Foo, C.; Abdalla, S.M.; Jung, A.-S.; Tan, M.; Wu, S.; Chua, A.; Verma, M.; Shrestha, P.; Singh, S.; et al. Health systems resilience in managing the COVID-19 pandemic: Lessons from 28 countries. Nat. Med. 2021, 27, 964–980. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, M.; Martino, P.; Caycho-Rodríguez, T.; Calandra, M.; Razumovskiy, A.; Arias-Gallegos, W.L.; Castro-Peçanha, V.; Cervigni, M. What is post-COVID-19 syndrome? Definition and update. Gac. Med. Mex. 2022, 158, 442–446. (In English) [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Worldometer (Official Website). Available online: https://www.worldometers.info/coronavirus/ (accessed on 15 May 2025).
- Dinić, M.; Šantrić Milićević, M.; Mandić-Rajčević, S.; Tripković, K. Health workforce management in the context of the COVID-19 pandemic: A survey of physicians in Serbia. Int. J. Health Plan. Manag. 2021, 36, 92–111. [Google Scholar] [CrossRef]
- Gvozdić, E.; Bujagić, I.M.; Đurkić, T.; Grujić, S. Untreated wastewater impact and environmental risk assessment of artificial sweeteners in river water and sediments of the Danube River Basin in Serbia. Environ. Sci. Pollut. Res. Int. 2023, 30, 84583–84594. [Google Scholar] [CrossRef]
- Dimkić, D.; Anđelković, A.; Babalj, M. Droughts in Serbia through the analyses of De Martonne and Ped indices. Environ. Monit. Assess. 2022, 194, 265. [Google Scholar] [CrossRef]
- Kovačević, G.; Tomić-Spirić, V.; Marinković, J.; Janković, S.; Ćirković, A.; Djerić, A.; Erić, M.; Janković, J. Short-term effects of air pollution on exacerbations of allergic asthma in Užice region, Serbia. Postępy Dermatol. Alergologi 2020, 37, 377–383. [Google Scholar] [CrossRef]
- Ćujić, M.; Ćirović, Ž.; Đolić, M.; Janković-Mandić Lj Radenković, M.; Onjia, A. Assessment of the burden of disease due to PM2.5 air pollution for the Belgrade district. Therm. Sci. 2023, 27, 2265–2273. [Google Scholar] [CrossRef]
- Aničić, R.; Zeković, M.; Kocić, M.; Gluvić, Z.; Manojlović, D.; Ščančar, J.; Stojsavljević, A. Non-occupational exposure to cadmium and breast cancer: A comprehensive and critical review. Ecotoxicol. Environ. Saf. 2025, 298, 118331. [Google Scholar] [CrossRef]
- Nottmeyer, L.; Armstrong, B.; Lowe, R.; Abbott, S.; Meakin, S.; O’REilly, K.M.; von Borries, R.; Schneider, R.; Royé, D.; Hashizume, M.; et al. The association of COVID-19 incidence with temperature, humidity, and UV radiation—A global multi-city analysis. Sci. Total Environ. 2023, 854, 158636. [Google Scholar] [CrossRef]
- Majumder, P.; Ray, P.P. A systematic review and meta-analysis on correlation of weather with COVID-19. Sci. Rep. 2021, 11, 10746. [Google Scholar] [CrossRef] [PubMed]
- Raina, S.K.; Kumar, R.; Bhota, S.; Gupta, G.; Kumar, D.; Chauhan, R.; Kumar, P. Does temperature and humidity influence the spread of COVID-19? A preliminary report. J. Fam. Med. Prim. Care 2020, 9, 1811–1814. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, D.; Davani, E.; Shamsipour, A.; Haghani, M.; Glamore, W. Climate change and COVID-19: Interdisciplinary perspectives from two global crises. Sci. Total Environ. 2022, 844, 157142. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, W.; Pereira, P. Global COVID-19 pandemic trends and their relationship with meteorological variables, air pollutants and socioeconomic aspects. Environ. Res. 2022, 204 Pt C, 112249. [Google Scholar] [CrossRef]
- Song, Q.; Qian, G.; Mi, Y.; Zhu, J.; Cao, C. Synergistic influence of air temperature and vaccination on COVID-19 transmission and mortality in 146 countries or regions. Environ. Res. 2022, 215 Pt 1, 114229. [Google Scholar] [CrossRef]
- Mendoza-Cano, O.; Trujillo, X.; Huerta, M.; Ríos-Silva, M.; Guzmán-Esquivel, J.; Lugo-Radillo, A.; Benites-Godínez, V.; Bricio-Barrios, J.A.; Cárdenas-Rojas, M.I.; Ríos-Bracamontes, E.F.; et al. Assessing the Influence of COVID-19 Vaccination Coverage on Excess Mortality across 178 Countries: A Cross-Sectional Study. Vaccines 2023, 11, 1294. [Google Scholar] [CrossRef]
- Onyeaka, H.; Anumudu, C.K.; Al-Sharify, Z.T.; Egele-Godswill, E.; Mbaegbu, P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Sci. Prog. 2021, 104, 368504211019854. [Google Scholar] [CrossRef]
- Republic Hydro-Meteorological Service of Serbia. Annual Report, 2020 (Official PDF). Available online: https://www.hidmet.gov.rs/data/klimatologija/ciril/2020.pdf (accessed on 15 May 2025).
- Republic Hydro-Meteorological Service of Serbia. Annual Report, 2021 (Official PDF). Available online: https://www.hidmet.gov.rs/data/klimatologija/ciril/2021.pdf (accessed on 15 May 2025).
- Republic Hydro-Meteorological Service of Serbia. Annual Report, 2022 (Official PDF). Available online: https://www.hidmet.gov.rs/data/klimatologija/ciril/2022.pdf (accessed on 15 May 2025).
- Republic Hydro-Meteorological Service of Serbia. Annual Report, 2023 (Official PDF). Available online: https://www.hidmet.gov.rs/data/klimatologija/ciril/2023.pdf (accessed on 15 May 2025).
- Real-time Air Quality and Weather Data Around the World, 2025 (Official Website). Available online: https://www.aqi.in/world-most-polluted-countries (accessed on 15 May 2025).
- Serbian Environmental Protection Agency (SEPA), Ministry of Environmental Protection, Republic of Serbia. Annual Report on the State of Air Quality in Serbia, 2020 (Official PDF). Available online: https://sepa.gov.rs/wp-content/uploads/2024/10/Vazduh2020.pdf (accessed on 15 May 2025).
- Serbian Environmental Protection Agency (SEPA), Ministry of Environmental Protection, Republic of Serbia. Annual Report on the State of Air Quality in Serbia, 2021 (Official PDF). Available online: https://sepa.gov.rs/wp-content/uploads/2024/10/Vazduh2021.pdf (accessed on 15 May 2025).
- Serbian Environmental Protection Agency (SEPA), Ministry of Environmental Protection, Republic of Serbia. Annual Report on the State of air Quality in Serbia, 2022 (Official PDF). Available online: https://sepa.gov.rs/wp-content/uploads/2024/10/Vazduh2022.pdf (accessed on 15 May 2025).
- Serbian Environmental Protection Agency (SEPA), Ministry of Environmental Protection, Republic of Serbia. Annual Report on the State of Air Quality in Serbia, 2023 (Official PDF). Available online: https://sepa.gov.rs/wp-content/uploads/2024/10/Vazduh2023.pdf (accessed on 15 May 2025).
- World Health Organization. Coronavirus Statistics (Official Website). Available online: https://data.who.int/dashboards/covid19/circulation?n=o&m49=688 (accessed on 15 February 2025).
- Ministry of Health, Republic of Serbia. Statistički Podaci o Virusu COVID-19 u Republici Srbiji. Available online: https://data.gov.rs/sr/datasets/covid-19-dnevni-izveshtaj-o-epidemioloshkoj-situatsiji-u-republitsi-srbiji/ (accessed on 15 May 2025).
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut” (Official Website). Available online: https://www.batut.org.rs/ (accessed on 15 May 2025).
- Statistical Office of the Republic of Serbia (Official Website). Available online: https://www.stat.gov.rs/en-US (accessed on 15 May 2025).
- World Health Organization. Air Quality, Energy and Health (Official Website). Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (accessed on 15 May 2025).
- Health Effects Institute. Trends in Air Quality and Health in the Republic of Serbia: A State of Global Air Special Report; Health Effects Institute: Boston, MA, USA, 2022; ISSN 2578-6881. [Google Scholar]
- Rajovic, N.; Grubor, N.; Cirkovic, A.; Maheswaran, R.; Bath, P.A.; Green, D.; Bellantuono, I.; Milicevic, O.; Kanazir, S.; Miljus, D.; et al. Insights into relationship of environmental inequalities and multimorbidity: A population-based study. Environ. Health 2024, 23, 99. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Badyda, A.; Tzivian, L.; Dzhambov, A.M.; Paunovic, K.; Savic, S.; Jacquemin, B.; Dragic, N. Air pollution inequalities in Europe: A deeper understating of challenges in Eastern Europe and pathways forward towards closing the gap between East and West. Environ. Epidemiol. 2025, 9, e383. [Google Scholar] [CrossRef]
- Stafoggia, M.; Ranzi, A.; Ancona, C.; Bauleo, L.; Bella, A.; Cattani, G.; Nobile, F.; Pezzotti, P.; Iavarone, I.; EpiCovAir Study Group. Long-Term Exposure to Ambient Air Pollution and Mortality among Four Million COVID-19 Cases in Italy: The EpiCovAir Study. Environ. Health Perspect. 2023, 131, 57004. [Google Scholar] [CrossRef]
- Mendy, A.; Wu, X.; Keller, J.L.; Fassler, C.S.; Apewokin, S.; Mersha, T.B.; Xie, C.; Pinney, S.M. Air pollution and the pandemic: Long-term PM2.5 exposure and disease severity in COVID-19 patients. Respirology 2021, 26, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef]
- Meo, S.A.; Al-Khlaiwi, T.; Ullah, C.H. Effect of ambient air pollutants PM2.5 and PM10 on COVID-19 incidence and mortality: Observational study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7553–7564. [Google Scholar] [PubMed]
- Zhang, J.; Andersen, Z.J.; Napolitano, G.M.; Lim, Y.H. Investigation of potential collider bias in estimating the association between long-term exposure to air pollution and COVID-19 mortality. Environ. Epidemiol. 2025, 9, e394. [Google Scholar] [CrossRef]
- Zhang, J.; Lim, Y.-H.; So, R.; Jørgensen, J.T.; Mortensen, L.H.; Napolitano, G.M.; Cole-Hunter, T.; Loft, S.; Bhatt, S.; Hoek, G.; et al. Long-term exposure to air pollution and risk of SARS-CoV-2 infection and COVID-19 hospitalisation or death: Danish nationwide cohort study. Eur. Respir. J. 2023, 62, 2300280. [Google Scholar] [CrossRef]
- Damasceno, R.M.; Cicerelli, R.E.; Almeida Td Requia, W.J. Air Pollution and COVID-19 Mortality in Brazil. Atmosphere 2023, 14, 5. [Google Scholar] [CrossRef]
- Haryanto, B.; Trihandini, I.; Nugraha, F.; Kurniasari, F. Indirect Effects of PM2.5 Exposure on COVID-19 Mortality in Greater Jakarta, Indonesia: An Ecological Study. Ann. Glob. Health 2024, 90, 34. [Google Scholar] [CrossRef]
- Sobral, M.F.F.; Duarte, G.B.; da Penha Sobral, A.I.G.; Marinho, M.L.M.; de Souza Melo, A. Association between climate variables and global transmission oF SARS-CoV-2. Sci. Total Environ. 2020, 729, 138997. [Google Scholar] [CrossRef]
- Pequeno, P.; Mendel, B.; Rosa, C.; Bosholn, M.; Souza, J.L.; Baccaro, F.; Barbosa, R.; Magnusson, W. Air transportation, population density and temperature predict the spread of COVID-19 in Brazil. PeerJ 2020, 8, e9322. [Google Scholar] [CrossRef]
- Benedetti, F.; Pachetti, M.; Marini, B.; Ippodrino, R.; Gallo, R.C.; Ciccozzi, M.; Zella, D. Inverse correlation between average monthly high temperatures and COVID-19-related death rates in different geographical areas. J. Transl. Med. 2020, 18, 251. [Google Scholar] [CrossRef]
- Melo, A.D.S.; Sobral, A.I.G.D.P.; Marinho, M.L.M.; Duarte, G.B.; Gomes, T.H.F.; Sobral, M.F.F. How Climate Variables Influence the Spread of SARS-CoV-19 in the United States. Sustainability 2020, 12, 9192. [Google Scholar] [CrossRef]
- Quilodrán, C.S.; Currat, M.; Montoya-Burgos, J.I. Air temperature influences early Covid-19 outbreak as indicated by worldwide mortality. Sci. Total Environ. 2021, 792, 148312. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.M.I.; Rashid, M.I.; Ali, N.; Altaf, B.A.S.; Munir, M. Temperature, humidity and outdoor air quality indicators influence COVID-19 spread rate and mortality in major cities of Saudi Arabia. Environ. Res. 2022, 204 Pt B, 112071. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Evensen, D.; Kazemi Moghaddam, V. Interaction between meteorological parameters and COVID-19: An ecological study on 406 authorities of the UK. Environ. Sci. Pollut. Res. Int. 2021, 28, 67082–67097. [Google Scholar] [CrossRef] [PubMed]
- Scafetta, N. Distribution of the SARS-CoV-2 Pandemic and Its Monthly Forecast Based on Seasonal Climate Patterns. Int. J. Environ. Res. Public Health 2020, 17, 3493. [Google Scholar] [CrossRef]
- Silva, A.C.T.; Branco, P.T.B.S.; Sousa, S.I.V. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1950. [Google Scholar] [CrossRef]
- Habibi, H.; Awal, R.; Fares, A.; Ghahremannejad, M. COVID-19 and the Improvement of the Global Air Quality: The Bright Side of a Pandemic. Atmosphere 2020, 11, 1279. [Google Scholar] [CrossRef]
- Saha, L.; Kumar, A.; Kumar, S.; Korstad, J.; Srivastava, S.; Bauddh, K. The impact of the COVID-19 lockdown on global air quality: A review. Environ. Sustain. 2022, 5, 5–23. [Google Scholar] [CrossRef]
- Jevtic, M.; Matkovic, V.; van den Hazel, P.; Bouland, C. Environment-lockdown, air pollution and related diseases: Could we learn something and make it last? Eur. J. Public Health 2021, 31 (Suppl. S4), iv36–iv39. [Google Scholar] [CrossRef]
- Naqvi, H.R.; Mutreja, G.; Hashim, M.; Singh, A.; Nawazuzzoha, M.; Naqvi, D.F.; Siddiqui, M.A.; Shakeel, A.; Chaudhary, A.A.; Naqvi, A.R. Global assessment of tropospheric and ground air pollutants and its correlation with COVID-19. Atmos. Pollut. Res. 2021, 12, 101172. [Google Scholar] [CrossRef]
- Naqvi, H.R.; Mutreja, G.; Shakeel, A.; Siddiqui, M.A. Spatio-temporal analysis of air quality and its relationship with major COVID-19 hotspot places in India. Remote Sens. Appl. 2021, 22, 100473. [Google Scholar] [CrossRef] [PubMed]
- Hasan Raja, N.; Manali, D.; Guneet, M.; Masood Ahsan, S.; Daraksha Fatima, N.; Afsar Raza, N. Improved air quality and associated mortalities in India under COVID-19 lockdown. Environ. Pollut. 2021, 268, 115691. [Google Scholar]
- Anbari, K.; Khaniabadi, Y.O.; Sicard, P.; Naqvi, H.R.; Rashidi, R. Increased tropospheric ozone levels as a public health issue during COVID-19 lockdown and estimation the related pulmonary diseases. Atmos. Pollut. Res. 2022, 13, 101600. [Google Scholar] [CrossRef]
- Dragic, N.; Bijelovic, S.; Jevtic, M.; Velicki, R.; Radic, I. Short-term health effects of air quality changes during the COVID-19 pandemic in the City of Novi Sad, the Republic of Serbia. Int. J. Occup. Med. Environ. Health 2021, 34, 223–237. [Google Scholar] [CrossRef]
- Veličković, M.; Ristić, N.; Voza, D. Air quality assessment during COVID-19: A case study of Serbia. Croat. Chem. Acta 2021, 94, 159–166. [Google Scholar] [CrossRef]
- Andersen, P.T.; Loncarevic, N.; Damgaard, M.B.; Jacobsen, M.W.; Bassioni-Stamenic, F.; Eklund Karlsson, L. Public health, surveillance policies and actions to prevent community spread of COVID-19 in Denmark, Serbia and Sweden. Scand. J. Public Health 2022, 50, 711–729. [Google Scholar] [CrossRef]
- Talic, S.; Shah, S.; Wild, H.; Gasevic, D.; Maharaj, A.; Ademi, Z.; Li, X.; Xu, W.; Mesa-Eguiagaray, I.; Rostron, J.; et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: Systematic review and meta-analysis. BMJ 2021, 375, e068302. [Google Scholar] [CrossRef]
- Markovic-Denic, L.; Popadic, D.; Jovanovic, T.; Bonaci-Nikolic, B.; Samardzic, J.; Tomic Spiric, V.; Rancic, M.; Sankar Datta, S.; Mosina, L.; Jancic, J.; et al. Developing COVID-19 vaccine recommendations during the pandemic: The experience of Serbia’s Expert Committee on Immunization. Front. Public Health 2022, 10, 1056670. [Google Scholar] [CrossRef]
- Cvetković, V.M.; Nikolić, N.; Radovanović Nenadić, U.; Öcal, A.; KNoji, E.; Zečević, M. Preparedness and Preventive Behaviors for a Pandemic Disaster Caused by COVID-19 in Serbia. Int. J. Environ. Res. Public Health 2020, 17, 4124. [Google Scholar] [CrossRef]
- Hasan Raja, N.; Yusef Omidi, K.; Darakhsha Fatma, N.; Takhellambam Chanu, M.; Adnan, S.; Masood Ahsan, S.; Pierre, S.; Afsar Raza, N. Impact of Hurricane Ida on COVID-19 surge and its relationship with vaccination status in the United States. Phys. Chem. Earth Parts A/B/C 2023, 132, 103469. [Google Scholar]
- Anbari, K.; Sicard, P.; Khaniabadi, Y.O.; Naqvi, H.R.; Fard, R.F.; Rashidi, R. PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran. J. Atmos. Chem. 2024, 81, 10. [Google Scholar] [CrossRef]
- Baharvand, P.; Amoatey, P.; Omidi Khaniabadi, Y.; Sicard, P.; Raja Naqvi, H.; Rashidi, R. Short-term exposure to PM2.5 pollution in Iran and related burden diseases. Int. J. Environ. Health Res. 2025, 1–13. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Al Awadh, M.; Mallick, J.; Pal, S.C.; Chakraborty, R.; Fattah, M.A.; Ghose, B.; Kakoli, M.K.A.; Islam, M.A.; Naqvi, H.R.; et al. Estimating ground-level PM2.5 using subset regression model and machine learning algorithms in Asian megacity, Dhaka, Bangladesh. Air Qual. Atmos. Health 2023, 16, 1117–1139. [Google Scholar] [CrossRef] [PubMed]
- Khaniabadi, Y.O.; Bahrami, P.; Moulaei Birgani, P.; Rashidi, R.; Naqvi, H.R.; Anbari, K. Risk assessment of exposure to the Middle Eastern dust storms in Iran. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 743–756. [Google Scholar] [CrossRef]
Period/Air Quality | I | II | III | ΔII/I | ΔIII/II | ΔIII/I |
---|---|---|---|---|---|---|
AQI ( ± SD) | 57.2 ± 19.4 | 57.2 ± 19.2 | 58.8 ± 18.1 | p > 0.05 | p > 0.05 | p > 0.05 |
PM2.5 (µg/m3, ± SD) | 25.2 ± 13.3 | 24.2 ± 12.1 | 21.2 ± 10.4 | p > 0.05 | p > 0.05 | p = 0.03 |
Air Pollutants | Period | Mean Annual Values ( ± SD) (min–max) | Upper Annual Limit | Measuring Stations (n) | Measuring Stations that Exceeded the Upper Limit (n) | p |
---|---|---|---|---|---|---|
Pb (ng/m3) | 2020 | 62 ± 136 (2–651) | 500 | 28 | 1 | >0.05 |
2021 | 35.7 ± 81.3 (3–331) | 16 | 0 | |||
2022 | 19.8 ± 40.4 (5–165) | 15 | 0 | |||
2023 | 13.3 ± 26.6 (3–112) | 16 | 0 | |||
As (ng/m3) | 2020 | 6.7 ± 16.2 (0.01–62) | 6 | 24 | 2 | >0.05 |
2021 | 11.4 ± 29.2 (0.7–132) | 22 | 5 | |||
2022 | 5 ± 11.2 (1–50) | 19 | 4 | |||
2023 | 4.1 ± 8.4 (0.3–40) | 27 | 4 | |||
Cd (ng/m3) | 2020 | 1.2 ± 1.7 (0.003–6) | 5 | 24 | 1 | >0.05 |
2021 | 0.7 ± 1.4 (0.1–6.4) | 22 | 1 | |||
2022 | 0.6 ± 1.1 (0.2–5) | 19 | 0 | |||
2023 | 1.1 ± 2.4 (0.1–10) | 27 | 2 | |||
Ni (ng/m3) | 2020 | 3.9 ± 2 (0.01–8) | 20 | 24 | 0 | >0.05 |
2021 | 5 ± 4.6 (1–20) | 22 | 0 | |||
2022 | 3.5 ± 1.4 (1–7) | 19 | 0 | |||
2023 | 3.1 ± 2.1 (1–9) | 27 | 0 | |||
SO2 (µg/m3) | 2020 | 16.4 ± 13.2 (6–74) | 50 | 40 | 2 | >0.05 |
2021 | 14 ± 7.1 (5–44) | 37 | 1 | |||
2022 | 13.1 ± 5 (5–31) | 45 | 0 | |||
2023 | 12.3 ± 3.7 (6–24) | 56 | 0 | |||
NO2 (µg/m3) | 2020 | 20.2 ± 7.7 (8–38) | 40 | 39 | 0 | >0.05 |
2021 | 22.1 ± 10.3 (3–57) | 39 | 2 | |||
2022 | 22.2 ± 9.4 (3–54) | 50 | 1 | |||
2023 | 20.7 ± 8.5 (3–49) | 63 | 2 | |||
PM10 (µg/m3) | 2020 | 39.1 ± 11.2 (17–63) | 50 | 33 | 5 | 0.001 #,## |
2021 | 34.9 ± 8.9 (22–64) | 35 | 3 | |||
2022 | 36.1 ± 7.9 (17–67) | 53 | 2 | |||
2023 | 32 ± 7.4 (14–60) | 68 | 1 |
Period/COVID-19 | I | II | III | ΔII/I | ΔIII/II | ΔIII/I |
---|---|---|---|---|---|---|
Cases ( ± SD) | 38,238 ± 54,906 | 118,476 ± 111,345 | 48,560 ± 44,277 | p = 0.03 | p > 0.05 | p > 0.05 |
Deaths ( ± SD) | 370 ± 480 | 900 ± 588 | 235 ± 148 | p = 0.01 | p = 0.002 | p > 0.05 |
A. TOTAL CASES | I (March 2020–March 2021) | II (March 2021–March 2022) | III (March 2022–March 2023) |
AQI | (r = 0.69, p = 0.01) # | (r = 0.65, p = 0.02) # | p > 0.05 |
PM2.5 (µg/m3) | (r = 0.68, p = 0.01) # | (r = 0.68, p = 0.01) # | p > 0.05 |
AIR TEMP (°C) | (r = −0.66, p = 0.02) * | (r = −0.68, p = 0.01) * | p > 0.05 |
PREC (mm) | p > 0.05 | p > 0.05 | p > 0.05 |
B. TOTAL DEATHS | I (March 2020–March 2021) | II (March 2021–March 2022) | III (March 2022–March 2023) |
AQI | (r = 0.59, p = 0.04) # | (r = 0.66, p = 0.02) # | p > 0.05 |
PM2.5 (µg/m3) | (r = 0.58, p = 0.04) # | (r = 0.62, p = 0.03) # | p > 0.05 |
AIR TEMP (°C) | (r = −0.61, p = 0.03) * | (r= −0.72, p = 0.007) ** | p > 0.05 |
PREC (mm) | p > 0.05 | p > 0.05 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gostimirovic, M.; Gojkovic Bukarica, L.; Rajkovic, J.; Zivkovic, I.; Bukarica, A.; Terzic, D. Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia? Healthcare 2025, 13, 1589. https://doi.org/10.3390/healthcare13131589
Gostimirovic M, Gojkovic Bukarica L, Rajkovic J, Zivkovic I, Bukarica A, Terzic D. Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia? Healthcare. 2025; 13(13):1589. https://doi.org/10.3390/healthcare13131589
Chicago/Turabian StyleGostimirovic, Milos, Ljiljana Gojkovic Bukarica, Jovana Rajkovic, Igor Zivkovic, Ana Bukarica, and Dusko Terzic. 2025. "Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia?" Healthcare 13, no. 13: 1589. https://doi.org/10.3390/healthcare13131589
APA StyleGostimirovic, M., Gojkovic Bukarica, L., Rajkovic, J., Zivkovic, I., Bukarica, A., & Terzic, D. (2025). Did Environmental and Climatic Factors Influence the Outcome of the COVID-19 Pandemic in the Republic of Serbia? Healthcare, 13(13), 1589. https://doi.org/10.3390/healthcare13131589