Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,152)

Search Parameters:
Keywords = positive news

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1567 KiB  
Article
A Distributed Multi-Microgrid Cooperative Energy Sharing Strategy Based on Nash Bargaining
by Shi Su, Qian Zhang and Qingyang Xie
Electronics 2025, 14(15), 3155; https://doi.org/10.3390/electronics14153155 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based [...] Read more.
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based on Nash bargaining. Firstly, by comprehensively considering the adjustable heat-to-electrical ratio, ladder-type positive and negative carbon trading, peak–valley electricity price and demand response, a multi-microgrid system with wind–solar-storage-load and combined heat and power is constructed. Then, a multi-microgrid cooperative game optimization framework is established based on Nash bargaining, and the complex nonlinear problem is decomposed into two stages to be solved. In the first stage, the cost minimization problem of multi-microgrids is solved based on the alternating direction multiplier method to maximize consumption rate and protect privacy. In the second stage, through the established contribution quantification model, Nash bargaining theory is used to fairly distribute the benefits of cooperation. The simulation results of three typical microgrids verify that the proposed strategy has good convergence properties and computational efficiency. Compared with the independent operation, the proposed strategy reduces the cost by 41% and the carbon emission by 18490kg, thus realizing low-carbon operation and optimal economic dispatch. Meanwhile, the power supply pressure of the main grid is reduced through energy interaction, thus improving the utilization rate of renewable energy. Full article
40 pages, 4823 KiB  
Article
On the Assessment of Hourly Means of Solar Irradiance at Ground Level in Clear-Sky Conditions by the ERA5, JRA-3Q, and MERRA-2 Reanalyses
by Yves-Marie Saint-Drenan and Lucien Wald
Atmosphere 2025, 16(8), 949; https://doi.org/10.3390/atmos16080949 (registering DOI) - 7 Aug 2025
Abstract
Meteorological reanalyses are one of the means to assess the solar irradiance reaching the ground. This paper deals with estimates of the hourly means of irradiance in clear-sky conditions provided by the ERA5, JRA-3Q, and MERRA-2 reanalyses. They are compared to coincident ground-based [...] Read more.
Meteorological reanalyses are one of the means to assess the solar irradiance reaching the ground. This paper deals with estimates of the hourly means of irradiance in clear-sky conditions provided by the ERA5, JRA-3Q, and MERRA-2 reanalyses. They are compared to coincident ground-based measurements from 28 BSRN stations located worldwide, selected by a new algorithm for detecting cloud-free instants. Although ERA5 most often underestimates measurements, it is quite reliable over time because it captures the temporal variability of measurements well and provides a constant level of uncertainty. JRA-3Q offers a complex pattern with negative and positive biases depending on station and season. It captures well the temporal variability but, as a whole, is not reliable over time. None of the three reanalyses is reliable in space. Because of its use of the mean solar time instead of the true solar time, MERRA-2 suffers many drawbacks over intraday scales. Its statistical indicators exhibit marked patterns depending on the season and station. Its assimilation of aerosol properties offers advantages when compared to the climatologies used in ERA5 and JRA-3Q. This work exposes the strengths and weaknesses of each reanalysis in clear-sky conditions and formulates suggestions to providers for further improvements. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
12 pages, 492 KiB  
Article
AFJ-PoseNet: Enhancing Simple Baselines with Attention-Guided Fusion and Joint-Aware Positional Encoding
by Wenhui Zhang, Yu Shi and Jiayi Lin
Electronics 2025, 14(15), 3150; https://doi.org/10.3390/electronics14153150 (registering DOI) - 7 Aug 2025
Abstract
Simple Baseline has become a dominant benchmark in human pose estimation (HPE) due to its excellent performance and simple design. However, its “strong encoder + simple decoder” architectural paradigm suffers from two core limitations: (1) its non-branching, linear deconvolutional path prevents it from [...] Read more.
Simple Baseline has become a dominant benchmark in human pose estimation (HPE) due to its excellent performance and simple design. However, its “strong encoder + simple decoder” architectural paradigm suffers from two core limitations: (1) its non-branching, linear deconvolutional path prevents it from leveraging the rich, fine-grained features generated by the encoder at multiple scales and (2) the model lacks explicit prior knowledge of both the absolute positions and structural layout of human keypoints. To address these issues, this paper introduces AFJ-PoseNet, a new architecture that deeply enhances the Simple Baseline framework. First, we restructure Simple Baseline’s original linear decoder into a U-Net-like multi-scale fusion path, introducing intermediate features from the encoder via skip connections. For efficient fusion, we design a novel Attention Fusion Module (AFM), which dynamically gates the flow of incoming detailed features through a context-aware spatial attention mechanism. Second, we propose the Joint-Aware Positional Encoding (JAPE) module, which innovatively combines a fixed global coordinate system with learnable, joint-specific spatial priors. This design injects both absolute position awareness and statistical priors of the human body structure. Our ablation studies on the MPII dataset validate the effectiveness of each proposed enhancement, with our full model achieving a mean PCKh of 88.915, a 0.341 percentage point improvement over our re-implemented baseline. On the more challenging COCO val2017 dataset, our ResNet-50-based AFJ-PoseNet achieves an Average Precision (AP) of 72.6%. While this involves a slight trade-off in Average Recall for higher precision, this result represents a significant 2.2 percentage point improvement over our re-implemented baseline (70.4%) and also outperforms other strong, publicly available models like DARK (72.4%) and SimCC (72.1%) under comparable settings, demonstrating the superiority and competitiveness of our proposed enhancements. Full article
(This article belongs to the Section Computer Science & Engineering)
24 pages, 620 KiB  
Article
Revisiting the Leontief Paradox in the Digital Era: Technological Specialization and Sustainable Development of Digital Service Trade
by Lin Zhang, Siyuan Chen and Ei Thinzar Min
Sustainability 2025, 17(15), 7163; https://doi.org/10.3390/su17157163 (registering DOI) - 7 Aug 2025
Abstract
To address the new challenges of sustainable international trade under the digital transformation, this study aims to explore the relevance and mechanism of the relationship between technological specialization and the sustainable development of digital service trade (focusing on economic sustainability). Based on panel [...] Read more.
To address the new challenges of sustainable international trade under the digital transformation, this study aims to explore the relevance and mechanism of the relationship between technological specialization and the sustainable development of digital service trade (focusing on economic sustainability). Based on panel data from 50 economies from 2006 to 2022, the core hypothesis of “whether technological specialization can enhance the sustainable competitiveness of digital service trade by optimizing the global value chain and industrial structure” is verified. An improved index of technological specialization is proposed, breaking through the limitations of traditional indicators, and for the first time introducing the dimension of “knowledge breadth,” reinterpreting the “Leontief Paradox” in the context of digital trade. The study finds that technological specialization significantly enhances the export of digital services, and the effect is more significant in countries with strict intellectual property protection, latecomers in technology, and the European region. Mechanically, this is achieved through improving the position in the global value chain and upgrading the industrial structure. This provides a theoretical breakthrough to solve the technology–trade paradox in the digital age and offers a path for latecomer economies to reconstruct competitive advantages and achieve sustainable development through technological specialization. Full article
Show Figures

Figure 1

19 pages, 4425 KiB  
Article
Multidimensional Phenotypic and Microbiome Studies Uncover an Association Between Reduced Feed Efficiency in Sheep During Mycoplasmal Pneumonia and Microbial Crosstalk Within the Rumen-Lung Axis
by Lianjun Feng, Yukun Zhang, Xiaoxue Zhang, Fadi Li, Kai Huang, Deyin Zhang, Zongwu Ma, Chengqi Yan, Qi Zhang, Mengru Pu, Ziyue Xiao, Lei Gao, Changchun Lin, Weiwei Wu, Weimin Wang and Huibin Tian
Vet. Sci. 2025, 12(8), 741; https://doi.org/10.3390/vetsci12080741 - 7 Aug 2025
Abstract
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To [...] Read more.
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To investigate alterations in the lung and rumen microbiota of sheep with MPS, the crosstalk between these microbial communities, and their impacts on growth phenotypes. From a cohort of 414 naturally infected six-month-old male Hu sheep, we selected 10 individuals with severe pulmonary pathology and 10 healthy controls for detailed phenotypic and microbiome analyses. Assessment of 359 phenotypic traits revealed that MPS significantly impairs feed efficiency and growth rate (p < 0.05). Through 16S rRNA gene sequencing, we found that MPS significantly altered the pulmonary microbiota community structure (p < 0.01), with a noticeable impact on the rumen microbiota composition (p = 0.059). Succinivibrionaceae_UCG-001 was significantly depleted in both the rumen and lungs of diseased sheep (p < 0.05) and strongly associated with reduced average daily feed intake (p < 0.05). In addition, pulmonary Pasteurella and ruminal Succinivibrionaceae_UCG-002 were significantly enriched in MPS-affected sheep, showed a strong positive correlation (p < 0.05), and were both negatively associated with feed efficiency (p < 0.05). Notably, Pasteurella multocida subsp. gallicida may act as a keystone species influencing feed efficiency. These findings point to a previously unrecognized rumen-lung microbial axis that may modulate host productivity in sheep affected by MPS. This work provides new insights into the pathogenesis of MPS and offers potential targets for therapeutic intervention and management. Full article
Show Figures

Figure 1

18 pages, 860 KiB  
Article
Disruption in Southern Africa’s Money Laundering Activity by Artificial Intelligence Technologies
by Michael Masunda and Haresh Barot
J. Risk Financial Manag. 2025, 18(8), 441; https://doi.org/10.3390/jrfm18080441 - 7 Aug 2025
Abstract
The rise in illicit financial activities across the South Africa–Zimbabwe corridor, with an estimated annual loss of $3.1 billion demands advanced AI solutions to augment traditional detection methods. This study introduces FALCON, a groundbreaking hybrid transformer–GNN model that integrates temporal transaction analysis (TimeGAN) [...] Read more.
The rise in illicit financial activities across the South Africa–Zimbabwe corridor, with an estimated annual loss of $3.1 billion demands advanced AI solutions to augment traditional detection methods. This study introduces FALCON, a groundbreaking hybrid transformer–GNN model that integrates temporal transaction analysis (TimeGAN) and graph-based entity mapping (GraphSAGE) to detect illicit financial flows with unprecedented precision. By leveraging data from South Africa’s FIC, Zimbabwe’s RBZ, and SWIFT, FALCON achieved 98.7%, surpassing Random Forest (72.1%) and human auditors (64.5%), while reducing false positives to 1.2% (AUC-ROC: 0.992). Tested on 1.8 million transactions, including falsified CTRs, STRs, and Ethereum blockchain data, FALCON uncovered $450 million laundered by 23 shell companies with a cross-border detection precision of 94%, directly mitigating illicit financial flows in Southern Africa. For regulators, FALCON met FAFT standards, yielding 92% court admissibility, and its GDPR-compliant design (ε = 1.2 differential privacy) met stringent legal standards. Deployed on AWS Graviton3, FALCON processed 2 million transactions/second at $0.002 per 1000 transactions, demonstrating real-time scalability, making it cost-effective for financial institutions in emerging markets. As the first AI framework tailored for Southern Africa’s financial ecosystems, FALCON sets a new benchmark for ethical AML solutions in emerging economies with immediate applicability to CBDC supervision. The transparent validation of publicly available data underscores its potential to transform global financial crime detection. Full article
Show Figures

Figure 1

16 pages, 2323 KiB  
Article
Limitations of Influence-Based Dataset Compression for Waste Classification
by Julian Aberger, Lena Brensberger, Gerald Koinig, Benedikt Häcker, Jesús Pestana and Renato Sarc
Data 2025, 10(8), 127; https://doi.org/10.3390/data10080127 - 7 Aug 2025
Abstract
Influence-based data selection methods, such as TracIn, aim to estimate the impact of individual training samples on model predictions and are increasingly used for dataset curation and reduction. This study investigates whether selecting the most positively influential training examples can be used to [...] Read more.
Influence-based data selection methods, such as TracIn, aim to estimate the impact of individual training samples on model predictions and are increasingly used for dataset curation and reduction. This study investigates whether selecting the most positively influential training examples can be used to create compressed yet effective training datasets for transfer learning in plastic waste classification. Using a ResNet-18 model trained on a custom dataset of plastic waste images, TracIn was applied to compute influence scores across multiple training checkpoints. The top 50 influential samples per class were extracted and used to train a new model. Contrary to expectations, models trained on these highly influential subsets significantly underperformed compared to models trained on either the full dataset or an equally sized random sample. Further analysis revealed that many top-ranked influential images originated from different classes, indicating model biases and potential label confusion. These findings highlight the limitations of using influence scores for dataset compression. However, TracIn proved valuable for identifying problematic or ambiguous samples, class imbalance issues, and issues with fuzzy class boundaries. Based on the results, the utilized TracIn approach is recommended as a diagnostic instrument rather than for dataset curation. Full article
Show Figures

Figure 1

20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

17 pages, 2536 KiB  
Article
A Study of the Profiling of the Screws in Conical Screw Compressors Using the Virtual Contact Point Method
by Virgil Gabriel Teodor, Nicușor Baroiu, Georgiana Alexandra Moroșanu, Răzvan Sebastian Crăciun and Vasilica Viorica Toniţă
Appl. Mech. 2025, 6(3), 58; https://doi.org/10.3390/applmech6030058 - 6 Aug 2025
Abstract
Conical screw compressors are equipment used to compress air or other gases, using a mechanism consisting of two conically shaped rotors (screws), which rotate one inside the other. This specific design offers advantages in terms of its efficiency, durability and compactness. These compressors [...] Read more.
Conical screw compressors are equipment used to compress air or other gases, using a mechanism consisting of two conically shaped rotors (screws), which rotate one inside the other. This specific design offers advantages in terms of its efficiency, durability and compactness. These compressors are characterized by high efficiency, efficient compression, low air loss, durability, compact dimensions and silent operation. In conical screw compressors, the screw axes are arranged at an angle, due to the conical shape of the screws. This arrangement allows for the progressive compression of the gas as it advances along the screws. On the one hand, the arrangement of the axes and the conical shape of the screws contribute significantly to the high performance of this type of compressor, but on the other hand, this shape makes it difficult to profile these active elements. The screw profiles of conical screw compressors are mutually enveloping, and this aspect is essential for the correct operation of the compressor. In this paper, a new algorithm for profiling the compressor’s external rotor starting from a known internal rotor shape is proposed. The proposed algorithm was developed at “Dunarea de Jos” University of Galati and was based on the observation that the compression chambers in conical screw compressors are sealed according to a curve that follows the axial section of the two screws, in a plane determined by their axes. Practically, the two screws admit a common contour of the axial section in the plane determined by their axes. Taking this aspect into account, the transverse profile of the outer screw can be determined by identifying the positions where contact will take place with the points belonging to the transverse profile of the inner screw. In order to verify the viability of this method, the volume occupied by the inner screw during its relative movement with respect to the outer screw was determined. This volume was compared with the volume of the outer rotor cavity, with the result demonstrating the identity of the two volumes. Full article
Show Figures

Figure 1

32 pages, 1885 KiB  
Article
Mapping Linear and Configurational Dynamics to Fake News Sharing Behaviors in a Developing Economy
by Claudel Mombeuil, Hugues Séraphin and Hemantha Premakumara Diunugala
Technologies 2025, 13(8), 341; https://doi.org/10.3390/technologies13080341 - 6 Aug 2025
Abstract
The proliferation of social media has paradoxically facilitated the widespread dissemination of fake news, impacting individuals, politics, economics, and society as a whole. Despite the increasing scholarly research on this phenomenon, a significant gap exists regarding its dynamics in developing countries, particularly how [...] Read more.
The proliferation of social media has paradoxically facilitated the widespread dissemination of fake news, impacting individuals, politics, economics, and society as a whole. Despite the increasing scholarly research on this phenomenon, a significant gap exists regarding its dynamics in developing countries, particularly how predictors of fake news sharing interact, rather than merely their net effects. To acquire a more nuanced understanding of fake news sharing behavior, we propose identifying the direct and complex interplay among key variables by utilizing a dual analytical framework, leveraging Structural Equation Modeling (SEM) for linear relationships and Fuzzy-Set Qualitative Comparative Analysis (fsQCA) to uncover asymmetric patterns. Specifically, we investigate the influence of news-find-me orientation, social media trust, information-sharing tendencies, and status-seeking motivation on the propensity of fake news sharing behavior. Additionally, we delve into the moderating influence of social media literacy on these observed effects. Based on a cross-sectional survey of 1028 Haitian social media users, the SEM analysis revealed that news-find-me perception had a negative but statistically insignificant influence on fake news sharing behavior. In contrast, information sharing exhibited a significant negative association. Trust in social media was positively and significantly linked to fake news sharing behavior. Meanwhile, status-seeking motivation was positively associated with fake news sharing behavior, although the association did not reach statistical significance. Crucially, social media literacy moderated the effects of trust and information sharing. Interestingly, fsQCA identified three core configurations for fake news sharing: (1) low status seeking, (2) low information-sharing tendencies, and (3) a unique interaction of low “news-find-me” orientation and high social media trust. Furthermore, low social media literacy emerged as a direct core configuration. These findings support the urgent need to prioritize social media literacy as a key intervention in combating the dissemination of fake news. Full article
(This article belongs to the Section Information and Communication Technologies)
13 pages, 3044 KiB  
Article
Improving Event Data in Football Matches: A Case Study Model for Synchronizing Passing Events with Positional Data
by Alberto Cortez, Bruno Gonçalves, João Brito and Hugo Folgado
Appl. Sci. 2025, 15(15), 8694; https://doi.org/10.3390/app15158694 - 6 Aug 2025
Abstract
In football, accurately pinpointing key events like passes is vital for analyzing player and team performance. Despite continuous technological advancements, existing tracking systems still face challenges in accurately synchronizing events and positional data accurately. This is a case study that proposes a new [...] Read more.
In football, accurately pinpointing key events like passes is vital for analyzing player and team performance. Despite continuous technological advancements, existing tracking systems still face challenges in accurately synchronizing events and positional data accurately. This is a case study that proposes a new method to synchronize events and positional data collected during football matches. Three datasets were used to perform this study: a dataset created by applying a custom algorithm that synchronizes positional and event data, referred to as the optimized synchronization dataset (OSD); a simple temporal alignment between positional and event data, referred to as the raw synchronization dataset (RSD); and a manual notational data (MND) from the match video footage, considered the ground truth observations. The timestamp of the pass in both synchronized datasets was compared to the ground truth observations (MND). Spatial differences in OSD were also compared to the RSD data and to the original data from the provider. Root mean square error (RMSE) and mean absolute error (MAE) were utilized to assess the accuracy of both procedures. More accurate results were observed for optimized dataset, with RMSE values of RSD = 75.16 ms (milliseconds) and OSD = 72.7 ms, and MAE values RSD = 60.50 ms and OSD = 59.73 ms. Spatial accuracy also improved, with OSD showing reduced deviation from RSD compared to the original event data. The mean positional deviation was reduced from 1.59 ± 0.82 m in original event data to 0.41 ± 0.75 m in RSD. In conclusion, the model offers a more accurate method for synchronizing independent datasets for event and positional data. This is particularly beneficial for applications where precise timing and spatial location of actions are critical. In contrast to previous synchronization methods, this approach simplifies the process by using an automated technique based on patterns of ball velocity. This streamlines synchronization across datasets, reduces the need for manual intervention, and makes the method more practical for routine use in applied settings. Full article
Show Figures

Figure 1

23 pages, 696 KiB  
Article
Resilience and Aging Among Black Gay and Bisexual Older Men
by Angela K. Perone, Beth Glover Reed and Larry M. Gant
Int. J. Environ. Res. Public Health 2025, 22(8), 1226; https://doi.org/10.3390/ijerph22081226 - 6 Aug 2025
Abstract
Black gay and bisexual older men face numerous barriers across the life course that can contribute to negative health and well-being as they age. Drawing on strengths-based social determinants discussed in the health literature and literature on intersectionality, justice, and critical consciousness, this [...] Read more.
Black gay and bisexual older men face numerous barriers across the life course that can contribute to negative health and well-being as they age. Drawing on strengths-based social determinants discussed in the health literature and literature on intersectionality, justice, and critical consciousness, this study examines qualitative data from seventeen Black gay and bisexual older men about sources and strategies of resilience and thriving amidst intersecting systems of power and oppression that shape health inequities. The findings revealed an evolution of positive support networks across their life courses, including biological family and families of choice such as “houses” and support groups. Early and ongoing negative experiences relating to intersecting positionalities (e.g., race, gender, sexual orientation) also provided sources of strength and resilience. Participants identified three strategies for building resilience and thriving: naming external ignorance, acknowledging common struggles, and reconciling contradictions. These strategies reflected various levels of critical consciousness that helped them navigate complex and intersecting systems of power that they encountered as Black gay men across the life course. Overall, the findings underscore the importance of considering intersecting systems of power and critical consciousness when examining resilience and social determinants of health and contribute new insights on a vastly understudied population. Full article
(This article belongs to the Special Issue 3rd Edition: Social Determinants of Health)
Show Figures

Figure 1

16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

17 pages, 265 KiB  
Article
Who I Am, and Why That Matters
by Louise Rak, Elsie Randall, Meaghan Katrak-Harris and Tamara Blakemore
Youth 2025, 5(3), 83; https://doi.org/10.3390/youth5030083 - 6 Aug 2025
Abstract
Where we find and form identity and belonging, meaning and purpose, is often entangled in the dynamics that play out between people and place, and for Aboriginal and Torres Strait Islander Peoples, the legacy and ongoing experience of invasion and colonisation. Place-based understandings [...] Read more.
Where we find and form identity and belonging, meaning and purpose, is often entangled in the dynamics that play out between people and place, and for Aboriginal and Torres Strait Islander Peoples, the legacy and ongoing experience of invasion and colonisation. Place-based understandings of identity and its importance in shaping young people’s experience of what is possible and probable in their futures might be critical to framing cross-cultural work with young people impacted by violence and trauma. This paper draws on practitioner reflections of work with young Aboriginal women both on, and off Country, highlighting common and distinct themes related to identity formation and migration in navigating new futures. These include connection to Country and spiritual connection, family and kinship relationships, Women’s Business and felt cultural safety. The findings illustrate a meaningful parallel instructive to practice; for both young women and practitioners, access to cultural knowledge and connection is strengthened by endorsement and in turn strengthens understanding and experienced safety. This work emphasises the importance of creating culturally connected opportunities, sensitive to dynamics of place, to support positive identity expression and wellbeing. Full article
18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

Back to TopTop