Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (912)

Search Parameters:
Keywords = positive energy building

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

24 pages, 1464 KiB  
Review
An Overview of the Italian Roadmap for the Implementation of Circular Economy in the Energy Transition of Buildings
by Marilena De Simone and Daniele Campagna
Buildings 2025, 15(15), 2755; https://doi.org/10.3390/buildings15152755 - 5 Aug 2025
Abstract
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy [...] Read more.
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy principles can be applied. Italy records a general circular materials rate of 20.8%, surpassing the mean European value. But low recycling rates are still registered in the construction sector. This paper aims to assess the position of Italy with respect to the European regulatory framework on circularity in the energy transition of buildings. Firstly, the government’s initiatives and technical standards are introduced and commented upon. Secondly, the study illustrates the current Italian platforms, networks, and public and private initiatives highlighting opportunities and obstacles that the energy sector has to overcome in the area of circularity. It emerges that Italian policies still use voluntary tools that are not sufficiently in line with an effective circular economy model. Moreover, data collection plays a crucial role in accelerating the implementation of future actions. Italy should consider the foundation of a National Observatory for the Circular Economy to elaborate European directives, harmonize regional policies, and promote the implementation of effective practices. Full article
(This article belongs to the Special Issue Research on Sustainable Energy Performance of Green Buildings)
Show Figures

Figure 1

19 pages, 2441 KiB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Viewed by 159
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

11 pages, 317 KiB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Viewed by 115
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 135
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 143
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 219
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 237
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Viewed by 389
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Viewed by 230
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
21 pages, 6005 KiB  
Article
Archetype Identification and Energy Consumption Prediction for Old Residential Buildings Based on Multi-Source Datasets
by Chengliang Fan, Rude Liu and Yundan Liao
Buildings 2025, 15(14), 2573; https://doi.org/10.3390/buildings15142573 - 21 Jul 2025
Viewed by 334
Abstract
Assessing energy consumption in existing old residential buildings is key for urban energy conservation and decarbonization. Previous studies on old residential building energy assessment face challenges due to data limitations and inadequate prediction methods. This study develops a novel approach integrating building energy [...] Read more.
Assessing energy consumption in existing old residential buildings is key for urban energy conservation and decarbonization. Previous studies on old residential building energy assessment face challenges due to data limitations and inadequate prediction methods. This study develops a novel approach integrating building energy simulation and machine learning to predict large-scale old residential building energy use using multi-source datasets. Using Guangzhou as a case study, open-source building data was collected to identify 31,209 old residential buildings based on age thresholds and areas of interest (AOIs). Key building form parameters (i.e., long side, short side, number of floors) were then classified to identify residential archetypes. Building energy consumption data for each prototype was generated using EnergyPlus (V23.2.0) simulations. Furthermore, XGBoost and Random Forest machine learning algorithms were used to predict city-scale old residential building energy consumption. Results indicated that five representative prototypes exhibited cooling energy use ranging from 17.32 to 21.05 kWh/m2, while annual electricity consumption ranged from 60.10 to 66.53 kWh/m2. The XGBoost model demonstrated strong predictive performance (R2 = 0.667). SHAP (Shapley Additive Explanations) analysis identified the Building Shape Coefficient (BSC) as the most significant positive predictor of energy consumption (SHAP value = 0.79). This framework enables city-level energy assessment for old residential buildings, providing critical support for retrofitting strategies in sustainable urban renewal planning. Full article
(This article belongs to the Special Issue Enhancing Building Resilience Under Climate Change)
Show Figures

Figure 1

28 pages, 1140 KiB  
Article
Hybrid Metaheuristic Optimization of HVAC Energy Consumption and Thermal Comfort in an Office Building Using EnergyPlus
by Reza Akraminejad, Tianyi Zhao, Yacine Rezgui, Ali Ghoroghi and Yousef Shahbazi Razlighi
Buildings 2025, 15(14), 2568; https://doi.org/10.3390/buildings15142568 - 21 Jul 2025
Viewed by 266
Abstract
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization [...] Read more.
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization (CSA) and penguin search optimization algorithm (PeSOA), termed (HCRPN), designed to simultaneously optimize building energy consumption and achieve MRT levels conducive to thermal comfort by adjusting HVAC system parameters. We first validate HCRPN using ZDT-1 and Shaffer N1 multi-objective benchmarks. Subsequently, we employ EnergyPlus simulations, utilizing a single-objective Particle Swarm Optimization (PSO) for initial parameter analysis to generate a dataset. Following correlation analyses to understand parameter relationships, we implement our hybrid multi-objective approach. Comparative evaluations against state-of-the-art algorithms, including MoPso, NSGA-II, hybrid Nsga2/MOEAD, and Mo-CSA, validated the effectiveness of HCRPN. Our findings demonstrate an average 7% reduction in energy consumption and a 3% improvement in MRT-based comfort relative to existing methods. While seemingly small, even minor enhancements in MRT can have a noticeable positive impact on well-being, particularly in large, high-occupancy buildings. Full article
Show Figures

Figure 1

32 pages, 10028 KiB  
Article
Natural Gas Heating in Serbian and Czech Towns: The Role of Urban Topologies and Building Typologies
by Dejan Brkić, Zoran Stajić and Dragana Temeljkovski Novaković
Urban Sci. 2025, 9(7), 284; https://doi.org/10.3390/urbansci9070284 - 21 Jul 2025
Viewed by 461
Abstract
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative [...] Read more.
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative fuel powers a central heating plant, and the generated heat is distributed to buildings via a thermal network. The choice between these systems should first consider safety and environmental factors, followed by the urban characteristics of the settlement. In particular, building typology—such as size, function, and spatial configuration—and urban topology, referring to the relative positioning of buildings, play a crucial role. For example, very tall buildings often exclude the use of piped gas due to safety concerns, whereas in other cases, economic efficiency becomes the determining factor. To support decision-making, a comparative cost analysis is conducted, assessing the required infrastructure for both systems, including pipelines, boilers, and associated components. The study identifies representative residential building types in selected urban areas of Serbia and Czechia that are suitable for either heating approach. Additionally, the article examines the broader energy context in both countries, with emphasis on recent developments in the natural gas sector and their implications for urban heating strategies. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

28 pages, 19285 KiB  
Article
PV System Design in Different Climates: A BIM-Based Methodology
by Annamaria Ciccozzi, Tullio de Rubeis, Yun Ii Go and Dario Ambrosini
Energies 2025, 18(14), 3866; https://doi.org/10.3390/en18143866 - 21 Jul 2025
Viewed by 393
Abstract
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, [...] Read more.
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, solar photovoltaic alone accounted for three-quarters of renewable capacity additions worldwide. Designing a performing photovoltaic system requires careful planning that takes into account various factors, both internal and external, in order to maximize energy production and optimize costs. In addition to the technical characteristics of the system (internal factors), the positions and the shapes of external buildings and surrounding obstacles (external factors) have a significant impact on the output of photovoltaic systems. However, given the complexity of these environmental factors, they cannot be treated accurately in manual design practice. For this reason, this paper proposes a Building Information Modeling-based workflow for the design of a photovoltaic system that can guide the professional step-by-step throughout the design process, starting from the embryonic phase to the definitive, and therefore more detailed, one. The developed methodology allows for an in-depth analysis of the shading, the photovoltaic potential of the building, the performance of the photovoltaic system, and the costs for its construction in order to evaluate the appropriateness of the investment. The main aim of the paper is to create a standardized procedure applicable on a large scale for photovoltaic integration within Building Information Modeling workflows. The methodology is tested on two case studies, characterized by different architectural features and geographical positions. Full article
Show Figures

Figure 1

22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 863
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

Back to TopTop