Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = porphyry ore deposit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 - 31 Jul 2025
Viewed by 195
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

31 pages, 10410 KiB  
Article
Integrated Prospectivity Mapping for Copper Mineralization in the Koldar Massif, Kazakhstan
by Dinara Talgarbayeva, Andrey Vilayev, Elmira Serikbayeva, Elmira Orynbassarova, Hemayatullah Ahmadi, Zhanibek Saurykov, Nurmakhambet Sydyk, Aigerim Bermukhanova and Berik Iskakov
Minerals 2025, 15(8), 805; https://doi.org/10.3390/min15080805 - 30 Jul 2025
Viewed by 403
Abstract
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament [...] Read more.
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament analysis and density mapping confirmed the high permeability of the Koldar massif, indicating its structural prospectivity. Hyperspectral and multispectral data (ASTER, PRISMA, WorldView-3) were applied for detailed mapping of hydrothermal alteration (phyllic, propylitic, argillic zones), which are critical for discovering porphyry copper deposits. In particular, WorldView-3 imagery facilitated the identification of new prospective zones. The transformation of magnetic and gravity data successfully delineated geological features and structural boundaries, confirming the fractured nature of the massif, a key structural factor for mineralization. The resulting map of prospective zones, created by normalizing and integrating four evidential layers (lineament density, PRISMA-derived hydrothermal alteration, magnetic, and gravity anomalies), is thoroughly validated, successfully outlining the known Aktogay, Aidarly, and Kyzylkiya deposits. Furthermore, new, previously underestimated prospective areas were identified. This work fills a significant knowledge gap concerning the Koldar massif, which had not been extensively studied using satellite methods previously. The key advantage of this research lies in its comprehensive approach and the successful application of high-quality hyperspectral imagery for mapping new prospective zones, offering a cost-effective and efficient alternative to traditional ground-based investigations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

13 pages, 5465 KiB  
Article
Molybdenite Re-Os Isotopic Ages of Two Late Mesozoic Giant Mo Deposits in the Eastern Qinling Orogenic Belt, Central China
by Yuanshuo Zhang, Li Yang, Herong Gui, Dejin Wang, Mengqiu He and Jun He
Minerals 2025, 15(8), 800; https://doi.org/10.3390/min15080800 - 30 Jul 2025
Viewed by 270
Abstract
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we [...] Read more.
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we propose two major events of Mo mineralization in this orogenic belt occurring during the Late Mesozoic: the early stage of 156–130 Ma and late stage of 122–114 Ma. Results of molybdenite Re-Os isotopic analysis reveal that the Jinduicheng deposit formed at 139.2 ± 2.9 Ma, while the Donggou deposit exhibited two-stage mineralization at 115.4 ± 1.6 Ma and 111.9 ± 1.3 Ma. These isotopic ages align with the spatiotemporal evolution of coeval ore-barren granites exposed in eastern Qinling, pointing to a close genetic relationship between the magmatism and mineralization that was controlled by the same tectonic activity, likely in a post-collisional setting. This highlights the multiple-stage Mo mineralization and provides evidence for further understanding the geodynamics and metallogenic process in the eastern Qinling orogenic belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 7393 KiB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 329
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

32 pages, 32586 KiB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1276
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 6501 KiB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Viewed by 259
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

38 pages, 5287 KiB  
Article
Comparative Analysis of Throughput Prediction Models in SAG Mill Circuits: A Geometallurgical Approach
by Madeleine Guillen, Guillermo Iriarte, Hector Montes, Gerardo San Martín and Nicole Fantini
Mining 2025, 5(3), 37; https://doi.org/10.3390/mining5030037 - 20 Jun 2025
Viewed by 464
Abstract
This study was conducted on a copper porphyry deposit located in Espinar, Cusco (Peru), with the objective of developing and comparing predictive models for processing capacity in SAG grinding circuits. A total of 174 samples were used for the JK Drop Weight Test [...] Read more.
This study was conducted on a copper porphyry deposit located in Espinar, Cusco (Peru), with the objective of developing and comparing predictive models for processing capacity in SAG grinding circuits. A total of 174 samples were used for the JK Drop Weight Test (JKDWT) and 1172 for the Bond Work Index (BWi), along with 36 months of operational plant data. Three modeling methodologies were evaluated: DWi-BWi, SGI-BWi, and SMC-BWi (Mia, Mib), all integrated into a geometallurgical block model. Validation was performed through reconciliation with actual plant data, considering operational constraints such as transfer size (T80) and maximum throughput (TPH). The model based on SMC parameters and BWi showed the best predictive performance, with a root mean square error (RMSE) of 143 t/h and a mean relative deviation of 1.5%. This approach enables more accurate throughput forecasting, improving mine planning and operational efficiency. The results highlight the importance of integrating geometallurgical and operational data to build robust models that are adaptable to ore variability and applicable to both short- and long-term planning scenarios. Full article
Show Figures

Figure 1

39 pages, 5008 KiB  
Article
Evaluating the Uncertainty and Predictive Performance of Probabilistic Models Devised for Grade Estimation in a Porphyry Copper Deposit
by Raymond Leung, Alexander Lowe and Arman Melkumyan
Modelling 2025, 6(2), 50; https://doi.org/10.3390/modelling6020050 - 17 Jun 2025
Viewed by 464
Abstract
Probabilistic models are used to describe random processes and quantify prediction uncertainties in a principled way. Examples include geotechnical and geological investigations that seek to model subsurface hydrostratigraphic properties or mineral deposits. In mining geology, model validation efforts have generally lagged behind the [...] Read more.
Probabilistic models are used to describe random processes and quantify prediction uncertainties in a principled way. Examples include geotechnical and geological investigations that seek to model subsurface hydrostratigraphic properties or mineral deposits. In mining geology, model validation efforts have generally lagged behind the development and deployment of computational models. One problem is the lack of industry guidelines for evaluating the uncertainty and predictive performance of probabilistic ore grade models. This paper aims to bridge this gap by developing a holistic approach that is autonomous, scalable and transferable across domains. The proposed model assessment targets three objectives. First, we aim to ensure that the predictions are reasonably calibrated with probabilities. Second, statistics are viewed as images to help facilitate large-scale simultaneous comparisons for multiple models across space and time, spanning multiple regions and inference periods. Third, variogram ratios are used to objectively measure the spatial fidelity of models. In this study, we examine models created by ordinary kriging and the Gaussian process in conjunction with sequential or random field simulations. The assessments are underpinned by statistics that evaluate the model’s predictive distributions relative to the ground truth. These statistics are standardised, interpretable and amenable to significance testing. The proposed methods are demonstrated using extensive data from a real copper mine in a grade estimation task and are accompanied by an open-source implementation. The experiments are designed to emphasise data diversity and convey insights, such as the increased difficulty of future-bench prediction (extrapolation) relative to in situ regression (interpolation). This work enables competing models to be evaluated consistently and the robustness and validity of probabilistic predictions to be tested, and it makes cross-study comparison possible irrespective of site conditions. Full article
Show Figures

Graphical abstract

29 pages, 20113 KiB  
Article
Optimized Hydrothermal Alteration Mapping in Porphyry Copper Systems Using a Hybrid DWT-2D/MAD Algorithm on ASTER Satellite Remote Sensing Imagery
by Samane Esmaelzade Kalkhoran, Seyyed Saeed Ghannadpour and Amin Beiranvand Pour
Minerals 2025, 15(6), 626; https://doi.org/10.3390/min15060626 - 9 Jun 2025
Viewed by 588
Abstract
Copper is typically acknowledged as a critical mineral and one of the vital components of various of today’s fast-growing green technologies. Porphyry copper systems, which are an important source of copper and molybdenum, typically consist of large volumes of hydrothermally altered rocks, mainly [...] Read more.
Copper is typically acknowledged as a critical mineral and one of the vital components of various of today’s fast-growing green technologies. Porphyry copper systems, which are an important source of copper and molybdenum, typically consist of large volumes of hydrothermally altered rocks, mainly around porphyry copper intrusions. Mapping hydrothermal alteration zones associated with porphyry copper systems is one of the most important indicators for copper exploration, especially using advanced satellite remote sensing technology. This paper presents a sophisticated remote sensing-based method that uses ASTER satellite imagery (SWIR bands 4 to 9) to identify hydrothermal alteration zones by combining the discrete wavelet transform (DWT) and the median absolute deviation (MAD) algorithms. All six SWIR bands (bands 4–9) were analyzed independently, and band 9, which showed the most consistent spatial patterns and highest validation accuracy, was selected for final visualization and interpretation. The MAD algorithm is effective in identifying spectral anomalies, and the DWT enables the extraction of features at different scales. The Urmia–Dokhtar magmatic arc in central Iran, which hosts the Zafarghand porphyry copper deposit, was selected as a case study. It is a hydrothermal porphyry copper system with complex alteration patterns that make it a challenging target for copper exploration. After applying atmospheric corrections and normalizing the data, a hybrid algorithm was implemented to classify the alteration zones. The developed classification framework achieved an accuracy of 94.96% for phyllic alteration and 89.65% for propylitic alteration. The combination of MAD and DWT reduced the number of false positives while maintaining high sensitivity. This study demonstrates the high potential of the proposed method as an accurate and generalizable tool for copper exploration, especially in complex and inaccessible geological areas. The proposed framework is also transferable to other porphyry systems worldwide. Full article
Show Figures

Figure 1

24 pages, 8945 KiB  
Article
Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization
by Yongpeng Ouyang, Qi Chen, Runling Zeng and Tongfei Li
Minerals 2025, 15(6), 624; https://doi.org/10.3390/min15060624 - 9 Jun 2025
Viewed by 315
Abstract
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of [...] Read more.
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of this porphyry yields a crystallization age of 161.6 ± 2.1 Ma. Integrated with previously published data, the adakitic rocks in the study area—comprising diorite porphyrite, biotite quartz monzonite porphyry, and the newly identified biotite granite porphyry—are predominantly calc-alkaline and peraluminous. They exhibit enrichment in light rare-earth elements (LREEs) and depletion in heavy rare-earth elements (HREEs), with slight negative Eu anomalies. The trace element patterns are characterized by enrichment in Ba, U, K, Pb, and Sr, alongside negative Nb, Ta, P, and Ti anomalies, indicative of arc-like magmatic signatures. Comparative analysis of geological and geochemical characteristics suggests that these three rock types are not comagmatic. Petrogenesis of the Zhuxi adakitic suite is linked to a dynamic tectonic regime involving Mesozoic crustal thickening, subsequent delamination, and lithospheric extension. Asthenospheric upwelling likely triggered partial melting of the overlying metasomatized lithospheric mantle, generating primary mantle-derived magmas. Underplating and advection of heat by these magmas induced partial melting of the thickened lower crust, forming the biotite granite porphyry. Partial melting of delaminated lower crustal material, interacting with the asthenosphere or asthenosphere-derived melts, likely generated the diorite porphyrite. The biotite quartz monzonite porphyry is interpreted to have formed from mantle-derived magmas that underwent assimilation of, or mixing with, silicic crustal melts during ascent. The ~160 Ma crystallization ages of these adakitic rocks are broadly contemporaneous with W-Mo mineralization in the Taqian mining area of the Zhuxi district. Furthermore, their geochemical signatures imply a prospective metallogenic setting for Cu-Mo mineralization around this period in the Taqian area. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

22 pages, 12129 KiB  
Article
Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
by Zhongjie Yang, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang and Long Zhang
Minerals 2025, 15(6), 582; https://doi.org/10.3390/min15060582 - 29 May 2025
Viewed by 379
Abstract
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily [...] Read more.
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily occurs within the monzonite granite and monzonite rock mass in the Haigou area and is controlled by fault structures trending northeast, northwest, and near north-south. In order to constrain the age and tectonic setting of quartz vein-type gold mineralization, we conducted a detailed underground investigation and collected samples of monzonite granite and pyroxene diorite porphyrite veins related to quartz-vein-type gold mineralization for LA-ICP-MS zircon U-Pb dating and whole-rock main trace element data testing to confirm that monzonite granite is closely related to gold mineralization. Pyroxene diorite porphyry and gold mineralization were found in parallel veins. The zircon U-Pb weighted mean ages of monzonite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, indicating that gold mineralization in monzonite, pyroxene diorite porphyrite veins, and quartz veins occurred in the Late Carboniferous. The monzonite granite and pyroxene diorite porphyrite veins associated with quartz vein-type gold mineralization have high SiO2, high K, and high Al2O3 and are all metaluminous high-potassium calc-alkaline rock series. Both of them are relatively enriched in light rare earth elements (LREE) and macroionic lithophile elements (LILE: Rb, Ba, K, etc.), but deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE: Nb, Ta, P, Ti, etc.), the monzonitic granite Eu is a weak positive anomaly (δEu = 1.15–1.46), the pyroxene diorite porphyre dyke Eu is a weak positive anomaly (δEu = 1.09–1.13), and the Nb and Ta are negative anomalies. The Th/Nb values are 0.28–0.73 and 1.48–2.05, and La/Nb are 2.61–4.74 and 4.59–5.43, respectively, suggesting that diagenetic mineralization is the product of subduction in an active continental margin environment. In recent years, scholarly research on Sr, Nd, and Pb isotopes in Haigou rock masses has indicated that the magmatic source region in the Haigou mining areas is complex. It is neither a singular crustal source nor a mantle source but rather a mixed crust-mantle source, primarily resulting from the partial melting of lower crustal materials, with additional contributions from mantle-derived materials. In summary, the metallogenic characteristics, chronology data, geochemical characteristics, and regional tectonic interpretation indicate that at least one phase of magmatic-hydrothermal gold mineralization was established in the Late Carboniferous as a result of the subduction of the Paleo-Asian ocean plate at the northern margin of the North China Craton. Full article
Show Figures

Figure 1

27 pages, 21759 KiB  
Article
Origin and Tectonic Implication of Cenozoic Alkali-Rich Porphyry in the Beiya Au-Polymetallic Deposit, Western Yunnan, China
by Yun Zhong, Yajuan Yuan, Ye Lu and Bin Xia
Minerals 2025, 15(5), 531; https://doi.org/10.3390/min15050531 - 16 May 2025
Viewed by 330
Abstract
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this [...] Read more.
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this study, new petrological, geochemical, and geochronological data are presented for Cenozoic syenite porphyry from the Beiya porphyry Au-polymetallic deposit in western Yunnan. Zircon U-Pb dating results show that the Beiya syenite porphyries formed around 36.3–35.0 Ma, coinciding with the magmatic peak in the Jinshajiang-Red River (JSJ-RR) alkali-rich porphyry belt. Geochemical analyses indicate that the Beiya porphyries have potassic characteristics and an arc-like geochemical affinity, with C-type adakite affinity, suggesting a post-collisional setting. The JSJ-RR fault zone is unlikely to be the primary mechanism responsible for the formation of this alkali-rich porphyry magmatism. Instead, the development of the Beiya alkali-rich porphyries is likely associated with the convective removal of the lower part of the overthickened lithospheric mantle and asthenospheric upwelling during the Eocene–Oligocene. Their magmas probably originated from the partial melting of Paleo–Mesoproterozoic garnet amphibolite facies rocks in the thickened lower continental crust, with the addition of shoshonitic mafic magmas produced by the partial melting of metasomatized lithospheric mantle triggered by asthenospheric upwelling. This study provides additional reliable evidence to further constrain the origin of Cenozoic alkali-rich porphyries in the JSJ-RR belt. Full article
Show Figures

Figure 1

21 pages, 8878 KiB  
Article
Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry
by Ke Gao, Zhi Zhang, Linkui Zhang, Peiyan Xu, Yi Yang, Jianyang Wu, Yingxu Li, Miao Sun and Wenpeng Su
Minerals 2025, 15(5), 500; https://doi.org/10.3390/min15050500 - 8 May 2025
Viewed by 463
Abstract
The Wubaduolai copper deposit, a newly discovered porphyry-type deposit located in the western section of the Gangdese metallogenic belt, shows great potential for mineralization. Investigating the ore-bearing potentiality of the adakitic granite in this area is crucial for identifying concealed ore bodies and [...] Read more.
The Wubaduolai copper deposit, a newly discovered porphyry-type deposit located in the western section of the Gangdese metallogenic belt, shows great potential for mineralization. Investigating the ore-bearing potentiality of the adakitic granite in this area is crucial for identifying concealed ore bodies and assessing the metallogenic potential. This paper presents the zircon U-Pb dating, Hf isotope analysis, and whole-rock major and trace geochemical analysis of the plutons in the Wubaduolai mining area. The results indicate that the zircon U-Pb concordia age of the monzogranite is 15.7 ± 0.1 Ma, while the granodiorite porphyry has a concordia age of 15.9 ± 0.2 Ma, both corresponding to a Miocene diagenesis. The geochemical data show that both plutons belong to the high-K calc-alkaline series, characterized by a relative enrichment of large-ion lithophile elements (K, Rb, Ba, and Sr) and a depletion of high-field-strength elements (Nb, Ta, and Ti). Both plutons are characterized by low Y, low Yb, and high Sr/Y values, displaying the typical geochemical characteristics of adakites. Their mineral composition is similar to that of adakite. The εHf(t) values of the monzogranite and granodiorite porphyry range from −5.34 to −2.3 and −5.2 to −3.43, respectively, with two-stage model ages (TDM2) of 1246–1441 Ma and 1318–1432 Ma. Based on the regional data and this study, the plutons in the Wubaduolai mining area formed in a post-collision setting following the India–Asia continental collision. The magma source is identified as the partial melting of a thickened, newly formed lower crust. The above characteristics are consistent with the diagenetic and metallogenic ages, magma source, and dynamic backgrounds of the typical regional deposits. Full article
Show Figures

Figure 1

21 pages, 10400 KiB  
Article
Origin of the Xulaojiugou Pb–Zn Deposit, Heilongjiang Province, NE China: Constraints from Molybdenite Re–Os Isotopic Dating, Trace Elements, and Isotopic Compositions of Sulfides
by Gan Liu, Yunsheng Ren, Jingmou Li and Wentan Xu
Minerals 2025, 15(5), 441; https://doi.org/10.3390/min15050441 - 25 Apr 2025
Viewed by 397
Abstract
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan [...] Read more.
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan Formation. Orebodies exhibit typical skarn characteristics and are structurally controlled by NE trending faults. To constrain the metallogenic age, ore-forming processes, and sources of ore-forming materials, we conducted integrated geochemical analyses, Re–Os isotope dating, in situ sulfur isotope analysis, and trace element analysis. Five molybdenite samples provided a Re–Os isochron age of 184.6 ± 3.0 Ma, indicating Early Jurassic mineralization. In situ δ34S values from 20 sphalerite and 9 galena samples ranged from 5.31‰ to 5.83‰, suggesting derivation of sulfur from a deep magmatic source. Trace element analysis of 42 spots from three sphalerite samples revealed formation temperatures of 248–262 °C, which are consistent with mesothermal conditions. Integrated with regional tectonic evolution, the Xulaojiugou deposit is genetically linked to medium-grained monzogranite emplacement and represents a typical skarn polymetallic deposit, which is genetically associated with the regional porphyry–skarn metallogenic system that developed during the Early Yanshanian (Jurassic) tectonic–magmatic event and was driven by the subduction of the Paleo-Pacific plate. Full article
Show Figures

Figure 1

15 pages, 1008 KiB  
Article
BoxRF: A New Machine Learning Algorithm for Grade Estimation
by Ishmael Anafo, Rajive Ganguli and Narmandakh Sarantsatsral
Appl. Sci. 2025, 15(8), 4416; https://doi.org/10.3390/app15084416 - 17 Apr 2025
Viewed by 741
Abstract
A new machine learning algorithm, BoxRF, was developed specifically for estimating grades from drillhole datasets. The method combines the features of classical estimation methods, such as search boxes, search direction, and estimation based on inverse distance methods, with the robustness of random forest [...] Read more.
A new machine learning algorithm, BoxRF, was developed specifically for estimating grades from drillhole datasets. The method combines the features of classical estimation methods, such as search boxes, search direction, and estimation based on inverse distance methods, with the robustness of random forest (RF) methods that come from forming numerous random groups of data. The method was applied to a porphyry copper deposit, and results were compared to various ML methods, including XGBoost (XGB), k-nearest neighbors (KNN), neural nets (NN), and RF. Scikit-learn RF (SRF) performed the best (R2 = 0.696) among the ML methods but underperformed BoxRF (R2 = 0.751). The results were confirmed through a five-fold cross-validation exercise where BoxRF once again outperformed SRF. The box dimensions that performed the best were similar in length to the ranges indicated by variogram modeling, thus demonstrating a link between machine learning and traditional methods. Numerous combinations of hyperparameters performed similarly well, implying the method is robust. The inverse distance method was found to better represent the grade–space relationship in BoxRF than median values. The superiority of BoxRF over SRF in this dataset is encouraging, as it opens the possibility of improving machine learning by incorporating domain knowledge (principles of geology, in this case). Full article
Show Figures

Figure 1

Back to TopTop