Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry
Abstract
:1. Introduction
2. Geological Background
3. Petrography
4. Analytical Methods
4.1. Zircon U-Pb Dating
4.2. Zircon Lu-Hf Isotope
4.3. Whole-Rock Major and Trace Element Analyses
5. Results
5.1. Zircon U–Pb Geochronology
5.2. Zircon Hf Isotope
5.3. Major and Trace Element Compositions
6. Discussion
6.1. Diagenetic and Mineralization Age
6.2. Petrogenesis
6.3. Magmatism and Mineralization
7. Conclusions
- (1)
- The zircon U-Pb geochronology indicates that the emplacement ages of the monzogranite and granodiorite porphyry in the Wubaduolai mining area are both 15–16 Ma, corresponding to the Miocene epoch. The geochemical analysis shows that these plutons are low in silicon, high in aluminum, and alkali-rich, with high Sr/Y ratios and low Yb and Y contents, exhibiting typical adakitic pluton geochemistry. These features are similar to those of the adakitic plutons associated with the mineralization periods of the Zhunuo and Beimulang porphyry copper deposits, suggesting a shared source region and petrogenetic process.
- (2)
- The chronological, petrological, and isotopic geochemical characteristics of the two plutons suggest that their magma primarily originated from the partial melting of the lower crust. This is consistent with the petrogenesis and source regions of the adakitic plutons associated with the major porphyry-type deposits in the Gangdese metallogenic belt.
- (3)
- The adakitic plutons in the Wubaduolai mining area primarily formed in a post-collision extensional setting, where the underplating of mafic magma rich in ore-forming materials caused the partial melting of the juvenile lower crust. The ore-forming elements were concentrated in the water-rich, high-oxygen-fugacity adakitic magma. This ore-bearing magma ascended along regional fault channels, eventually emplacing and mineralizing at favorable structural locations within the Wubaduolai mining area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Z.Q.; Mo, X.X.; Yang, Z.M.; Wang, A.J.; Pan, G.T.; Qu, X.M.; Nie, F.J. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types. Geol. China 2006, 33, 340–351. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Qu, X.M.; Yang, Z.S.; Meng, X.J.; Li, Z.Q.; Yang, Z.M.; Zheng, M.P.; Zheng, Y.Y.; Nie, F.J.; Gao, Y.F.; et al. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. mineralization in post-collisional extension setting. Miner. Depos. 2006, 25, 629–651. (In Chinese) [Google Scholar]
- Tang, J.X.; Wang, Q.; Yang, H.H.; Gao, X.; Zhang, Z.B.; Zou, B. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet. Acta Geosci. Sin. 2017, 38, 571–613. (In Chinese) [Google Scholar]
- Tang, J.X.; Yang, H.H.; Song, Y.; Wang, L.Q.; Liu, Z.B.; Li, B.L.; Lin, B.; Peng, B.; Wang, G.H.; Zeng, Q.G.; et al. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geol. 2021, 4, 1–16. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ci, Q.; Gao, S.B.; Wu, S.; Jiang, X.J.; Chen, X. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet. Earth Sci. Front. 2021, 28, 379–402. (In Chinese) [Google Scholar] [CrossRef]
- Tang, J.X.; Deng, S.L.; Zheng, W.B.; Ying, L.J.; Wang, X.W.; Zhong, K.H.; Qin, Z.P.; Ding, F.; Li, F.J.; Tang, X.Q.; et al. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet. Miner. Depos. 2011, 30, 179–196. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, W.B.; Tang, J.X.; Zhong, K.H.; Ying, L.J.; Leng, Q.F.; Ding, S.; Lin, B. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China. Ore Geol. Rev. 2016, 74, 151–169. [Google Scholar] [CrossRef]
- Tang, J.X.; Lang, X.H.; Xie, F.W.; Gao, Y.M.; Li, Z.J.; Huang, Y.; Ding, F.; Yang, H.H.; Zhang, L.; Wang, Q. Geological characteristics and genesis of the Jurassic No. I porphyry Cu-Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet. Ore Geol. Rev. 2015, 70, 438–456. [Google Scholar] [CrossRef]
- Lang, X.H.; Wang, X.H.; Deng, Y.L.; Tang, J.X.; Jiang, K. Hydrothermal evolution and ore precipitation of the No. 2 porphyry Cu–Au deposit in the Xiongcun district, Tibet: Evidence from cathodoluminescence, fluid inclusions, and isotopes. Ore Geol. Rev. 2019, 114, 103141. [Google Scholar] [CrossRef]
- Lang, X.H.; Deng, Y.L.; Wang, X.H.; Tang, J.X.; Xie, F.W.; Yang, Z.Y.; Yin, Q.; Jiang, K. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No.1 deposit in the Xiongcun district, Tibet, China. Ore Geol. Rev. 2020, 118, 103212. [Google Scholar] [CrossRef]
- Yan, G.Q.; Wang, X.X.; Huang, Y.; Liu, H.; Huang, H.X.; Tian, E.Y.; Lai, Y.; Zhao, J. Evolution characteristics of magma in the Nuri superlarge polymetallic deposit, Tibet: Implications for regional mineralization in the Shannan ore cluster area. Acta Geol. Sin. 2018, 92, 2138–2154. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Qin, K.Z.; Li, G.M.; Li, J.X.; Xiao, B.; Zhao, J.X. In situ major and trace elements of garnet and scheelite in the Nuri Cu–W–Mo deposit, South Gangdese, Tibet: Implications for mineral genesis and ore-forming fluid records. Ore Geol. Rev. 2020, 122, 103549. [Google Scholar] [CrossRef]
- Wu, Z.S.; Tang, L.W.; Basang, Y.D.; Chen, W.Q.; Chen, B.; Du, Q.A.; Hou, H.F.; Miao, H.Y. In situ trace-element and Sr isotopic characteristics of scheelite and their implications for the genesis in the Nuri Cu-W-Mo deposit, Xizang. Sediment. Geol. Tethyan Geol. 2024, 44, 723–739. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wu, Z.S.; Chen, W.Q.; Du, Q.A.; Tang, L.W.; Shi, H.Z.; Ma, G.T.; Zhang, Z.; Liang, W.; Wu, B.; et al. Genesis of the Nuri Cu-W-Mo Deposit, Tibet, China: Constraints from in situ Trace Elements and Sr Isotopic Analysis of Scheelite. Acta Geol. Sin. 2024, 98, 117–131. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, Y.Y.; Li, M.; Ouyang, H.T.; Liu, Q.Q.; Jing, X.K.; Sun, G.P.; Song, Q.J. Genesis of Luobuzhen Pb–Zn veins: Implications for porphyry Cu systems and exploration targeting at Luobuzhen-Dongshibu in western Gangdese belt, southern Tibet. Ore Geol. Rev. 2017, 82, 252–267. [Google Scholar] [CrossRef]
- Huang, H.X.; Liu, H.; Li, G.X.; Zhang, L.K.; Cao, H.W.; Zhou, Q.; Wang, X.X.; Yan, G.Q. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry–Epithermal Metallogenic System. Minerals 2019, 9, 476. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, T.Y.; Huang, Z.L.; Yang, Z.S.; Tian, S.H.; Qian, Z.K. Sulfur and Lead isotope compositions of the Narusongduo silver zinc-lead deposit in Tibet: Implications for the sources of plutons and metals in the deposit. Acta Mineral. Sin. 2010, 30, 311–318. (In Chinese) [Google Scholar] [CrossRef]
- Ji, X.H.; Meng, X.J.; Yang, Z.S.; Zhang, Q.; Tian, S.H.; Li, Z.Q.; Liu, Y.C.; Yu, Y.S. The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo, Tibet and its geological significance. Geol. Explor. 2014, 50, 281–290. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.M.; Yang, Y.; Zhang, L.K.; Lian, T.R.; Huang, Y.; Li, Y.B.; Dong, S.L. Genesis of the Jigongcun Re-rich quartz vein-type Mo deposit, southern Tibet: Constraints from mineralogy, fluid inclusions, geochronology, H–O–S isotopes, and in situ trace element compositions of molybdenite. Ore Geol. Rev. 2021, 132, 104069. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Luo, Z.H.; Mo, X.X.; Hou, Z.Q. The mantle-crust interactions during continental collision process of the plateau and their effects on the formation of mineral resources and oil-gas pools. In Uplifting of Tibetan Plateau with Its Environmental Effects; Zheng, D., Yao, T.D., Eds.; Science Press: Beijing, China, 2004; pp. 117–163. [Google Scholar]
- Hou, Z.Q.; Meng, X.J.; Qu, X.M.; Gao, Y.F. Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt: Constrains from rock phase and deep melting process. Miner. Depos. 2005, 24, 108–121. (In Chinese) [Google Scholar]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef]
- Chung, S.L.; Liu, D.Y.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Hu, Z.C.; Li, X.H.; Luo, T. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U–Pb ages and Zr–O isotopes. J. Anal. At. Spectrom. 2021, 36, 2715–2734. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE china: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220. (In Chinese) [Google Scholar]
- Amelin, Y.; Lee, D.C.; Halliday, A.N.; Pidgeon, R.T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 1999, 399, 1497–1503. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1998, 148, 243–258. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rittmann, A. Volcanoes and Their Activity; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, J.; Li, G.M.; Dai, J.; Yan, G.Q.; Wang, G.; Liu, X.F. U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance. Acta Geol. Sin. 2015, 89, 99–108. (In Chinese) [Google Scholar] [CrossRef]
- Wu, S. The Super-Large Zhunuo Porphyry Cu Deposit in the Gangdese Belt, Southern Tibet: Magmatism and Mineralization. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Middlemost, E.A.K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology; Longman: London, UK; New York, NY, USA, 1985; pp. 1–266. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Möller, A.; O’Brien, P.J.; Kennedy, A.; Kröner, A. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol. Soc. Lond. Spec. Publ. 2003, 220, 65–81. [Google Scholar] [CrossRef]
- Chen, L.; Qin, K.Z.; Li, G.M.; Li, J.X.; Xiao, B.; Zhao, J.X.; Fan, X. Sm–Nd and Ar–Ar isotopic dating of the Nuri Cu–W–Mo deposit in the Southern Gangdese, Tibet: Implications for the porphyry-skarn metallogenic system and metallogenetic epochs of the Eastern Gangdese. Resour. Geol. 2016, 66, 259–273. [Google Scholar] [CrossRef]
- Meng, X.J.; Hou, Z.Q.; Gao, Y.F.; Huang, W.; Qu, X.M. Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese metallogenic belt, Xizang and its metallogenic significance. Geol. Rev. 2003, 49, 660–666. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Zhang, G.Y.; Xu, R.K.; Gao, S.B.; Pang, Y.C.; Cao, L.; Du, A.D.; Shi, Y.R. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chin. Sci. Bull. 2007, 52, 3139–3147. (In Chinese) [Google Scholar] [CrossRef]
- Ying, L.J.; Wang, C.H.; Tang, J.X.; Wang, D.H.; Qu, W.J.; Li, C. Re–Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu–Mo deposit of Tibet, China. J. Asian Earth Sci. 2014, 79, 497–506. [Google Scholar] [CrossRef]
- Li, Y.; Selby, D.; Feely, M.; Costanzo, A.; Li, X.H. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet. Miner. Depos. 2017, 52, 137–158. [Google Scholar] [CrossRef]
- Sun, X.; Leng, C.B.; Hollings, P.; Song, Q.J.; Li, R.Y.; Wan, X.Q. New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: Implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Miner. Depos. 2021, 56, 917–934. [Google Scholar] [CrossRef]
- Gong, F.Z.; Zhang, H.P.; Zhang, G.Y. The Jiru porphyry copper deposit in Tibet: The 50 Ma ore-bearing intrusion-constraints from zircon La-ICP-MS U-Pb geochronology. Miner. Depos. 2010, 29, 439–440. (In Chinese) [Google Scholar] [CrossRef]
- Gong, F.Z.; Zheng, Y.; Zhang, G.Y.; Qu, W.J. The first discovery of porphyry copper deposits formed during the main Indian-Tibetan collision in Gangdisê, Tibet: Constraints from Re-Os ages for molybdenite from the Jyiru porphyry copper deposit. Acta Geol. Sichuan 2008, 28, 296–299. (In Chinese) [Google Scholar]
- Yu, Y.S.; Yang, Z.S.; Duo, J.; Hou, Z.Q.; Tian, S.; Meng, X.J.; Liu, H.F.; Zhang, J.S.; Wang, H.P.; Liu, Y.C. Age and petrogenesis of magmatic rocks from Jiaduobule skarn Fe-Cu deposit in Tibet: Evidence from zircon SHRIMP U-Pb dating, Hf isotope and REE. Miner. Depos. 2011, 30, 420–434. (In Chinese) [Google Scholar] [CrossRef]
- Rubatto, D.; Gebauer, D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from high-pressure rocks of the Western Alps. In Cathodoluminescence in Geoscience; Springer: Berlin/Heidelberg, Germany, 2000; pp. 373–400. [Google Scholar]
- Sun, X.; Hollings, P.; Lu, Y. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Miner. Depos. 2021, 56, 457–480. [Google Scholar] [CrossRef]
- Dai, J. Metallogenesis of Zhunuo Porphyry Cu (Mo-Au) Deposit, Angren, Tibet, China. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2017. (In Chinese). [Google Scholar]
- Liu, P.; Wu, S.; Zheng, Y.Y.; Wang, X.Y.; Kang, Y.M.; Yan, J.; Gu, Y.; Liu, X.F.; Gong, F.Z.; Zhao, Y.Y.; et al. Geology and factors controlling the formation of the newly discovered Beimulang porphyry Cu deposit in the western Gangdese, southern Tibet. Ore Geol. Rev. 2022, 144, 104823. [Google Scholar] [CrossRef]
- Li, J.Z.; Wu, S.; Lin, Y.B.; Jiang, Z.Y.; Yi, J.Z.; Jiang, G.W.; Liu, X.F.; Hua, K.; Ci, Q.; Zhao, Y.Y. Alteration-mineralization style and prospecting potential of Cimabanshuo porphyry copper deposit in Tibet. Earth Sci. 2022, 47, 2219–2244. (In Chinese) [Google Scholar] [CrossRef]
- Ai, Y.M.; Xiao, B.; Zhao, J.F.; Ci, Q.; Zhao, Y.Y.; Zhao, J.X. Ages, petrogenesis and metallogenesis implications of the Miocene adakite-like igneous rocks in the Beimulang porphyry Cu Deposit, southern Tibet. Ore Geol. Rev. 2024, 173, 106249. [Google Scholar] [CrossRef]
- Wang, B.D.; Xu, J.F.; Chen, J.L.; Zhang, X.G.; Wang, L.Q.; Xia, B.B. Petrogenesis and geochronology of the ore-bearing porphyritic rocks in Tangbula porphyry molybdenum-copper deposit in the eastern segment of the Gangdese metallogenic belt. Acta Petrol. Sin. 2010, 26, 1820–1832. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Zheng, Y.C.; Yang, Z.M.; Rui, Z.Y.; Zhao, Z.D.; Jiang, S.H.; Qu, X.M.; Sun, Q.Z. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner. Depos. 2013, 48, 173–192. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.Z.; Li, G.M.; Xiao, B.; Chen, L.; Zhao, J.X. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: Melting of thickened juvenile arc lower crust. Lithos 2011, 126, 265–277. [Google Scholar] [CrossRef]
- Hu, Y.B.; Liu, J.Q.; Ling, M.X.; Ding, W.; Liu, Y.; Zartman, R.E.; Ma, X.F.; Liu, D.Y.; Zhang, C.C.; Sun, S.J. The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints. Lithos 2015, 220–223, 60–80. [Google Scholar] [CrossRef]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Rapp, R.P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111. [Google Scholar] [CrossRef]
- Chung, S.L.; Chu, M.F.; Ji, J.Q.; O Reilly, S.Y.; Pearson, N.J.; Liu, D.; Lee, T.Y.; Lo, C.H. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 2009, 477, 36–48. [Google Scholar] [CrossRef]
- Chen, J.L.; Xu, J.F.; Zhao, W.X.; Dong, Y.H.; Wang, B.D.; Kang, Z.Q. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos 2011, 125, 928–939. [Google Scholar] [CrossRef]
- Chen, X.J.; Xu, Z.Q.; Meng, Y.K.; He, Z.Y. Petrogenesis of Miocene adakitic diorite-porphyrite in middle Gangdese batholith, southern Tibet: Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrol. Sin. 2014, 30, 2253–2268. (In Chinese) [Google Scholar]
- Chen, J.L.; Xu, J.F.; Yu, H.X.; Wang, B.D.; Wu, J.B.; Feng, Y.X. Late Cretaceous high-Mg# granitoids in southern Tibet: Implications for the early crustal thickening and tectonic evolution of the Tibetan Plateau? Lithos 2015, 232, 12–22. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.H.; Wang, C.S.; Wei, Y.S.; Chen, X.; He, J.; Xu, M.; Hou, Y.L. Miocene adakitic intrusions in the Zhongba terrane: Implications for the origin and geochemical variations of post-collisional adakitic rocks in southern Tibet. Gondwana Res. 2017, 41, 65–76. [Google Scholar] [CrossRef]
- Tian, S.H.; Yang, Z.S.; Hou, Z.Q.; Mo, X.X.; Hu, W.J.; Zhao, Y.; Zhao, X.Y. Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SW Tibet. Gondwana Res. 2017, 41, 29–50. [Google Scholar] [CrossRef]
- Li, Z.; Lang, X.H.; Zhang, Q.Z.; He, L. Petrogenesis and geodynamic settings of the intermediate-acid intrusions related to the Pusangguo copper-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes. Acta Petrol. Sin. 2019, 35, 737–759. (In Chinese) [Google Scholar]
- Xu, W.C.; Zhang, H.F.; Guo, L.; Yuan, H.L. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos 2010, 114, 293–306. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Wang, Q.; Wyman, D.A.; Li, Z.X.; Yang, J.H.; Shi, X.B.; Ma, L.; Tang, G.J.; Gou, G.N.; Jia, X.H. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos 2014, 196–197, 213–231. [Google Scholar] [CrossRef]
- Castillo, P.R. An overview of adakite petrogenesis. Chin. Sci. Bull. 2006, 51, 11. [Google Scholar] [CrossRef]
- Streck, M.J.; Leeman, W.P.; Chesley, J. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology 2007, 35, 351–354. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Douce, A.E.P. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Chu, M.F.; Chung, S.L.; O’Reilly, S.Y.; Pearson, N.J.; Wu, F.Y.; Li, X.H.; Liu, D.; Ji, J.; Chu, C.H.; Lee, H.Y. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 2011, 307, 479–486. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhong, S.L.; Wang, Y.B.; Zhu, D.C.; Yang, J.H.; Song, B.; Liu, D.Y.; Wu, F.Y. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes. Acta Petrol. Sin. 2007, 23, 493–500. (In Chinese) [Google Scholar]
- Chu, M.F.; Chung, S.L.; Song, B.; Liu, D.Y.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.Q.; Wen, D.J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Ding, H.X.; Dong, X.; Tian, Z.L. The Gangdese arc magmatism: From Neo-Tethyan subduction to Indo-Asian collision. Earth Sci. Front. 2018, 25, 78–91. (In Chinese) [Google Scholar] [CrossRef]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Defant, M.J.; Kepezhinskas, P. Evidence suggests slab melting in arc magmas. Eos Trans. Am. Geophys. Union 2006, 82, 65–69. [Google Scholar] [CrossRef]
- Oyarzun, R.; Márquez, A.; Lillo, J.; López, I.; Rivera, S. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Miner. Depos. 2001, 36, 794–798. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Qu, X.M.; Meng, X.J.; Zaw, K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol. Rev. 2009, 36, 25–51. [Google Scholar] [CrossRef]
- Audetat, A.; Gunther, D.; Heinrich, C.A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions. Science 1998, 279, 2091–2094. [Google Scholar] [CrossRef] [PubMed]
- Heinrich Christoph, A.; Thomas, D.; Andri, S.; Seward Terry, M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Coleman, M.; Hodges, K. Evidence for Tibetan plateau uplift below 14 Myr ago from a new minimum age for east-west extension. Nature 1995, 374, 49–52. [Google Scholar] [CrossRef]
- Blisniuk, P.M.; Hacker, B.R.; Glodny, J.; Ratschbacher, L.; Bi, S.; Wu, Z.; Mcwilliams, M.O.; Calvert, A. Normal faulting in central Tibet since at least 135 Myr ago. Nature 2001, 412, 628–632. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Qu, X.M.; Wang, S.X.; Gao, Y.F.; Du, A.D.; Huang, W. Re-Os ages of molybdenite in the Gangdese porphyry copper belt in south Tibet: Duration of mineralization and application of the dynamic setting. Sci. China 2003, 33, 609–618. [Google Scholar]
- Hou, Z.Q.; Mo, X.X.; Gao, Y.F.; Qu, X.M.; Meng, X.J. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile. Miner. Depos. 2003, 22, 1–12. (In Chinese) [Google Scholar]
- Wu, C.D. Petrogenesis of Adakites and Its Potential for Porphyry Copper Mineralization in Gangdese Belt, Tibet. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Sun, H.Z.; Zhao, Z.D.; Zhu, D.C.; Liu, D.; Wang, Q.; Tang, Y.; Qi, N.Y.; Dong, G.C. Geochronology, geochemistry and petrogenesis of Miocene adakitic rocks in Milashan, Southern Tibet. Acta Petrol. Sin. 2021, 37, 3479–3500. (In Chinese) [Google Scholar] [CrossRef]
- Rui, Z.Y.; Hou, Z.Q.; Qu, X.M.; Zhang, L.S.; Wang, L.S.; Liu, Y.L. Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet Plateau. Miner. Depos. 2003, 22, 217–225. (In Chinese) [Google Scholar]
- Qu, X.M.; Hou, Z.Q.; Li, Z.Q. 40Ar/39Ar Ages of the ore-bearing porphyries of the Gangdese porphyry copper belt and their geological significances. Acta Geol. Sin. 2003, 77, 245–252. (In Chinese) [Google Scholar]
- Wang, R.; Richards, J.P.; Hou, Z.; Yang, Z.; Gou, Z.; DuFrane, S.A. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo ± Au Mineralization. Econ. Geol. 2014, 109, 1943–1965. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Wang, R.; Richards, J.P.; Hou, Z.Q.; Yang, Z.M.; DuFrane, S.A. Increased Magmatic Water Content—The Key to Oligo-Miocene Porphyry Cu-Mo ± Au Formation in the Eastern Gangdese Belt, Tibet. Econ. Geol. 2014, 109, 1315–1339. [Google Scholar] [CrossRef]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.L.; Yang, Z.M.; Hou, Z.Q. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology 2015, 43, 583–586. [Google Scholar] [CrossRef]
- Richards, J.P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Guo, L.N.; Wang, Z.L.; Li, X.Z.; Li, J.L. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 585–602. [Google Scholar] [CrossRef]
- Williamson, B.J.; Herrington, R.J.; Morris, A. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat. Geosci. 2016, 9, 237–241. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in talc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Frei, R.; Tejada, M.L.G.; Mo, X.X.; Leat, P.T.; Nägler, T.F. Tracing the indian ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific Seafloor. J. Petrol. 1998, 39, 1285–1306. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Thompson, J.F.H.; Shimazaki, H. Intrusion-related vein gold deposits; types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Resour. Geol. 1998, 48, 237–250. [Google Scholar] [CrossRef]
Spot | Pb | Th | U | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/235U | 206Pb/238U | Concordance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age | 1σ | Age | 1σ | |||
0.77 | |||||||||||||||
WB01-2 | 2.74 | 233 | 451 | 0.52 | 0.0447 | 0.0102 | 0.0149 | 0.0041 | 0.00257 | 0.0001 | 15.03 | 4.07 | 16.54 | 0.36 | 90% |
WB01-3 | 5.28 | 503 | 548 | 0.92 | 0.0473 | 0.0083 | 0.0162 | 0.0026 | 0.00248 | 0.0000 | 16.28 | 2.6 | 15.97 | 0.28 | 98% |
WB01-4 | 4.94 | 427 | 477 | 0.90 | 0.0492 | 0.0095 | 0.0160 | 0.0026 | 0.00247 | 0.0001 | 16.14 | 2.64 | 15.90 | 0.32 | 98% |
WB01-5 | 5.94 | 598 | 577 | 1.04 | 0.0491 | 0.0078 | 0.0161 | 0.0020 | 0.00242 | 0.0000 | 16.20 | 2.03 | 15.56 | 0.29 | 95% |
WB01-6 | 6.42 | 602 | 843 | 0.71 | 0.0476 | 0.0076 | 0.0158 | 0.0027 | 0.00243 | 0.0000 | 15.88 | 2.65 | 15.65 | 0.28 | 98% |
WB01-7 | 7.52 | 861 | 829 | 1.04 | 0.0484 | 0.0083 | 0.0147 | 0.0021 | 0.00238 | 0.0000 | 14.86 | 2.14 | 15.33 | 0.30 | 96% |
WB01-8 | 3.78 | 304 | 598 | 0.51 | 0.0496 | 0.0084 | 0.0169 | 0.0026 | 0.00255 | 0.0001 | 17.04 | 2.64 | 16.41 | 0.32 | 96% |
WB01-9 | 5.39 | 469 | 557 | 0.84 | 0.0498 | 0.0087 | 0.0157 | 0.0018 | 0.00252 | 0.0001 | 15.84 | 1.84 | 16.23 | 0.35 | 97% |
WB01-10 | 4.64 | 373 | 510 | 0.73 | 0.0470 | 0.0094 | 0.0159 | 0.0037 | 0.00247 | 0.0000 | 16.06 | 3.74 | 15.93 | 0.32 | 99% |
WB01-12 | 11.29 | 1288 | 829 | 1.55 | 0.0484 | 0.0084 | 0.0156 | 0.0027 | 0.00242 | 0.0000 | 15.74 | 2.69 | 15.60 | 0.25 | 99% |
WB01-15 | 4.32 | 421 | 469 | 0.90 | 0.0484 | 0.0088 | 0.0154 | 0.0022 | 0.00244 | 0.0000 | 15.53 | 2.21 | 15.72 | 0.31 | 98% |
WB01-16 | 3.55 | 294 | 365 | 0.81 | 0.0501 | 0.0098 | 0.0166 | 0.0024 | 0.00238 | 0.0000 | 16.68 | 2.35 | 15.34 | 0.32 | 91% |
WB01-17 | 3.72 | 334 | 400 | 0.83 | 0.0490 | 0.0091 | 0.0160 | 0.0017 | 0.00244 | 0.0001 | 16.12 | 1.66 | 15.72 | 0.36 | 97% |
WB01-18 | 10.59 | 1405 | 574 | 2.45 | 0.0460 | 0.0085 | 0.0140 | 0.0021 | 0.00237 | 0.0000 | 14.14 | 2.06 | 15.25 | 0.28 | 92% |
WB01-19 | 9.20 | 928 | 730 | 1.27 | 0.0495 | 0.0080 | 0.0166 | 0.0026 | 0.00248 | 0.0001 | 16.75 | 2.58 | 15.95 | 0.43 | 95% |
17.26 | 2.26 | ||||||||||||||
WB01-22 | 4.20 | 411 | 422 | 0.97 | 0.0496 | 0.0098 | 0.0153 | 0.0025 | 0.00238 | 0.0001 | 15.43 | 2.47 | 15.33 | 0.35 | 99% |
WB02-02 | 3.02 | 185 | 265 | 0.70 | 0.0419 | 0.0085 | 0.0321 | 0.0086 | 0.00547 | 0.0002 | 32.07 | 8.43 | 35.15 | 1.40 | 90% |
WB02-03 | 4.44 | 399 | 433 | 0.92 | 0.0497 | 0.0106 | 0.0158 | 0.0034 | 0.00255 | 0.0000 | 15.94 | 3.44 | 16.39 | 0.31 | 97% |
WB02-04 | 3.39 | 236 | 490 | 0.48 | 0.0532 | 0.0109 | 0.0181 | 0.0046 | 0.00257 | 0.0000 | 18.25 | 4.59 | 16.56 | 0.31 | 90% |
WB02-05 | 6.66 | 648 | 743 | 0.87 | 0.0465 | 0.0069 | 0.0154 | 0.0019 | 0.00243 | 0.0000 | 15.57 | 1.93 | 15.66 | 0.25 | 99% |
WB02-06 | 6.20 | 599 | 795 | 0.75 | 0.0465 | 0.0061 | 0.0161 | 0.0016 | 0.00249 | 0.0000 | 16.19 | 1.65 | 16.06 | 0.31 | 99% |
WB02-07 | 4.08 | 241 | 508 | 0.47 | 0.0510 | 0.0100 | 0.0167 | 0.0032 | 0.00259 | 0.0000 | 16.83 | 3.21 | 16.69 | 0.29 | 99% |
WB02-08 | 11.20 | 935 | 1151 | 0.81 | 0.0474 | 0.0052 | 0.0163 | 0.0015 | 0.00253 | 0.0000 | 16.39 | 1.50 | 16.30 | 0.27 | 99% |
WB02-11 | 2.94 | 243 | 458 | 0.53 | 0.0496 | 0.0090 | 0.0170 | 0.0033 | 0.00248 | 0.0001 | 17.11 | 3.27 | 15.95 | 0.34 | 92% |
WB02-12 | 5.40 | 383 | 580 | 0.66 | 0.0505 | 0.0081 | 0.0164 | 0.0023 | 0.00254 | 0.0000 | 16.53 | 2.29 | 16.35 | 0.27 | 98% |
WB02-13 | 3.55 | 298 | 513 | 0.58 | 0.0472 | 0.0096 | 0.0151 | 0.0033 | 0.00246 | 0.0000 | 15.25 | 3.26 | 15.86 | 0.27 | 96% |
WB02-14 | 7.51 | 746 | 537 | 1.39 | 0.0486 | 0.0083 | 0.0149 | 0.0021 | 0.00241 | 0.0000 | 15.06 | 2.07 | 15.52 | 0.29 | 97% |
WB02-16 | 9.40 | 853 | 922 | 0.92 | 0.0494 | 0.0059 | 0.0164 | 0.0016 | 0.00244 | 0.0000 | 16.51 | 1.61 | 15.68 | 0.27 | 94% |
WB02-17 | 3.92 | 315 | 439 | 0.72 | 0.0504 | 0.0095 | 0.0166 | 0.0028 | 0.00255 | 0.0000 | 16.68 | 2.84 | 16.45 | 0.31 | 98% |
WB02-18 | 4.59 | 401 | 505 | 0.80 | 0.0437 | 0.0094 | 0.0151 | 0.0046 | 0.00247 | 0.0000 | 15.19 | 4.57 | 15.91 | 0.31 | 95% |
WB02-19 | 5.05 | 453 | 668 | 0.68 | 0.0457 | 0.0075 | 0.0148 | 0.0022 | 0.00239 | 0.0000 | 14.91 | 2.23 | 15.37 | 0.29 | 96% |
WB02-20 | 6.29 | 603 | 632 | 0.95 | 0.0420 | 0.0065 | 0.0144 | 0.0018 | 0.00242 | 0.0000 | 14.56 | 1.81 | 15.57 | 0.26 | 93% |
WB02-21 | 6.42 | 591 | 756 | 0.78 | 0.0498 | 0.0072 | 0.0158 | 0.0019 | 0.00238 | 0.0000 | 15.89 | 1.94 | 15.30 | 0.29 | 96% |
WB02-22 | 6.26 | 565 | 637 | 0.89 | 0.0444 | 0.0071 | 0.0144 | 0.0020 | 0.00238 | 0.0000 | 14.47 | 1.96 | 15.30 | 0.20 | 94% |
WB02-23 | 4.46 | 394 | 589 | 0.67 | 0.0444 | 0.0073 | 0.0149 | 0.0019 | 0.00246 | 0.0000 | 14.99 | 1.89 | 15.83 | 0.32 | 94% |
WB02-24 | 9.19 | 998 | 783 | 1.27 | 0.0445 | 0.0064 | 0.0152 | 0.0020 | 0.00245 | 0.0000 | 15.34 | 2.03 | 15.79 | 0.32 | 97% |
Spot | 176Yb/177Hf | 176Lu/177Hf | 1σ | 176Hf/177Hf | 1σ | Age (Ma) | IHf | εHf(0) | εHf(t) | TDM | TDM2 | TCHUR | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WB01-2 | 0.014323 | 0.000450 | 0.000004 | 0.282665 | 0.000012 | 15.69 | 0.282665 | −3.78 | −3.44 | 819 | 1318 | 175 | −0.99 |
WB01-4 | 0.025132 | 0.000721 | 0.000010 | 0.282697 | 0.000012 | 15.69 | 0.282697 | −2.65 | −2.31 | 780 | 1246 | 124 | −0.98 |
WB01-5 | 0.014839 | 0.000441 | 0.000004 | 0.282659 | 0.000012 | 15.69 | 0.282659 | −4.00 | −3.65 | 828 | 1333 | 184 | −0.99 |
WB01-6 | 0.018179 | 0.000539 | 0.000003 | 0.282679 | 0.000012 | 15.69 | 0.282679 | −3.29 | −2.94 | 802 | 1288 | 152 | −0.98 |
WB01-7 | 0.016703 | 0.000512 | 0.000009 | 0.282660 | 0.000012 | 15.69 | 0.282660 | −3.96 | −3.62 | 828 | 1331 | 183 | −0.98 |
WB01-8 | 0.042572 | 0.001069 | 0.000037 | 0.282611 | 0.000015 | 15.69 | 0.282611 | −5.69 | −5.35 | 909 | 1441 | 268 | −0.97 |
WB01-9 | 0.018498 | 0.000552 | 0.000003 | 0.282654 | 0.000012 | 15.69 | 0.282654 | −4.17 | −3.83 | 837 | 1344 | 193 | −0.98 |
WB01-15 | 0.018424 | 0.000552 | 0.000007 | 0.282646 | 0.000012 | 15.69 | 0.282646 | −4.46 | −4.11 | 848 | 1362 | 206 | −0.98 |
WB01-10 | 0.013820 | 0.000408 | 0.000006 | 0.282684 | 0.000011 | 15.69 | 0.282684 | −3.11 | −2.77 | 792 | 1276 | 144 | −0.99 |
WB01-12 | 0.015277 | 0.000445 | 0.000007 | 0.282688 | 0.000012 | 15.69 | 0.282688 | −2.97 | −2.63 | 787 | 1267 | 137 | −0.99 |
WB01-16 | 0.016477 | 0.000475 | 0.000007 | 0.282677 | 0.000012 | 15.69 | 0.282677 | −3.36 | −3.02 | 803 | 1292 | 155 | −0.99 |
WB01-17 | 0.023830 | 0.000661 | 0.000009 | 0.282682 | 0.000012 | 15.69 | 0.282682 | −3.18 | −2.84 | 800 | 1281 | 148 | −0.98 |
WB01-18 | 0.025068 | 0.000788 | 0.000021 | 0.282677 | 0.000012 | 15.69 | 0.282677 | −3.36 | −3.02 | 810 | 1292 | 157 | −0.98 |
WB01-19 | 0.033294 | 0.000876 | 0.000026 | 0.282653 | 0.000013 | 15.69 | 0.282653 | −4.21 | −3.86 | 845 | 1346 | 197 | −0.97 |
WB01-21 | 0.022565 | 0.000664 | 0.000010 | 0.282679 | 0.000012 | 15.69 | 0.282679 | −3.29 | −2.94 | 804 | 1287 | 153 | −0.98 |
WB01-22 | 0.027010 | 0.000798 | 0.000012 | 0.282663 | 0.000012 | 15.69 | 0.282663 | −3.85 | −3.51 | 830 | 1324 | 180 | −0.98 |
WB02-03 | 0.015192 | 0.000444 | 0.000004 | 0.282649 | 0.000011 | 15.91 | 0.282649 | −4.35 | −4.00 | 841 | 1354 | 201 | −0.99 |
WB02-04 | 0.014003 | 0.000445 | 0.000012 | 0.282641 | 0.000011 | 15.91 | 0.282641 | −4.63 | −4.28 | 853 | 1374 | 214 | −0.99 |
WB02-05 | 0.013008 | 0.000399 | 0.000007 | 0.282645 | 0.000011 | 15.91 | 0.282645 | −4.49 | −4.14 | 846 | 1364 | 207 | −0.99 |
WB02-06 | 0.026214 | 0.000790 | 0.000018 | 0.282620 | 0.000012 | 15.91 | 0.28262 | −5.38 | −5.03 | 890 | 1421 | 251 | −0.98 |
WB02-07 | 0.009255 | 0.000310 | 0.000002 | 0.282615 | 0.000010 | 15.91 | 0.282615 | −5.55 | −5.20 | 886 | 1432 | 255 | −0.99 |
WB02-08 | 0.024191 | 0.000723 | 0.000005 | 0.282628 | 0.000012 | 15.91 | 0.282628 | −5.09 | −4.74 | 877 | 1402 | 237 | −0.98 |
WB02-11 | 0.028918 | 0.000891 | 0.000030 | 0.282649 | 0.000010 | 15.91 | 0.282649 | −4.35 | −4.00 | 851 | 1355 | 204 | −0.97 |
WB02-12 | 0.023184 | 0.000667 | 0.000006 | 0.282671 | 0.000012 | 15.91 | 0.282671 | −3.57 | −3.22 | 816 | 1306 | 166 | −0.98 |
WB02-13 | 0.021393 | 0.000611 | 0.000005 | 0.282640 | 0.000010 | 15.91 | 0.28264 | −4.67 | −4.32 | 858 | 1376 | 217 | −0.98 |
WB02-14 | 0.017844 | 0.000502 | 0.000003 | 0.282643 | 0.000011 | 15.91 | 0.282643 | −4.56 | −4.21 | 851 | 1368 | 211 | −0.98 |
WB02-16 | 0.027674 | 0.000731 | 0.000006 | 0.282626 | 0.000012 | 15.91 | 0.282626 | −5.16 | −4.81 | 880 | 1407 | 240 | −0.98 |
WB02-17 | 0.017125 | 0.000474 | 0.000005 | 0.282615 | 0.000011 | 15.91 | 0.282615 | −5.55 | −5.20 | 889 | 1431 | 256 | −0.99 |
WB02-18 | 0.014507 | 0.000412 | 0.000006 | 0.282627 | 0.000011 | 15.91 | 0.282627 | −5.13 | −4.78 | 871 | 1404 | 236 | −0.99 |
WB02-19 | 0.021111 | 0.000570 | 0.000003 | 0.282636 | 0.000011 | 15.91 | 0.282636 | −4.81 | −4.46 | 862 | 1384 | 223 | −0.98 |
WB02-20 | 0.021727 | 0.000582 | 0.000006 | 0.282649 | 0.000012 | 15.91 | 0.282649 | −4.35 | −4.00 | 845 | 1356 | 202 | −0.98 |
WB02-21 | 0.017282 | 0.000481 | 0.000011 | 0.282644 | 0.000012 | 15.91 | 0.282644 | −4.53 | −4.18 | 849 | 1366 | 209 | −0.99 |
WB02-22 | 0.020086 | 0.000553 | 0.000004 | 0.282629 | 0.000012 | 15.91 | 0.282629 | −5.06 | −4.71 | 872 | 1401 | 234 | −0.98 |
WB02-23 | 0.021088 | 0.000586 | 0.000007 | 0.282660 | 0.000012 | 15.91 | 0.28266 | −3.96 | −3.61 | 829 | 1330 | 184 | −0.98 |
WB02-24 | 0.020085 | 0.000544 | 0.000005 | 0.282665 | 0.000011 | 15.91 | 0.282665 | −3.78 | −3.44 | 821 | 1318 | 175 | −0.98 |
Monzogranite | Granodiorite Porphyry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | WB0101 | WB0102 | WB0103 | WB0104 | WB0105 | WB0201 | WB0202 | WB0203 | WB0204 | WB0205 |
SiO2 | 66.33 | 66.52 | 66.14 | 66.75 | 66.48 | 66.80 | 67.31 | 67.67 | 66.83 | 66.66 |
Al2O3 | 15.69 | 15.54 | 15.70 | 15.47 | 15.55 | 15.88 | 16.49 | 16.02 | 15.48 | 16.28 |
TFe2O3 | 3.34 | 3.17 | 3.19 | 3.32 | 3.14 | 3.29 | 2.97 | 3.15 | 3.09 | 3.07 |
CaO | 3.00 | 3.40 | 3.42 | 3.21 | 2.96 | 1.26 | 1.53 | 1.23 | 0.89 | 1.50 |
MgO | 1.58 | 1.47 | 1.51 | 1.52 | 1.55 | 1.37 | 1.45 | 1.36 | 1.20 | 1.46 |
K2O | 4.16 | 3.78 | 3.82 | 3.86 | 4.00 | 4.18 | 4.00 | 4.34 | 4.33 | 4.02 |
Na2O | 3.70 | 3.86 | 3.90 | 3.84 | 3.77 | 3.85 | 4.22 | 3.91 | 3.89 | 4.22 |
P2O5 | 0.20 | 0.20 | 0.19 | 0.20 | 0.20 | 0.067 | 0.059 | 0.064 | 0.074 | 0.057 |
MnO | 0.050 | 0.052 | 0.054 | 0.051 | 0.041 | 0.044 | 0.043 | 0.046 | 0.034 | 0.033 |
TiO2 | 0.55 | 0.56 | 0.56 | 0.53 | 0.52 | 0.56 | 0.55 | 0.52 | 0.54 | 0.51 |
FeO | 1.41 | 1.41 | 1.46 | 1.46 | 1.38 | 0.91 | 1.00 | 0.85 | 0.85 | 1.02 |
Fe2O3 | 1.77 | 1.6 | 1.57 | 1.7 | 1.6 | 2.28 | 1.85 | 2.21 | 2.15 | 1.94 |
LOI | 1.36 | 1.05 | 1.03 | 0.78 | 1.11 | 1.71 | 1.50 | 1.62 | 1.86 | 1.52 |
Sr | 791.5 | 820.3 | 816.7 | 823.7 | 776.9 | 618.1 | 715.8 | 615.8 | 581.8 | 714.1 |
Ba | 875.4 | 715.6 | 755.0 | 655.1 | 837.0 | 727.0 | 777.1 | 892.7 | 784.7 | 770.3 |
V | 49.1 | 52.3 | 56.5 | 50.2 | 54.4 | 54.9 | 49.0 | 52.8 | 45.8 | 51.6 |
Zr | 131.9 | 138.0 | 138.9 | 141.4 | 147.7 | 153.4 | 148.7 | 154.6 | 138.1 | 159.1 |
Li | 47.8 | 48.8 | 51.6 | 38.6 | 50.7 | 25.3 | 25.3 | 24.7 | 19.6 | 24.5 |
Be | 3.62 | 4.00 | 4.40 | 3.98 | 3.98 | 4.43 | 4.13 | 3.89 | 4.12 | 4.07 |
Sc | 4.87 | 4.82 | 4.70 | 5.08 | 4.92 | 4.53 | 4.35 | 4.45 | 4.25 | 4.67 |
Cr | 21.8 | 21.4 | 21.9 | 24.1 | 21.9 | 21.3 | 20.2 | 25.0 | 21.1 | 23.7 |
Co | 8.63 | 8.25 | 8.59 | 8.76 | 8.58 | 6.92 | 5.80 | 6.09 | 5.85 | 6.19 |
Ni | 12.7 | 12.3 | 13.0 | 13.5 | 13.5 | 13.2 | 12.5 | 12.8 | 11.8 | 13.1 |
Cu | 16.6 | 40.3 | 29.4 | 17.4 | 6.36 | 87.3 | 83.1 | 89.9 | 125 | 79.9 |
Zn | 83.3 | 105 | 104 | 74.1 | 69.9 | 73.0 | 165 | 92.1 | 70.1 | 76.4 |
Ga | 18.5 | 19.3 | 19.3 | 18.4 | 19.1 | 18.2 | 18.5 | 18.2 | 18.3 | 18.3 |
Ge | 1.08 | 1.20 | 1.32 | 1.12 | 1.20 | 1.10 | 1.14 | 1.14 | 1.15 | 1.17 |
Rb | 197 | 179 | 182 | 184 | 184 | 195 | 190 | 197 | 200 | 192 |
Y | 8.59 | 8.64 | 8.50 | 8.99 | 8.82 | 5.29 | 4.32 | 5.03 | 6.45 | 4.94 |
Nb | 7.39 | 7.62 | 7.67 | 7.93 | 7.67 | 9.01 | 8.75 | 8.70 | 8.48 | 8.51 |
Mo | 0.57 | 0.51 | 0.54 | 0.45 | 0.56 | 2.11 | 6.60 | 2.26 | 2.52 | 7.87 |
Rh | 81.0 | 89.1 | 86.6 | 90.1 | 85.8 | 87.2 | 85.3 | 89.0 | 88.5 | 95.3 |
Cd | 0.11 | 0.12 | 0.16 | 0.057 | 0.056 | 0.079 | 0.25 | 0.18 | 0.091 | 0.076 |
Cs | 6.86 | 6.60 | 6.96 | 4.64 | 7.10 | 12.4 | 12.6 | 11.8 | 10.5 | 12.8 |
La | 33.1 | 33.7 | 33.6 | 35.2 | 33.3 | 26.1 | 25.3 | 27.7 | 26.6 | 26.8 |
Ce | 65.3 | 66.7 | 66.2 | 70.1 | 66.9 | 54.5 | 54.2 | 56.0 | 54.4 | 53.1 |
Pr | 7.61 | 7.76 | 7.60 | 8.06 | 7.63 | 5.51 | 5.72 | 5.83 | 5.73 | 5.88 |
Nd | 28.2 | 28.8 | 28.1 | 29.9 | 28.9 | 20.4 | 21.3 | 20.9 | 21.6 | 21.8 |
Sm | 4.54 | 4.70 | 4.55 | 4.85 | 4.68 | 3.83 | 3.66 | 3.91 | 4.51 | 3.76 |
Eu | 1.09 | 1.08 | 1.04 | 1.10 | 1.09 | 1.09 | 0.96 | 1.09 | 1.25 | 1.02 |
Gd | 3.27 | 3.25 | 3.19 | 3.36 | 3.24 | 3.02 | 2.53 | 2.93 | 3.74 | 2.74 |
Tb | 0.39 | 0.39 | 0.39 | 0.41 | 0.40 | 0.38 | 0.31 | 0.35 | 0.46 | 0.33 |
Dy | 1.89 | 1.89 | 1.86 | 1.95 | 1.89 | 1.62 | 1.31 | 1.50 | 2.02 | 1.44 |
Ho | 0.32 | 0.31 | 0.31 | 0.32 | 0.32 | 0.24 | 0.19 | 0.23 | 0.29 | 0.22 |
Er | 0.69 | 0.69 | 0.66 | 0.71 | 0.71 | 0.36 | 0.28 | 0.35 | 0.49 | 0.34 |
Tm | 0.12 | 0.11 | 0.11 | 0.12 | 0.11 | 0.058 | 0.051 | 0.054 | 0.069 | 0.055 |
Yb | 0.73 | 0.73 | 0.71 | 0.74 | 0.74 | 0.34 | 0.28 | 0.32 | 0.38 | 0.32 |
Lu | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.044 | 0.040 | 0.045 | 0.049 | 0.041 |
Hf | 4.46 | 4.95 | 4.90 | 5.13 | 5.01 | 5.16 | 5.03 | 5.46 | 4.14 | 5.46 |
Ta | 0.67 | 0.68 | 0.66 | 0.66 | 0.67 | 0.76 | 0.70 | 0.69 | 0.70 | 0.67 |
W | 1.38 | 1.30 | 1.30 | 0.87 | 1.01 | 2.45 | 0.90 | 2.66 | 2.62 | 0.74 |
Re | 92.5 | 102 | 99.0 | 101 | 97.3 | 97.5 | 96.4 | 99.0 | 99.7 | 106 |
Pb | 35.2 | 40.5 | 70.0 | 32.5 | 27.7 | 29.7 | 99.6 | 37.4 | 31.0 | 44.6 |
Th | 21.0 | 25.6 | 22.3 | 24.4 | 22.0 | 11.9 | 12.1 | 12.5 | 12.2 | 12.1 |
U | 4.95 | 5.37 | 5.32 | 5.56 | 5.12 | 2.54 | 6.89 | 2.87 | 2.59 | 7.73 |
As | 4.46 | 5.09 | 6.35 | 4.14 | 6.94 | 1.43 | 4.16 | 13.2 | 1.16 | 1.23 |
Sr/Y | 92 | 95 | 96 | 92 | 88 | 117 | 166 | 122 | 90 | 145 |
Eu/Eu* | 0.87 | 0.84 | 0.84 | 0.83 | 0.85 | 0.98 | 0.96 | 0.98 | 0.93 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Zhang, Z.; Zhang, L.; Xu, P.; Yang, Y.; Wu, J.; Li, Y.; Sun, M.; Su, W. Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry. Minerals 2025, 15, 500. https://doi.org/10.3390/min15050500
Gao K, Zhang Z, Zhang L, Xu P, Yang Y, Wu J, Li Y, Sun M, Su W. Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry. Minerals. 2025; 15(5):500. https://doi.org/10.3390/min15050500
Chicago/Turabian StyleGao, Ke, Zhi Zhang, Linkui Zhang, Peiyan Xu, Yi Yang, Jianyang Wu, Yingxu Li, Miao Sun, and Wenpeng Su. 2025. "Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry" Minerals 15, no. 5: 500. https://doi.org/10.3390/min15050500
APA StyleGao, K., Zhang, Z., Zhang, L., Xu, P., Yang, Y., Wu, J., Li, Y., Sun, M., & Su, W. (2025). Significance of Adakitic Plutons for Mineralization in Wubaduolai Copper Deposit, Xizang: Evidence from Zircon U-Pb Age, Hf Isotope, and Geochemistry. Minerals, 15(5), 500. https://doi.org/10.3390/min15050500