Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = porous leakage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3003 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 - 1 Aug 2025
Viewed by 210
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Graphical abstract

19 pages, 5269 KiB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 322
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 319
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 601
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 2822 KiB  
Article
Research on the Mechanism of Wellbore Strengthening Influence Based on Finite Element Model
by Erxin Ai, Qi Li, Zhikun Liu, Liupeng Wang and Chengyun Ma
Processes 2025, 13(7), 2185; https://doi.org/10.3390/pr13072185 - 8 Jul 2025
Viewed by 281
Abstract
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In [...] Read more.
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In recent years, advanced sealing technologies such as wellbore reinforcement have gradually been applied and developed, but their related influencing factors and mechanisms have not been deeply revealed. This article uses the Cohesive module of ABAQUS to establish a wellbore fracture sealing model. By establishing a porous elastic finite element model, the elastic mechanics theory of porous media is combined with finite element theory. Under the influence of factors such as anisotropy of geostress, reservoir elastic modulus, Poisson’s ratio, and fracturing fluid viscosity, the circumferential stress distribution of the wellbore after fracture sealing is simulated. The simulation results show that stress anisotropy has a significant impact on Mises stress. The greater the stress anisotropy, the more likely the wellbore sealing is to cause wellbore rupture or instability. Therefore, it is necessary to choose a suitable wellbore direction to avoid high stress concentration areas. The elastic modulus of the reservoir is an important parameter that affects wellbore stability and fracturing response, especially in high modulus reservoirs where the effect is more pronounced. Poisson’s ratio has a relatively minor impact. In fracturing and plugging design, the viscosity of fracturing fluid should be reasonably selected to balance the relationship between plugging efficiency and wellbore mechanical stability. In the actual drilling process, priority should be given to choosing the wellbore direction that avoids high stress concentration areas to reduce the risk of wellbore rupture or instability induced by plugging, specify targeted wellbore reinforcement strategies for high elastic modulus reservoirs; using models to predict fracture response characteristics can guide the use of sealing materials, achieve efficient bridging and stable sealing, and enhance the maximum pressure bearing capacity of the wellbore. By simulating the changes in circumferential stress distribution of the wellbore after fracture sealing, the mechanism of wellbore reinforcement was explored to provide guidance for mechanism analysis and on-site application. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 637
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

15 pages, 2040 KiB  
Article
Research on the Flame-Retardant Performance of Antioxidant Gel Foam in Preventing Spontaneous Coal Combustion
by Hu Wen, Ziqi Wang and Maoxia Liu
Fire 2025, 8(7), 247; https://doi.org/10.3390/fire8070247 - 26 Jun 2025
Viewed by 328
Abstract
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal [...] Read more.
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal spontaneous combustion. A novel antioxidant gel foam was formulated by incorporating TBHQ and modified montmorillonite into a sodium alginate-based gel system. This formulation enhances the thermal stability, water retention, and free radical scavenging capacity of the gel. This study uniquely combines multi-scale experimental methods to evaluate the performance of this material in coal fire suppression. Multi-scale experiments, including FTIR, leakage air testing, programmed temperature rise, and small-scale fire extinction, were conducted to evaluate its performance. Experimental results indicate that the antioxidant gel foam exhibits excellent thermal stability in the temperature range of 200–500 °C. Its relatively high decomposition temperature enables it to effectively resist structural damage in high-temperature environments. During thermal decomposition, the gel releases only a small amount of gas, while maintaining the integrity of its internal micro-porous structure. This characteristic significantly delays the kinetics of coal oxidation reactions. Further research revealed that the spontaneous combustion ignition temperature of coal samples treated with the gel was significantly higher, and the oxygen consumption rate during spontaneous combustion was significantly reduced, indicating that the gel not only effectively suppressed the acceleration of the combustion reaction but also significantly reduced the release of harmful gases such as HCl. Scanning electron microscope analysis confirmed that the gel maintained a good physical structure under high temperatures, forming an effective oxygen barrier, which further enhanced the suppression of coal spontaneous combustion. These findings provide important theoretical and practical guidance for the application of antioxidant gel foams in coal mine fire prevention and control, confirming that this material has great potential in coal mine fire safety, offering a new technological approach to improve coal mine safety. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

11 pages, 672 KiB  
Article
A Multicenter, Randomized, Single-Blind Trial Evaluating a Multi-Porous Urethral Catheter with Continuous Local Ropivacaine Infusion for the Reduction of Postoperative Catheter-Related Bladder Discomfort
by Sangmin Lee, Kwang Taek Kim, Tae Beom Kim, Kyung Jin Chung, Kookjin Huh, Hwanik Kim and Sang Hoon Song
J. Clin. Med. 2025, 14(12), 4215; https://doi.org/10.3390/jcm14124215 - 13 Jun 2025
Viewed by 428
Abstract
Background/Objectives: Catheter-related bladder discomfort (CRBD) commonly occurs in patients undergoing urologic surgery and significantly affects patient comfort and recovery. We evaluated the efficacy and safety of continuous local ropivacaine infusion using a specialized multi-porous urethral catheter in reducing postoperative CRBD. Methods: This [...] Read more.
Background/Objectives: Catheter-related bladder discomfort (CRBD) commonly occurs in patients undergoing urologic surgery and significantly affects patient comfort and recovery. We evaluated the efficacy and safety of continuous local ropivacaine infusion using a specialized multi-porous urethral catheter in reducing postoperative CRBD. Methods: This multicenter, prospective, randomized, single-blind trial enrolled 136 male patients undergoing short-term catheterization after urologic surgery. Participants were randomized into three groups—a control group receiving saline infusion, Group 1 receiving 0.5% ropivacaine at 1 mL/h, and Group 2 receiving 0.5% ropivacaine at 2 mL/h—for up to 48 h via a multi-porous urethral catheter. The primary outcome was the incidence of CRBD at 24 h postoperatively. Secondary outcomes included changes in urethral pain assessed by a visual analog scale (VAS), urinary symptom scores, complication rates, and patient-reported catheter inconvenience and reuse intention using Likert scales. Results: The incidence of CRBD was significantly lower in Group 1 (19.6%) and Group 2 (11.1%) compared to the control group (44.4%; p = 0.001), demonstrating a clear dose–response relationship. Changes in urethral pain scores (VAS) from baseline were significantly lower in the ropivacaine groups compared to the control (p = 0.023). Complication rates were similar among groups (control 13.3%, Group 1 6.5%, Group 2 15.6%; p = 0.378), although catheter leakage occurred more frequently in Group 2, without statistical significance (p = 0.122). Conclusions: Continuous local ropivacaine infusion using a multi-porous urethral catheter effectively reduces the incidence of postoperative CRBD without increasing side effects. This approach may improve patient comfort during perioperative catheter management. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

20 pages, 3859 KiB  
Article
Symmetric and Asymmetric Semi-Metallic Gasket Cores and Their Effect on the Tightness Level of the Bolted Flange Joint
by Przemysław Jaszak and Rafał Grzejda
Materials 2025, 18(11), 2624; https://doi.org/10.3390/ma18112624 - 4 Jun 2025
Viewed by 473
Abstract
The paper presents the effect of the symmetric and asymmetric semi-metallic gasket core shape on the tightness level in bolted flange joints. Experimental tests, as well as numerical calculations based on the finite element method, revealed that the asymmetric gasket core provides a [...] Read more.
The paper presents the effect of the symmetric and asymmetric semi-metallic gasket core shape on the tightness level in bolted flange joints. Experimental tests, as well as numerical calculations based on the finite element method, revealed that the asymmetric gasket core provides a higher strain on the sealing graphite layer and leads to a more uniform distribution of strain on the particular ridges of the core. Furthermore, the leakage rate of the asymmetric gasket was reduced by approximately 60% compared to the symmetric gasket. It was also observed that the uniformity of pressure and strain distribution in a gasket with an asymmetric core occurs over about 80% of the gasket width. The leakage reduction effect in a flange joint sealed with a gasket with an asymmetric core was theoretically explained. As shown, the main leakage flows through the porous structure of the graphite layer, while the leakage path at the interface between the metal rough profile and the graphite layer is several orders of magnitude smaller. Full article
Show Figures

Figure 1

22 pages, 6198 KiB  
Article
Engineering a Dual-Function Starch–Cellulose Composite for Colon-Targeted Probiotic Delivery and Synergistic Gut Microbiota Regulation in Type 2 Diabetes Therapeutics
by Ruixiang Liu, Yikang Ding, Yujing Xu, Qifeng Wu, Yanan Chen, Guiming Yan, Dengke Yin and Ye Yang
Pharmaceutics 2025, 17(5), 663; https://doi.org/10.3390/pharmaceutics17050663 - 17 May 2025
Viewed by 839
Abstract
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, [...] Read more.
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, comprising the following: (1) a retrograded starch shell with acid/enzyme-resistant crystallinity to protect probiotics from gastric degradation; (2) a porous cellulose core derived from Pueraria lobata’s natural microstructure, serving as a colonization scaffold for probiotics. Results: Structural characterization confirmed the shell’s resistance to acidic/pancreatic conditions and the core’s hierarchical porosity for bacterial encapsulation. pH/enzyme-responsive release kinetics were validated via fluorescence imaging, demonstrating targeted probiotic delivery to the colon with minimal gastric leakage. In diabetic models, the CTDS significantly reduced fasting blood glucose and improved dyslipidemia, while histopathological analysis revealed restored hepatic and pancreatic tissue architecture. Pharmacologically, the system acted as both a probiotic delivery vehicle and a microbiota modulator, selectively enriching Allobaculum and other short-chain fatty acid (SCFA)-producing bacteria to enhance SCFA biosynthesis and metabolic homeostasis. The CTDS further exhibited direct compression compatibility, enabling its translation into scalable oral dosage forms (e.g., tablets). Conclusions: By integrating natural material engineering, microbiota-targeted delivery, and tissue repair, this platform bridges the gap between pharmaceutical-grade probiotic protection and metabolic intervention in T2DM. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

25 pages, 6242 KiB  
Article
Development and Characterization of an Injectable Alginate/Chitosan Composite Hydrogel Reinforced with Cyclic-RGD Functionalized Graphene Oxide for Potential Tissue Regeneration Applications
by Mildred A. Sauce-Guevara, Sergio D. García-Schejtman, Emilio I. Alarcon, Sergio A. Bernal-Chavez and Miguel A. Mendez-Rojas
Pharmaceuticals 2025, 18(5), 616; https://doi.org/10.3390/ph18050616 - 23 Apr 2025
Cited by 1 | Viewed by 1633
Abstract
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with [...] Read more.
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with graphene oxide (GOx) and cyclic arginylglycylaspartic acid (c-RGD). The objective was to create a multifunctional platform combining injectability, bioactivity, and structural stability. Methods: The OA/NSC/GOx-cRGD hydrogel was synthesized through Schiff base cross-linking (aldehyde-amine reaction). Characterization included FTIR (C=N bond at 1650 cm⁻¹), Raman spectroscopy (D/G bands at 1338/1567 cm⁻¹), SEM (porous microstructure), and rheological analysis (shear-thinning behavior). In vitro assays assessed fibroblast viability (MTT) and macrophage TNF-α secretion (ELISA), while ex-vivo injectability and retention were evaluated using chicken cardiac tissue. Results: The hydrogel exhibited shear-thinning behavior (viscosity: 10 to <1 Pa·s) and elastic-dominated mechanics (G′ > G″), ensuring injectability. SEM revealed an interconnected porous structure mimicking native extracellular matrix. Fibroblast viability remained ≥95%, and TNF-α secretion in macrophages decreased by 80% (30 vs. 150 pg/μL in controls), demonstrating biocompatibility and anti-inflammatory effects. The hydrogel adhered stably to cardiac tissue without leakage. Conclusions: The OA/NSC/GOx-cRGD composite integrates injectability, bioactivity, and structural stability, offering a promising scaffold for tissue regeneration. Its modular design allows further functionalization with peptides or growth factors. Future work will focus on translational applications, including scalability and optimization for dynamic biological environments. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

22 pages, 7708 KiB  
Article
Top and Side Leakage Effects on Thermoregulation and Moisture Retention with Facemask Wearing
by Kian Barari, Xiuhua Si, Rozhin Hajian and Jinxiang Xi
J. Respir. 2025, 5(2), 5; https://doi.org/10.3390/jor5020005 - 3 Apr 2025
Viewed by 1185
Abstract
Background/Objectives: Mask-wearing-induced discomfort often leads to unconscious loosening of the mask to relieve the discomfort, thereby compromising protective efficacy. This study investigated how leakage flows affect mask-associated thermoregulation and vapor trapping to inform better mask designs. An integrated ambience–mask–face–airway model with various mask-wearing [...] Read more.
Background/Objectives: Mask-wearing-induced discomfort often leads to unconscious loosening of the mask to relieve the discomfort, thereby compromising protective efficacy. This study investigated how leakage flows affect mask-associated thermoregulation and vapor trapping to inform better mask designs. An integrated ambience–mask–face–airway model with various mask-wearing misfits was developed. Methods: The transient warming/cooling effects, thermal buoyancy force, tissue heat generation, vapor phase change, and fluid/heat/mass transfer through a porous medium were considered in this model, which was validated using Schlieren imaging, a thermal camera, and velocity/temperature measurements. Leakages from the top and side of the mask were analyzed in comparison to a no-leak scenario under cyclic respiration conditions. Results: A significant inverse relationship was observed between mask leakage and facial temperature/humidity. An equivalent impact from buoyancy forces and exhalation flow inertia was observed both experimentally and numerically, indicating a delicate balance between natural convection and forced convection, which is sensitive to leakage flows and critical in thermo-humidity regulation. For a given gap, the leakage fraction was not constant within one breathing cycle but constantly increased during exhalation. Persistently higher temperatures were found in the nose region throughout the breathing cycle in a sealed mask and were mitigated during inhalation when gaps were present. Vapor condensation occurred within the mask medium during exhalation in all mask-wearing cases. Conclusions: The thermal and vapor temporal variation profiles were sensitive to the location of the gap, highlighting the feasibility of leveraging temperature and relative humidity to test mask fit and quantify leakage fraction. Full article
(This article belongs to the Collection Feature Papers in Journal of Respiration)
Show Figures

Figure 1

34 pages, 20653 KiB  
Article
A Numerical Study of the Sealing and Interstage Pressure Drop Characteristics of a Four-Tooth Three-Stage Brush Combination Seal
by Chao Gu, Yingqun Ma, Wei Zhao, Xiuming Sui, Bin Hu and Qingjun Zhao
Appl. Sci. 2025, 15(7), 3899; https://doi.org/10.3390/app15073899 - 2 Apr 2025
Viewed by 395
Abstract
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage [...] Read more.
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage rate increases. This study addresses the pressure imbalance phenomenon in four-tooth three-stage brush composite seals through a novel fractal–geometric porous-media model, rigorously validated against experimental data. Systematic investigations were conducted to elucidate the effects of structural parameters and operational conditions on both sealing performance and pressure distribution characteristics. Key findings reveal that, under the prototype structure parameter, the first-, second-, and third-stage brush bundles account for 18.3%, 30.0%, and 43.3% of the total pressure drop, respectively, with grate teeth contributing 8.4%, demonstrating an inherent pressure imbalance. Axial brush spacing exhibits a minimal impact on the pressure distribution, while the gradient thickness settings of the brush bundles show limited influence. Radial clearance optimization and gradient backplate height adjustment effectively regulate pressure distribution, albeit with associated leakage rate increases. Structural modifications based on these principles achieved only a 5.8% leakage increment while reducing the maximum bundle pressure drop by 23%, demonstrating effective pressure balancing. A simplified analysis of entropy reveals that the fundamental mechanism governing the pressure imbalance stems from non-uniform entropy generation caused by aerodynamic damping dissipation across sequential brush stages. These findings establish a dampened dissipation-based theoretical framework for designing high-performance multistage brush seals in aerospace applications, providing critical insights for achieving an optimal balance between leakage control and pressure equalization in extreme-pressure environments. Full article
Show Figures

Figure 1

18 pages, 3668 KiB  
Article
Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling
by Ludi Song, Chengyi Dai, Zifei Chai, Mengzhe Cai, Huazhang Li, Sifan Wu, Lin Zhang, Yaqin Wu and Haitao Zhu
Membranes 2025, 15(4), 100; https://doi.org/10.3390/membranes15040100 - 31 Mar 2025
Viewed by 774
Abstract
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged [...] Read more.
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged into a single process for the pretreatment of sulfide-containing seawater. Powdered activated carbon (PAC) was selected for its superior adsorption capacity (14.6-fold) and faster kinetics (3.9-fold) for sulfide removal compared to granular activated carbon. The high surface area and multiple pore structures of PAC facilitate surface and intraparticle diffusion, as well as anion–π conjugation likely occur between PAC and sulfide. Polypropylene microporous membranes, capable of tolerating high PAC dosages, were used in the hybrid process. Long-term pilot tests demonstrated that the effluent (turbidity < 1 NTU and SDI15 ≈ 2.50) met the quality requirements for RO unit feedwater, achieving 100% sulfide removal efficiency over 101 h, with no risk of PAC leakage throughout the entire operation process. The formation of a loose, porous PAC cake layer alleviates membrane fouling and enhances the retention and adsorption of metal(loid)s and sulfide. Moreover, the low permeate flux of the polymeric membranes significantly mitigates filter cake formation. The hybrid system adapts to variations in feedwater quality, making it highly suitable for desalination plants with limited space and budget. These findings offer valuable insights and practical guidance for advancing seawater desalination pretreatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 4543 KiB  
Article
Encapsulation Efficiency of Electrosprayed Glucose Oxidase Capsules: Effect of the Drying Technique
by Minerva Rentería-Ortega, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Rigoberto Barrios-Francisco, Liliana Edith Rojas-Candelas and Georgina Calderón-Domínguez
Polymers 2025, 17(4), 488; https://doi.org/10.3390/polym17040488 - 13 Feb 2025
Viewed by 1188
Abstract
Glucose oxidase (GOX) is widely used in bakery applications to improve dough rheology and bread quality. However, its direct addition to formulations limits its functionality due to premature enzymatic activity. This study used electrospraying to encapsulate GOX using chia mucilage and sodium alginate [...] Read more.
Glucose oxidase (GOX) is widely used in bakery applications to improve dough rheology and bread quality. However, its direct addition to formulations limits its functionality due to premature enzymatic activity. This study used electrospraying to encapsulate GOX using chia mucilage and sodium alginate as biopolymeric wall materials. Three drying methods—critical point drying (CPD), Lyophilization/freeze-drying (LC), and oven drying (OD)—were compared to evaluate their impact on encapsulation efficiency (EE), enzymatic activity retention, and microstructural integrity. Our findings reveal that CPD preserved the porous structure of the microcapsules, minimizing enzymatic leakage and yielding the highest EE (70%). In contrast, LC induced ice crystal formation, disrupting the polymer network and leading to a moderate EE (27.43%), whereas OD resulted in extensive capsule shrinkage, causing significant enzyme loss (57.1%). The release kinetics of GOX during mixing were best described by the Korsmeyer–Peppas model (R2 = 0.999), indicating a non-Fickian diffusion mechanism influenced by polymer relaxation. These results demonstrate that drying technique selection plays a crucial role in encapsulated enzymes’ stability and release behavior, providing new insights for optimizing enzyme delivery in bakery applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop