Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Batch Adsorption Experiments and Analysis
2.3. Experimental Setup and Operation
2.4. Samples Characterization
3. Results and Discussion
3.1. Adsorption, Physical, and Chemical Characteristics of AC
3.2. Establishment of the Hybrid Adsorption–Microfiltration System
3.3. Long-Term Pilot of the Hybrid Adsorption–Microfiltration Process
3.4. Fouling Tendency of the Submerged Flat-Sheet Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RO | Reverse osmosis |
SWRO | Seawater reverse osmosis |
MF | Microfiltration |
UF | Ultrafiltration |
NF | Nanofiltration |
AC | Activated carbon |
CODMn | Chemical oxygen demand |
PAC | Powdered activated carbon |
GAC | Granular-activated carbon |
SDI15 | Silt density index |
TMP | Transmembrane pressure |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffractometer |
WCA | Water contact angles |
SEM | Scanning electron microscope |
EDS | Energy-dispersive X-ray spectroscopy |
SBET | Specific surface area |
Rt | Total filtration resistance |
References
- Jones, E.; Qadir, M.; van Vliet, M.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Abushaban, A.; Salinas-Rodriguez, S.; Philibert, M.; Bouille, L.; Necibi, M.; Chehbouni, A. Biofouling potential indicators to assess pretreatment and mitigate biofouling in SWRO membranes: A short review. Desalination 2022, 527, 115543. [Google Scholar] [CrossRef]
- Tong, T.; Liu, X.; Li, T.; Park, S.; Anger, B. A tale of two foulants: The coupling of organic fouling and mineral scaling in membrane desalination. Environ. Sci. Technol. 2023, 57, 7129–7149. [Google Scholar] [CrossRef]
- Zhu, Q.; Aller, R. Planar fluorescence sensors for two-dimensional measurements of H2S distributions and dynamics in sedimentary deposits. Mar. Chem. 2013, 157, 49–58. [Google Scholar] [CrossRef]
- Meneses, M.; Beaulieu, S.; Best, A.; Dykman, L.; Mills, S.; Wu, J.-N.; Mullineaux, L. Vertical distributions of megafauna on inactive vent sulfide features correspond to their feeding modes. Mar. Environ. Res. 2024, 200, 106649. [Google Scholar] [CrossRef] [PubMed]
- Shooter, D. Sources and sinks of oceanic hydrogen sulfide—An overview. Atmos. Environ. 1999, 33, 3467–3472. [Google Scholar] [CrossRef]
- Nederlof, M.; Kruithof, J.; Taylor, J.; van der Kooij, D.; Schippers, J. Comparison of NF/RO membrane performance in integrated membrane systems. Desalination 2000, 131, 257–269. [Google Scholar] [CrossRef]
- Stein, S.; Sivan, O.; Yechieli, Y.; Kasher, R. Redox condition of saline groundwater from coastal aquifers influences reverse osmosis desalination process. Water Res. 2021, 188, 116508. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.; Troyer, T.; Tominello, R. Chemical control of colloidal fouling of reverse osmosis systems. Desalination 2005, 172, 1–6. [Google Scholar] [CrossRef]
- Jaspal, D.; Malviya, A.; Allaoui, B.; Zari, N.; Bouhfid, R.; Qaiss, A.; Bhagwat, S. Emerging advances of composite membranes for seawater pre-treatment: A review. Water Sci. Technol. 2023, 88, 408–429. [Google Scholar] [CrossRef]
- Poirier, K.; Lotfi, M.; Garg, K.; Patchigolla, K.; Anthony, E.; Faisal, N.; Mulgundmath, V.; Sahith, J.; Jadhawar, P.; Koh, L.; et al. A comprehensive review of pre- and post-treatment approaches to achieve sustainable desalination for different water streams. Desalination 2023, 566, 116944. [Google Scholar] [CrossRef]
- Xu, B.; Lu, X.; Fu, Y.; Diao, L.; Liang, H.; Bae, S.; Ng, H.; Ma, J. Novel use of ferrous iron/peroxymonosulfate for high-performance seawater desalination pretreatment under harmful algal blooms. Water Res. 2023, 247, 120758. [Google Scholar] [CrossRef] [PubMed]
- Yadai, T.; Suzuki, Y. Development of softening and ballasted flocculation as a pretreatment process for seawater desalination through a reverse osmosis membrane. NPJ Clean Water 2023, 6, 7. [Google Scholar] [CrossRef]
- Sun, C.; Xie, L.; Li, X.; Sun, L.; Dai, H. Study on different ultrafiltration-based hybrid pretreatment systems for reverse osmosis desalination. Desalination 2015, 371, 18–25. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, H.; Fu, Q.; Yu, J.; Zhong, H.; Lin, W.; Wang, J.; Fang, J.; Zhu, F.; Ouyang, G. Peroxymonosulfate based in situ chemical oxidation: An efficient strategy for mitigation of membrane fouling in real seawater reverse osmosis desalination. Chem. Eng. J. 2023, 473, 145416. [Google Scholar] [CrossRef]
- Al-Kaabi, A.; Al-Sulaiti, H.; Al-Ansari, T.; Mackey, H. Assessment of water quality variations on pretreatment and environmental impacts of SWRO desalination. Desalination 2021, 500, 114831. [Google Scholar] [CrossRef]
- Pesarakloo, V.; Hassani, A.; Alipour, V.; Javid, A. Technical and economic of various pretreatment methods for desalination of seawater using reverse osmosis. Int. J. Environ. Sci. Technol. 2024, 21, 8519–8534. [Google Scholar] [CrossRef]
- Monnot, M.; Laborie, S.; Cabassud, C. Granular activated carbon filtration plus ultrafiltration as a pretreatment to seawater desalination lines: Impact on water quality and UF fouling. Desalination 2016, 383, 1–11. [Google Scholar] [CrossRef]
- Al-Malack, M.; Anderson, G. Use of crossflow microfiltration in wastewater treatment. Water Res. 1997, 31, 3064–3072. [Google Scholar] [CrossRef]
- Kang, S.-K.; Choo, K.-H. Why does a mineral oxide adsorbent control fouling better than powdered activated carbon in hybrid ultrafiltration water treatment? J. Membr. Sci. 2010, 355, 69–77. [Google Scholar] [CrossRef]
- Cermikli, E.; Sen, F.; Altıok, E.; Wolska, J.; Cyganowski, P.; Kabay, N.; Bryjak, M.; Arda, M.; Yüksel, M. Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination 2020, 491, 114504. [Google Scholar]
- Yan, M.; Shen, X.; Gao, B.; Guo, K.; Yue, Q. Coagulation-ultrafiltration integrated process for membrane fouling control: Influence of Al species and SUVA values of water. Sci. Total Environ. 2021, 793, 148517. [Google Scholar] [PubMed]
- Ilango, A.; Jiang, T.; Zhang, W.; Pervez, M.; Feldblyum, J.; Efstathiadis, H.; Liang, Y. Enhanced adsorption of mixtures of per- and polyfluoroalkyl substances in water by chemically modified activated carbon. ACS EST Water 2023, 3, 3708–3715. [Google Scholar] [CrossRef]
- Golea, D.; Jarvis, P.; Jefferson, B.; Moore, G.; Sutherland, S.; Parsons, S.; Judd, S. Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Res. 2020, 174, 115613. [Google Scholar]
- Zhang, J.; Yu, S.; Wang, J.; Zhao, Z.-P.; Cai, W. Advanced water treatment process by simultaneous coupling granular activated carbon (GAC) and powdered carbon with ultrafiltration: Role of GAC particle shape and powdered carbon type. Water Res. 2023, 231, 119606. [Google Scholar] [CrossRef]
- Seo, Y.; Pooi, C.; Ng, H. Recommendation on the selection of powdered activated carbon as carrier to enhance performance of polymeric UF membrane. J. Membr. Sci. 2025, 713, 123226. [Google Scholar]
- Wang, Y.; Yu, S.; Cai, W. Study on an integrated water treatment system by simultaneously coupling granular activated carbon (GAC) and powdered carbon with ultrafiltration. Separations 2024, 11, 312. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, W.; Lv, W.; Dong, B. Performance of PAC treatments on MF membrane fouling behavior and mechanism by various algogenic organic matter. Desalin. Water Treat. 2020, 190, 28–43. [Google Scholar]
- Yu, S.; Wang, J.; Zhao, Z.; Cai, W. Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment. Sep. Purif. Technol. 2022, 282, 120085. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, Z.-P.; Cai, W. Chemically induced alteration in PAC characteristics and its influences on PAC/UF water treatment: Implications for on-line membrane cleaning with NaClO. Sep. Purif. Technol. 2022, 294, 121130. [Google Scholar]
- Alameddine, M.; Liu, Z.; Sauvé, S.; Barbeau, B. Comparative assessment of powdered versus granular activated carbon for PFAS removal in drinking water treatment plants. ACS EST Water 2025, 5, 851–861. [Google Scholar]
- Ngo, M.; Ueyama, T.; Makabe, R.; Bui, X.-T.; Nghiem, L.; Nga, T.; Fujioka, T. Fouling behavior and performance of a submerged flat-sheet nanofiltration membrane system for direct treatment of secondary wastewater effluent. J. Water Process Eng. 2021, 41, 101991. [Google Scholar]
- Bopape, M.; Geel, T.; Dutta, A.; Bruggen, B.; Onyango, M. Numerical modelling assisted design of a compact ultrafiltration (UF) flat sheet membrane module. Membranes 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Meng, L.; Sui, H.; Yang, J.; Guo, F.; Zhao, X.; Wei, S.; Shan, B.; Han, Z.; Dionysiou, D. Study on DeNOx of NaClO2 in simulated seawater solution enhanced by hydrodynamic cavitation. Sep. Purif. Technol. 2024, 330, 125190. [Google Scholar]
- Lawrence, N.; Davis, J.; Compton, R. Analytical strategies for the detection of sulfide: A review. Talanta 2000, 52, 771–784. [Google Scholar] [PubMed]
- Cui, M.; Jiao, H.; Yuan, S.; Dong, B.; Xu, Z. Develop reusable carbon sub-micrometer composites with record-high Cd(II) removal capacity. Adv. Sci. 2024, 12, 2408295. [Google Scholar]
- Tipplook, M.; Hisama, K.; Koyama, M.; Fujisawa, K.; Hayashi, F.; Sudare, T.; Teshima, K. Cation-doped nanocarbons for enhanced perfluoroalkyl substance removal: Exotic bottom-up solution plasma synthesis and characterization. ACS Appl. Mater. Interfaces 2024, 16, 61832–61845. [Google Scholar]
- Qasim, M.; Badrelzaman, M.; Darwish, N.; Darwish, N.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar]
- Zhang, Y.; Teng, J.; Zou, H.; Zhang, W.; Cheng, S.; Zhang, M.; Lin, H. The molecular weight-fouling matrix: A novel dissection of polysaccharide interactions in ultrafiltration processes. Sep. Purif. Technol. 2024, 345, 127340. [Google Scholar]
- Wei, W.; Wen, X.; Zhang, S.; Lin, L.; Zhu, J.; Yu, J.; Li, J.; Lou, Z.; Xu, X. Co-governance of iron speciation and carbon phase on Fenton-like reaction triggered by Fe-enriched industrial sludge derived biochar. J. Clean. Prod. 2025, 486, 144516. [Google Scholar]
- Wang, Y.; Chen, Y.; Shan, F.; Zhang, T.; Zhang, Z.; Liu, M. L-glutamic acid-functionalized graphene oxide with characteristic of anti-stacking towards efficient adsorption-reduction removal of Cr(VI). J. Environ. Chem. Eng. 2024, 12, 114764. [Google Scholar]
- Xu, Z.; Yu, Y.; Xu, X.; Tsang, D.; Yao, C.; Fan, J.; Zhao, L.; Qiu, H.; Cao, X. Direct and indirect electron transfer routes of chromium(VI) reduction with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon. Environ. Sci. Technol. 2022, 56, 1724–1735. [Google Scholar]
- Xu, R.; Wei, J.; Cheng, D.; Wang, W.; Hong, L.; Chen, Y.; Guo, Y. Abundant porous biochar derived from luffa vine for removal of methylene blue: Selective adsorption and mechanistic studies. Ind. Crops Prod. 2024, 219, 119114. [Google Scholar]
- Aguilera, P.; Gutiérrez Ortiz, F. High performance regenerative adsorption of hydrogen sulfide from biogas on thermally-treated sewage-sludge. Fuel Process. Technol. 2016, 145, 148–156. [Google Scholar]
- Hossain, M.; Shahid, M.; Mahmud, N.; Habib, A.; Rana, M.; Khan, S.; Hossain, M. Research and application of polypropylene: A review. Discover Nano 2024, 19, 2. [Google Scholar] [PubMed]
- Nada, A.; Ibrahim, M.; Elshemy, M.; Fujii, M.; Sharaan, M. Integrated water quality and performance assessment of seawater desalination plants along two coasts in Egypt. Desalination 2024, 586, 117844. [Google Scholar]
- Wang, Y.; Cao, J.; Zhang, B.; Liao, Z.; Zhang, B.; Liu, J.; Shi, C. Genesis of the Wangpo bed in the Sichuan Basin: Formation by eruptions of the Emeishan large igneous province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 594, 110935. [Google Scholar]
- Romero, A.; Innocentini, M.; Oliveira, J.; Lider, A.; Fey, T.; Travitzky, N.; Hotza, D. Unveiling the potential of silicon carbide as a support material and membranes for oily wastewater remediation. Sep. Purif. Technol. 2025, 354, 129044. [Google Scholar]
- Zhong, Z.; Zhang, B.; Ye, J.; Gao, Y.; Liu, Q.; Zhang, Z.; Ye, F. The thermal, electrical and mechanical properties of porous α-SiC ceramics bonded with Ti3SiC2 and β-SiC via low temperature in-situ reaction sintering. Ceram. Int. 2022, 48, 15189–15199. [Google Scholar]
- Kim, H.; Choi, J.-H.; Takizawa, S. Comparison of initial filtration resistance by pretreatment processes in the nanofiltration for drinking water treatment. Sep. Purif. Technol. 2007, 56, 354–362. [Google Scholar]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.; Bjarnadóttir, B.; Bjarnadóttir, M.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qin, W.; Jiao, F.; Liu, R.; Wang, D. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface. Miner. Eng. 2019, 137, 102–107. [Google Scholar]
- GB/T 39221-2020; Determination for Performance of Scale Inhibitors for Reverse Osmosis Seawater Desalination—Recurrent Condensation Cycle Test Method. SAC: Beijing, China, 2020.
- GB 3097-1997; Sea Water Quality Standard. MEEC (Ministry of Ecologhy and Environment of the People’s Republic of China): Beijing, China, 1997.
- Liao, W.; Ye, Z.; Yuan, S.; Cai, Q.; Tong, M.; Qian, A.; Cheng, D. Effect of coexisting Fe(III) (oxyhydr)oxides on Cr(VI) reduction by Fe(II)-bearing clay minerals. Environ. Sci. Technol. 2019, 53, 13767–13775. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wen, X.; Liu, L.; Zhang, L.; Long, M. Cooperation of ferrous ions and hydrated ferric oxide for advanced phosphate removal over a wide pH range: Mechanism and kinetics. Water Res. 2024, 249, 120969. [Google Scholar]
- Song, L.; Lin, L.; Wei, W.; Zhang, S.; Wan, L.; Lou, Z.; Yu, J.; Xu, X. Zero-valent iron-peroxydisulfate as synergistic co-milling agents for enhanced mechanochemical destruction of 2,4-dichlorophenol: Coupling reduction with oxidation. J. Environ. Manage. 2023, 345, 118571. [Google Scholar]
- Cai, M.; Zhao, Z.; Sun, W.; Yin, W.; Zhang, Y.; He, S. Impact of pipeline materials on water quality stability of desalinated seawater in the pipeline network. Desalination 2023, 556, 116558. [Google Scholar]
- Yao, M.; Zhang, Y.; Dai, Z.; Ren, A.; Fang, J.; Li, X.; Meer, W.; Medema, G.; Rose, J.; Liu, G. Building water quality deterioration during water supply restoration after interruption: Influences of premise plumbing configuration. Water Res. 2023, 241, 120149. [Google Scholar]
- Shen, Y.; Tan, Q.; Sun, J.; Cai, X.; Shen, L.; Lin, H.; Wei, X. Membrane fouling characteristics and mechanisms in coagulation-ultrafiltration process for treating microplastic-containing water. Sci. Total Environ. 2024, 954, 176524. [Google Scholar] [CrossRef]
- Shao, S.; Cai, L.; Li, K.; Li, J.; Du, X.; Li, G.; Liang, H. Deposition of powdered activated carbon (PAC) on ultrafiltration (UF) membrane surface: Influencing factors and mechanisms. J. Membr. Sci. 2017, 530, 104–111. [Google Scholar]
- Lee, W.-K.; Lim, Y.-Y.; Ho, C.-L. pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia. Reg. Stud. Mar. Sci. 2019, 30, 100738. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Dai, C.; Chai, Z.; Cai, M.; Li, H.; Wu, S.; Zhang, L.; Wu, Y.; Zhu, H. Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling. Membranes 2025, 15, 100. https://doi.org/10.3390/membranes15040100
Song L, Dai C, Chai Z, Cai M, Li H, Wu S, Zhang L, Wu Y, Zhu H. Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling. Membranes. 2025; 15(4):100. https://doi.org/10.3390/membranes15040100
Chicago/Turabian StyleSong, Ludi, Chengyi Dai, Zifei Chai, Mengzhe Cai, Huazhang Li, Sifan Wu, Lin Zhang, Yaqin Wu, and Haitao Zhu. 2025. "Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling" Membranes 15, no. 4: 100. https://doi.org/10.3390/membranes15040100
APA StyleSong, L., Dai, C., Chai, Z., Cai, M., Li, H., Wu, S., Zhang, L., Wu, Y., & Zhu, H. (2025). Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling. Membranes, 15(4), 100. https://doi.org/10.3390/membranes15040100