Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = porous ceramic materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1779 KiB  
Article
Effect of Using Rotational and Static Kilns on the Properties of Eco-Friendly Lightweight Aggregates Made with Pumice Scraps and Spent Coffee Grounds
by Fabiana Altimari, Fernanda Andreola, Isabella Lancellotti, Carlos Javier Cobo-Ceacero, Teresa Cotes-Palomino, Carmen Martínez-García, Ana Belen López-García and Luisa Barbieri
Materials 2025, 18(15), 3692; https://doi.org/10.3390/ma18153692 - 6 Aug 2025
Abstract
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the [...] Read more.
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the materials, the correct firing temperature was evaluated. The obtained aggregates were fired in two different modes: in a rotary kiln and in a static kiln; the influence of the firing processes on the finished products was assessed. This study can be useful for industrially scaling up this process. Firing in a rotary kiln reduced the average diameter of the aggregates (negative expansion index), resulting in a higher compressive strength and dry particle density compared to an aggregate containing only clay. The pH and electrical conductivity values address their use in agronomy without causing problems to crops, while the higher compressive strength, density, and porosity values could allow their use in construction. Full article
Show Figures

Figure 1

16 pages, 2891 KiB  
Article
Hysteresis Loops Design for Nanoporous Ferroelectrics
by Xuan Huang, Fengjuan Yang, Lifei Du, Jiong Wang, Yongfeng Liang and Pingping Wu
Materials 2025, 18(15), 3606; https://doi.org/10.3390/ma18153606 - 31 Jul 2025
Viewed by 197
Abstract
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we [...] Read more.
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we found that the shape of pores in barium titanite ceramics governs the formation of the ferroelectric domain structure and the switching hysteresis loop. A remanent polarization-coercive field (Pr-Ec) diagram is introduced to denote the shape of the hysteresis loops. We performed a fundamental study in understanding how the domain structures affect the properties of domain-engineered porous ferroelectrics. Simulation results show that the hysteresis loop of porous ferroelectrics can be designed by controlling the shape/orientation of the ellipse-shaped pores. Numerical simulations also verify that the dielectric/piezoelectric properties can be improved with artificially designed porous structures. These phase-field results may be useful in the development of highly performing lead-free ferroelectric/piezoelectric materials. Full article
(This article belongs to the Special Issue Advances in Piezoelectric/Dielectric Ceramics and Composites)
Show Figures

Figure 1

14 pages, 4080 KiB  
Article
High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance
by Zijun Qian, Kang Li, Yabin Zhou, Hao Xu, Haiyan Qian and Yihua Huang
Materials 2025, 18(15), 3598; https://doi.org/10.3390/ma18153598 - 31 Jul 2025
Viewed by 220
Abstract
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon [...] Read more.
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon sources, the resulting ceramics achieved a compressive strength of 2393 MPa and a flexural strength of 380 MPa, surpassing conventional RBSC systems. Microstructural analyses revealed homogeneous β-SiC formation and crack deflection mechanisms as key contributors to mechanical enhancement. Ultrafine SiC particles (0.5–2 µm) refined pore architectures and mediated capillary dynamics during infiltration, enabling nanoscale dispersion of residual silicon phases and minimizing interfacial defects. Compared to coarse-grained counterparts, the ultrafine SiC system exhibited a 23% increase in compressive strength, attributed to reduced sintering defects and enhanced load transfer efficiency. This work establishes a scalable strategy for designing RBSC ceramics for extreme mechanical environments, bridging material innovation with applications in high-stress structural components. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 2688 KiB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Viewed by 668
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

10 pages, 2396 KiB  
Communication
Preparation of Permeable Porous Alumina Ceramics by Gel Casting Combined with Particle Stacking and Sintering Method
by Zhe Cheng, Yuanqing Chen, Zhenping Wu and Yang Liu
Materials 2025, 18(15), 3463; https://doi.org/10.3390/ma18153463 - 24 Jul 2025
Viewed by 280
Abstract
Porous ceramics have been widely used in various fields. In this paper, porous ceramics with through-hole structures were prepared using a novel and eco-friendly gel casting method with carrageenan as the gelling agent. Especially, the idea of large size particle stacking is introduced [...] Read more.
Porous ceramics have been widely used in various fields. In this paper, porous ceramics with through-hole structures were prepared using a novel and eco-friendly gel casting method with carrageenan as the gelling agent. Especially, the idea of large size particle stacking is introduced into the gel casting process. By introducing large size alumina aggregates as raw materials, and small size micropowders as filling materials, micropores were directly formed after the green body was sintered. To tune the pore size, pore structure, gas permeability, the strength of the final porous ceramics, the components of the raw materials including the alumina aggregates, the filling materials, and sintering additives in the slurry were precisely designed. Porous Al2O3-based ceramics with high gas permeability, high flexural strength, and moderate porosity were finally obtained. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 359
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 298
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 456
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

15 pages, 3873 KiB  
Article
Porous Silica Gels Doped with Gold Nanoparticles: Preparation, Microstructure, Optical and Textural Properties
by Nina Danchova, Dimitar Shandurkov, Roumen Tsekov, Luben Mihaylov, Tony Spassov and Stoyan Gutzov
Gels 2025, 11(6), 454; https://doi.org/10.3390/gels11060454 - 13 Jun 2025
Viewed by 358
Abstract
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. [...] Read more.
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. The color and microstructure of the obtained samples with a composition SiO2:AuNPs (about 0.03% Au) depend on the heating temperature. The UV/Vis reflection spectra of the samples are explained using Mie’s theory. The thermal stability of the obtained samples, as well as the processes occurring in the sol–gel matrix upon heating, were monitored by DTA/TG. The textural properties of the obtained materials were described based on adsorption–desorption isotherms. The obtained nanocomposites are promising pigments for ceramic glazes, similar to the Purple of Cassius. The textural properties of certain samples, SBET = 200–350 m2/g, a mean pore diameter (DAV) of approximately 10 nm and a specific pore volume (Vt) between 0.5 and 0.8 cm3/g, make them promising candidates for catalytic applications, comparable to aerogel-like materials. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Figure 1

11 pages, 2726 KiB  
Article
Analysis of Key Material Parameters of Evaporator Wicks and Working Fluids for a Loop Heat Pipe Operating in the Temperature Range of 500–700 K
by Paweł Szymański, Piotr Radomski, Jae-Ho Jeon and Dariusz Mikielewicz
Materials 2025, 18(12), 2798; https://doi.org/10.3390/ma18122798 - 13 Jun 2025
Viewed by 388
Abstract
This study presents a preliminary evaluation of candidate wick material and working fluid for a flat-loop heat pipe (F-LHP) designed to operate within the temperature range of 500–700 K. The selection process considered key thermal and physical parameters, including thermal conductivity, chemical compatibility [...] Read more.
This study presents a preliminary evaluation of candidate wick material and working fluid for a flat-loop heat pipe (F-LHP) designed to operate within the temperature range of 500–700 K. The selection process considered key thermal and physical parameters, including thermal conductivity, chemical compatibility between wick and fluid, capillary pressure generation, pressure drop across the wick structure, and structural integrity at elevated temperatures. A range of metallic and ceramic wick materials, along with suitable high-temperature working fluids, were reviewed and compared based on performance metrics and practical availability. Special attention was given to oxidation and corrosion resistance, capillary performance, and thermal stability under elevated-temperature conditions. Nine different porous wicks with distinct materials and microstructures—differing in pore size, porosity, and permeability—were analyzed in combination with seven different working fluids. The analysis focused on determining which combinations generated the highest capillary pressure and which exhibited the lowest flow resistance due to external flow, thereby enhancing the LHP’s performance. Based on these results, the study identifies the most effective wick–fluid pairings for F-LHP applications, offering an optimal balance of thermal performance and long-term reliability. These findings provide a foundation for further experimental validation and the development of prototypes. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 9010 KiB  
Article
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration
by Ana Sofia Pádua, Manuel Pedro Fernandes Graça and Jorge Carvalho Silva
J. Funct. Biomater. 2025, 16(6), 200; https://doi.org/10.3390/jfb16060200 - 1 Jun 2025
Viewed by 791
Abstract
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate [...] Read more.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity—an early marker of osteogenic differentiation—alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

14 pages, 4427 KiB  
Case Report
Horizontal Guided Bone Regeneration Using Titanium-Reinforced Dense PTFE Membrane and Synthetic Nanocrystalline Hydroxyapatite: A Case Study Reporting Clinical and Histological Outcomes with 5-Year Follow-Up
by Fabrizio Belleggia, Luca Signorini, Mirko Martelli and Marco Gargari
Int. J. Transl. Med. 2025, 5(2), 19; https://doi.org/10.3390/ijtm5020019 - 31 May 2025
Viewed by 769
Abstract
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, [...] Read more.
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, we report the clinical and histological outcomes of a horizontal GBR, treated using only synthetic biomaterials. Methods: A graft of nanocrystalline hydroxyapatite (NH) embedded in a silica gel matrix was used to fill a horizontal bone defect. The graft was covered with a titanium-reinforced dense polytetrafluoroethylene (TR-dPTFE) membrane, and primary closure was completed and maintained for 10 months. Then, the site was re-opened for membrane removal and implant insertion. During implant bed preparation, a bone biopsy was obtained for histological evaluation. A metal–ceramic crown was fitted, and the 5-year follow-up after prosthetic loading showed clinical and radiographically healthy tissues. Results: Histological examination revealed good integration of the biomaterial into the surrounding tissues, which were composed of lamellar bone trabeculae and connective tissue. New bone formation occurred not only around the NH granules but even inside the porous amorphous particles. Conclusions: The combination of NH and the TR-dPTFE membrane produced good clinical and histological results, which remained stable for 5 years. Full article
Show Figures

Figure 1

20 pages, 5257 KiB  
Article
Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning
by Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Vasilii Dolgov, Nikita Beskopylny, Diana Elshaeva, Andrei Chernil’nik, Ivan Panfilov and Irina Razveeva
J. Compos. Sci. 2025, 9(6), 267; https://doi.org/10.3390/jcs9060267 - 28 May 2025
Viewed by 576
Abstract
Automation of the structural health monitoring process involves the use of successful methods for detecting defects and determining their critical characteristics. An efficient means of crack detection in composite materials is the ultrasonic method, but its application to determine critical crack parameters, such [...] Read more.
Automation of the structural health monitoring process involves the use of successful methods for detecting defects and determining their critical characteristics. An efficient means of crack detection in composite materials is the ultrasonic method, but its application to determine critical crack parameters, such as depth in construction practice, is difficult or leads to large errors. This article focuses on machine learning methods usage to detect cracks in composite materials like brickwork. Ceramic bricks with various mechanical properties and with pre-grown cracks from 2 to 60 mm are considered. To understand the processes occurring during the ultrasonic pulse transmission, modeling was performed in the ANSYS environment. The brick is considered a porous medium weakened by a crack. Numerical modeling allows for the identification of the main features of the signal response and the determination of the amplitude-time range for different porosity and crack depth values. Using machine learning methods made it possible to solve two related problems. The first, binary classification, i.e., the presence or absence of a crack, is solved with 100% accuracy. The second is determining the crack depth. A neural network was built using an ensemble of decision trees. The accuracy of crack depth prediction is R2 = 0.983, and the error in predicted values is within 8%. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

19 pages, 4306 KiB  
Article
The Modulation of the Pore Structure in Porous Carbon by Metal Salts and Its Application for Joining Silicon Carbide Ceramics
by Xishi Wu, Zehua Liu, Bingbing Pei, Haibo Wu and Zhengren Huang
Materials 2025, 18(10), 2336; https://doi.org/10.3390/ma18102336 - 17 May 2025
Viewed by 461
Abstract
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning [...] Read more.
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning the parameters of the resin-solvent-metal ion system, control over the pore structure of the porous carbon was achieved, with a porosity range of 16.5% to 66.5% and a pore diameter range of 8 to 248 nm. The addition of metallic salts can simply and effectively increase the pore structure after carbonization, making the infiltration of molten silicon easier. This is beneficial to the joining process of silicon carbide ceramics. Based on these findings, a high-reliability joining technique for large-sized (135 mm × 205 mm) silicon carbide ceramics was developed. The resulting interlayer was dense and defect-free, exhibiting a joining strength of 309 ± 33 MPa and a Weibull modulus of 10.67. These results highlight the critical role of structured porous media in advancing the field of large-sized ceramic joining. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Enhanced Molybdenum Recovery Achieved by a Complex of Porous Material-Immobilized Surface-Engineered Yeast in Development of a Sustainable Biosorption Technology
by Thiti Jittayasotorn, Kentaro Kojima, Audrey Stephanie, Kaho Nakamura, Hernando P. Bacosa, Kengo Kubota, Masanobu Kamitakahara, Chihiro Inoue and Mei-Fang Chien
Microorganisms 2025, 13(5), 1034; https://doi.org/10.3390/microorganisms13051034 - 30 Apr 2025
Viewed by 427
Abstract
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express [...] Read more.
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express metal binding proteins on its cell surface. This study investigates the potential of Saccharomyces cerevisiae strain ScBp6, which displays a molybdate-binding protein (ModE) on its cell surface, immobilized on porous materials. Our findings reveal that polyurethane sponges (PS) significantly outperform ceramic materials in yeast immobilization, entrapping 1.76 × 107 cells per sponge compared to 1.70 × 106 cells per ceramic cube. Furthermore, the yeast–PS complex demonstrated superior Mo adsorption, reaching 2.16 pg Mo per yeast cell under 10 ppm Mo conditions, comparable to free yeast cells (1.96 pg Mo per yeast cell). These results establish PS as an effective and scalable platform for Mo recovery, offering high biosorption efficiency, reusability, and potential for industrial wastewater treatment applications. Full article
(This article belongs to the Special Issue Bio-Convergence: Microorganism Usage for Sustainability Applications)
Show Figures

Figure 1

Back to TopTop