Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning
Abstract
:1. Introduction
- Numerical modeling of ultrasonic pulse propagation in a porous medium weakened by a crack.
- Conducting a cycle of experimental measurements of ultrasonic signals in brickworks with various crack depths.
- Application of machine learning to the problem of binary classification of defects in ceramic bricks based on a dataset of experimental data.
- Neural network application in crack depth assessment.
2. Materials and Methods
2.1. Materials
- -
- determination of the strength of concrete during process control and inspection of buildings and structures;
- -
- search for defects in concrete structures by an abnormal decrease in speed and by the shape of visualized signals of ultrasonic pulses;
- -
- assessment of crack depth;
- -
- assessment of porosity, fracturing, and anisotropy of composite materials and rocks;
- -
- determination of the elastic modulus and density of materials.
- -
- during surface sounding, with a surface sounding sensor assembled on a fixed base (120 ± 1) mm with dry contact;
- -
- with through-sounding, with through-sounding sensors on an arbitrary base with contact grease or surface and angular sounding with dry contact (cone nozzles).
- -
- ambient air temperature ranging from minus 20 °C to plus 40 °C;
- -
- relative air humidity up to 80% at a temperature of 25 °C and lower temperatures, without moisture condensation;
- -
- atmospheric pressure from 84 to 106.7 kPa.
2.2. Propagation of Elastic Ultrasonic Waves in a Porous Medium
2.3. Methods
3. Results and Discussion
3.1. Numerical Analysis of the Impact of an Ultrasonic Pulse at Different Positions of the Device Relative to the Crack—Porous Media
3.2. Binary Crack Identification Using Machine Learning
3.3. Determining the Depth of a Crack Using Machine Learning Based on the Amplitude-Time Characteristic of a Signal
4. Conclusions
- Numerical modeling of porous media in the form of brickwork weakened by cracks was carried out. The results showed that the porous medium significantly changes the nature of the propagation of the ultrasonic pulse. A material with greater porosity distorts and scatters the signal more strongly, complicating the algorithm for determining the crack depth.
- An experiment was conducted to study the propagation of an ultrasonic wave in bricks weakened by cracks. A dataset for machine learning was created, and characteristic parameters of the time signal were determined. It was shown that taking into account porosity and density significantly refines the model.
- Binary identification of cracks using machine learning methods has proven its effectiveness. This study used the TimeSeriesForestClassifier model from the SKTIME library, which allows training a time series classifier based on an ensemble of decision trees. The proposed model allows for the detection of the presence of a crack with 100% accuracy.
- To determine the crack depth using machine learning methods, this study uses an approach based on the use of an ensemble of decision trees. During the training of the model, an ensemble of one hundred regressors was formed based on decision trees (decision tree regressor), for each of which its own set of interval boundaries was formed. The resulting model allows for the determination of the crack depth in brickwork with an accuracy of R2 = 0.983 and an error of up to 8%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
DNN | Deep neural network |
RF | Random Forest |
AFC | Amplitude-frequency characteristics |
ATC | Amplitude-time characteristics |
IVR | Initial Void Ratio |
References
- Wang, G.; Ke, J. Literature Review on the Structural Health Monitoring (SHM) of Sustainable Civil Infrastructure: An Analysis of Influencing Factors in the Implementation. Buildings 2024, 14, 402. [Google Scholar] [CrossRef]
- Ospitia, N.; Pourkazemi, A.; Tsangouri, E.; Tayeh, T.; Stiens, J.H.; Aggelis, D.G. Nondestructive Monitoring of Textile-Reinforced Cementitious Composites Subjected to Freeze–Thaw Cycles. Materials 2024, 17, 6232. [Google Scholar] [CrossRef] [PubMed]
- Abuassal, A.; Kang, L.; Martinho, L.; Kubrusly, A.; Dixon, S.; Smart, E.; Ma, H.; Sanders, D. A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation. Sensors 2025, 25, 1050. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.; Fang, S.; Huang, C.; Yang, A.; Chao, Y.J. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures 2021, 31, 330–340. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Guo, J.-Y. Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques. Cem. Concr. Compos. 2018, 88, 17–28. [Google Scholar] [CrossRef]
- Huang, B.-T.; Li, Q.-H.; Xu, S.-L.; Zhou, B.-M. Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel P-S-N model. Constr. Build. Mater. 2018, 178, 349–359. [Google Scholar] [CrossRef]
- Geng, B.; Li, Z.; Zhao, Y.; Zhang, X. Peridynamics analysis of crack propagation in concrete considering random aggregate distribution. Sci. Rep. 2025, 15, 4172. [Google Scholar] [CrossRef]
- Puzatova, A.V.; Dmitrieva, M.A.; Tovpinets, A.O.; Leitsin, V.N. Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Adv. Eng. Res. 2024, 24, 227–237. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, S.; Chayan, S.M.; Fan, Y.; Shah, S.P.; Zheng, J. Time-frequency characterization of acoustic emission signals from bending damage of corroded reinforced concrete beams in high- temperature saline environment. Case Stud. Constr. Mater. 2025, 22, e04237. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; Wang, Y.; Zhao, Y.; Lin, H.; Meng, J.; Wu, H. Fracture evolution in steel fiber reinforced concrete (SFRC) of tunnel under static and dynamic loading based on DEM-FDM coupling model. Int. J. Coal Sci. Technol. 2025, 12, 9. [Google Scholar] [CrossRef]
- Karalar, M.; Başaran, B.; Aksoylu, C.; Zeybek, Ö.; Althaqafi, E.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Umiye, O.A. Utilizing recycled glass powder in reinforced concrete beams: Comparison of shear performance. Sci. Rep. 2025, 15, 6919. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, S.; Zhang, Y.; Jiang, Y. Mechanical properties and cracking behavior of rebar reinforced UHPC (R-UHPC) under uniaxial tension: Evaluation and design. Case Stud. Constr. Mater. 2025, 22, e04243. [Google Scholar] [CrossRef]
- Li, H.; Pan, Q.; Zhang, X.; An, Z. An Approach to Size Sub-Wavelength Surface Crack Measurements Using Rayleigh Waves Based on Laser Ultrasounds. Sensors 2020, 20, 5077. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Pan, Q.; Wang, P. Quantitative Angle Measurement of the Inclined Surface Crack Based on Laser Ultrasonics. Sensors 2025, 25, 1486. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Jiang, Y.; Wu, F.; Gao, Y. Ambient vibration-based quantitative assessment on tunnel lining defect using laser Doppler vibrometer. Measurement 2025, 239, 115481. [Google Scholar] [CrossRef]
- Li, B.; Xu, H.; Jin, X.; Zhang, H.; Jin, S.; Chen, Q.; Wu, F. An Optimized Dual-View Snake Unet Model for Tunnel Lining Crack Detection. Buildings 2025, 15, 777. [Google Scholar] [CrossRef]
- Alamdari, A.G.; Ebrahimkhanlou, A. A multi-scale robotic approach for precise crack measurement in concrete structures. Autom. Constr. 2024, 158, 105215. [Google Scholar] [CrossRef]
- Shim, S.; Lee, S.-W.; Cho, G.-C.; Kim, J.; Kang, S.-M. Remote robotic system for 3D measurement of concrete damage in tunnel with ground vehicle and manipulator. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 2180–2201. [Google Scholar] [CrossRef]
- Nyathi, M.A.; Bai, J.; Wilson, I.D. Deep Learning for Concrete Crack Detection and Measurement. Metrology 2024, 4, 66–81. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.; Kozhakin, A.; Meskhi, B.; Chernil’nik, A.; Elshaeva, D.; Ananova, O.; Girya, M.; et al. Computer Vision Method for Automatic Detection of Microstructure Defects of Concrete. Sensors 2024, 24, 4373. [Google Scholar] [CrossRef]
- Razveeva, I.; Kozhakin, A.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Artamonov, S.; Pembek, A.; Dingrodiya, H. Analysis of Geometric Characteristics of Cracks and Delamination in Aerated Concrete Products Using Convolutional Neural Networks. Buildings 2023, 13, 3014. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 5413. [Google Scholar] [CrossRef]
- Lin, Y.; Ahmadi, M.; Alnowibet, K.A.; Bukhari, F.A. Concrete crack detection using ridgelet neural network optimized by advanced human evolutionary optimization. Sci. Rep. 2025, 15, 4858. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, J.; Zhu, B. A research on an improved Unet-based concrete crack detection algorithm. Struct. Health Monit. 2021, 20, 1864–1879. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Başağa, H.B. Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 1621–1633. [Google Scholar] [CrossRef]
- Chepurnenko, A.S.; Kondratieva, T.N. Determining the Rheological Parameters of Polymers Using Machine Learning Techniques. Mod. Trends Constr. Urban Territ. Plan. 2024, 3, 71–83. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Rai, B.; Samui, P. Development of hybrid gradient boosting models for predicting the compressive strength of high-volume fly ash self-compacting concrete with silica fume. Structures 2024, 66, 106850. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Rai, B.; Samui, P. Prediction of compressive strength of high-volume fly ash self-compacting concrete with silica fume using machine learning techniques. Constr. Build. Mater. 2024, 438, 136933. [Google Scholar] [CrossRef]
- Hematibahar, M.; Kharun, M.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I. Analysis of Models to Predict Mechanical Properties of High-Performance and Ultra-High-Performance Concrete Using Machine Learning. J. Compos. Sci. 2024, 8, 287. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; Pembek, A.; Elshaeva, D.; Chernil’nik, A.; et al. Prediction of the Compressive Strength of Vibrocentrifuged Concrete Using Machine Learning Methods. Buildings 2024, 14, 377. [Google Scholar] [CrossRef]
- Kumar, R.; Prakash, S.; Rai, B.; Samui, P. Development of a prediction tool for the compressive strength of ternary blended ultra-high performance concrete using machine learning techniques. J. Struct. Integr. Maint. 2024, 9, 2385206. [Google Scholar] [CrossRef]
- Shen, J.; Liu, L.; Shi, Z.; Li, S.; Peng, M.; Wang, Y.; Liu, C. Fast concrete crack depth detection using low frequency ultrasound array SH waves data. J. Appl. Geophys. 2024, 230, 105530. [Google Scholar] [CrossRef]
- Saini, A.; Fang, J.; Tang, H. The multi-mode reverse time migration for defect characterization using ultrasonic array. NDT E Int. 2025, 151, 103293. [Google Scholar] [CrossRef]
- Hu, F.; Gou, H.-Y.; Yang, H.-Z.; Yan, H.; Ni, Y.-Q.; Wang, Y.-W. Automatic PAUT crack detection and depth identification framework based on inspection robot and deep learning method. J. Infrastruct. Intell. Resil. 2025, 4, 100113. [Google Scholar] [CrossRef]
- Lyu, D.; Xiao, X.; Hu, H.; Liu, Z.; Wang, X.; Xu, N. Orientation characterisation of branched crack-like defects in curved components using ultrasonic array vector total focusing method. Nondestruct. Test. Eval. 2025, 1–18. [Google Scholar] [CrossRef]
- Rijal, M.; Amoateng-Mensah, D.; Sundaresan, M.J. Finite Element Simulation of Acoustic Emissions from Different Failure Mechanisms in Composite Materials. Materials 2024, 17, 6085. [Google Scholar] [CrossRef]
- Tanveer, M.; Elahi, M.U.; Jung, J.; Azad, M.M.; Khalid, S.; Kim, H.S. Recent Advancements in Guided Ultrasonic Waves for Structural Health Monitoring of Composite Structures. Appl. Sci. 2024, 14, 11091. [Google Scholar] [CrossRef]
- Hu, F.; Gou, H.; Yang, H.; Ni, Y.-Q.; Wang, Y.-W.; Bao, Y. Digital twin-based fatigue life assessment of orthotropic steel bridge decks using inspection robot and deep learning. Autom. Constr. 2025, 172, 106022. [Google Scholar] [CrossRef]
- Hawwat, S.-E.; Shah, J.K.; Wang, H. Machine learning supported ultrasonic testing for characterization of cracks in polyethylene pipes. Measurement 2025, 240, 115609. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Dolgov, V.; Razveeva, I.; Beskopylny, N.; Elshaeva, D.; Chernil’nik, A. Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis. J. Compos. Sci. 2024, 8, 536. [Google Scholar] [CrossRef]
- Sobol, B.V.; Soloviev, A.N.; Vasiliev, P.V.; Lyapin, A.A. Modeling of Ultrasonic Flaw Detection Processes in the Task of Searching and Visualizing Internal Defects in Assemblies and Structures. Adv. Eng. Res. 2023, 23, 433–450. [Google Scholar] [CrossRef]
- Jasiūnienė, E.; Vaitkūnas, T.; Šeštokė, J.; Griškevičius, P. Digital Image Correlation and Ultrasonic Lamb Waves for the Detection and Prediction of Crack-Type Damage in Fiber-Reinforced Polymer Composite Laminates. Polymers 2024, 16, 1980. [Google Scholar] [CrossRef]
- Aslam, M.; Park, J.; Lee, J. A comprehensive study on guided wave dispersion in complex structures. Int. J. Mech. Sci. 2024, 269, 109089. [Google Scholar] [CrossRef]
- Capineri, L.; Bulletti, A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. Sensors 2021, 21, 2929. [Google Scholar] [CrossRef]
- Safari, A.; Taheri, A.; Karakus, M. A New Yield Surface for Cemented Paste Backfill Based on the Modified Structured Cam-Clay. Minerals 2025, 15, 4. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, H.; Tian, D. Application of Dimension Extending Technique to Unified Hardening Model. Appl. Sci. 2024, 14, 5677. [Google Scholar] [CrossRef]
- Pyatina, T.; Sugama, T.; Moghadam, A.; Naumann, M.; Skorpa, R.; Feneuil, B.; Soustelle, V.; Godøy, R. Assessment of Cementitious Composites for High-Temperature Geothermal Wells. Materials 2024, 17, 1320. [Google Scholar] [CrossRef]
- Wróżyńska, M. Tailings Behavior Assessment Using Piezocone Penetration Test. Minerals 2024, 14, 208. [Google Scholar] [CrossRef]
- Levatti, H.U. Review of Methods to Solve Desiccation Cracks in Clayey Soils. Geotechnics 2023, 3, 808–828. [Google Scholar] [CrossRef]
- Borja, R.I.; Lee, S.R. Cam-clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations. Comput. Methods Appl. Mech. Eng. 1990, 78, 49–72. [Google Scholar] [CrossRef]
- ANSYS Inc. Fluent User’s Guide: Release 2025 R1 January 2022, Canonsburg, PA. 2022. [Electronic Resource]. Available online: https://ansyshelp.ansys.com/public (accessed on 21 May 2025).
- Franesqui, M.A.; Gallego, J. Inspection and depth sizing of surface-initiated cracking for preventive maintenance of asphalt pavements. Int. J. Pavement Eng. 2022, 24, 2083617. [Google Scholar] [CrossRef]
- Shinde, S.N.; Christa, S.; Grover, R.K.; Pasha, N.; Harinder, D.; Nakkeeran, G. Optimization of waste plastic fiber concrete with recycled coarse aggregate using RSM and ANN. Sci. Rep. 2025, 15, 7798. [Google Scholar] [CrossRef]
- Sapkota, S.C.; Panagiotakopoulou, C.; Dahal, D.; Beskopylny, A.N.; Dahal, S. Optimizing high-strength concrete compressive strength with explainable machine learning. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 160. [Google Scholar] [CrossRef]
- Samanth, M.; Hiremath, P.; Deepak, G.D.; Naik, N.; H S., A.; Heckadka, S.S.; Shivamurthy, R.C. Sustainable Composites from Sugarcane Bagasse Fibers and Bio-Based Epoxy with Insights into Wear Performance, Thermal Stability, and Machine Learning Predictive Modeling. J. Compos. Sci. 2025, 9, 124. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Ahadian, F.; Bekdaş, G.; Geem, Z.W. Tensile Strength Predictive Modeling of Natural-Fiber-Reinforced Recycled Aggregate Concrete Using Explainable Gradient Boosting Models. J. Compos. Sci. 2025, 9, 119. [Google Scholar] [CrossRef]
- Laqsum, S.A.; Zhu, H.; Haruna, S.I.; Ibrahim, Y.E.; Al-shawafi, A. Mechanical and Impact Strength Properties of Polymer-Modified Concrete Supported with Machine Learning Method: Microstructure Analysis (SEM) Coupled with EDS. J. Compos. Sci. 2025, 9, 101. [Google Scholar] [CrossRef]
- SKTIME. Available online: https://www.sktime.net/en/stable/ (accessed on 11 May 2025).
Num | Crack Depth Hcr, mm | Rc, MPa | ρ, kg/m3 |
---|---|---|---|
1 | 2 | 17.5 | 1706 |
2 | 2 | 28 | 1882 |
3 | 3 | 17.5 | 1706 |
4 | 5 | 28 | 1882 |
5 | 8 | 16.9 | 1745 |
6 | 9 | 32.1 | 1939 |
7 | 11 | 16.9 | 1745 |
8 | 12 | 32.1 | 1939 |
9 | 15 | 26.9 | 1946 |
10 | 18 | 26.9 | 1946 |
11 | 20 | 19.5 | 1898 |
12 | 23 | 19.5 | 1898 |
13 | 27 | 31 | 1986 |
14 | 30 | 31 | 1986 |
15 | 36 | 29.1 | 1978 |
16 | 37 | 29.1 | 1978 |
17 | 40 | 29.7 | 1988 |
18 | 44 | 29.7 | 1988 |
19 | 45 | 20.2 | 1968 |
20 | 51 | 30.5 | 1970 |
21 | 54 | 20.2 | 1968 |
22 | 54 | 30.5 | 1970 |
Num | Parameter Name | Value |
---|---|---|
Cam–Clay Model | ||
1 | Plastic Slope Parameter | 0.014 |
2 | Slope of Critical State Line | 1.24 |
3 | Initial Size of Yield Surface, MPa | 0.24132 |
4 | Minimum Size of Yield Surface, MPa | 0.002413 |
5 | Dry Part of Yield Surface Modifier | 1 |
6 | Wetting Part of Yield Surface Modifier | 1 |
7 | Anisotropic Yield Surface Parameter | 1 |
Porous Elasticity Parameters | ||
8 | Swell Index | 0.0024 |
9 | Elastic Limit of Tensile Strength, MPa | 0.034474 |
10 | Poisson’s Ratio | 0.279 |
11 | Initial Void Ratio | 0.01 … 0.3 |
Predicted Values | |||
---|---|---|---|
Total (66) | No Crack (23) | Crack Presents (43) | |
Actual data | No crack (22) | 22 | 0 |
Crack presents (44) | 1 | 43 |
Quality Metric | Metric Value |
---|---|
Mean Absolute Error (MAE) | 1.613 |
Root Mean Square Error (RMSE) | 2.221 |
R-Square Metric | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Dolgov, V.; Beskopylny, N.; Elshaeva, D.; Chernil’nik, A.; Panfilov, I.; Razveeva, I. Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning. J. Compos. Sci. 2025, 9, 267. https://doi.org/10.3390/jcs9060267
Beskopylny AN, Stel’makh SA, Shcherban’ EM, Dolgov V, Beskopylny N, Elshaeva D, Chernil’nik A, Panfilov I, Razveeva I. Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning. Journal of Composites Science. 2025; 9(6):267. https://doi.org/10.3390/jcs9060267
Chicago/Turabian StyleBeskopylny, Alexey N., Sergey A. Stel’makh, Evgenii M. Shcherban’, Vasilii Dolgov, Nikita Beskopylny, Diana Elshaeva, Andrei Chernil’nik, Ivan Panfilov, and Irina Razveeva. 2025. "Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning" Journal of Composites Science 9, no. 6: 267. https://doi.org/10.3390/jcs9060267
APA StyleBeskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Dolgov, V., Beskopylny, N., Elshaeva, D., Chernil’nik, A., Panfilov, I., & Razveeva, I. (2025). Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning. Journal of Composites Science, 9(6), 267. https://doi.org/10.3390/jcs9060267