Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,658)

Search Parameters:
Keywords = porosities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4225 KiB  
Article
Performance Optimization and Synergistic Mechanism of Ternary Blended Cementitious System Composed of Fly Ash, Slag, and Recycled Micro-Powder
by Rongfang Song, Qingnian Yang and Hang Song
Buildings 2025, 15(15), 2780; https://doi.org/10.3390/buildings15152780 - 6 Aug 2025
Abstract
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical [...] Read more.
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical properties, shrinkage performance, and microstructure of recycled mortar were systematically investigated. The experimental results show that with the increasing dosage of slag and recycled micro-powder (partially replacing cement and fly ash), the standard consistency water demand of the cementitious system decreases and the setting time is prolonged. When the replacement levels of recycled micro-powder and slag are both 10%, the 3-day, 7-day, and 28-day mechanical strengths of the mortar specimens are comparable to those of the reference group, with an increased flexural-to-compressive strength ratio and improved brittleness. SEM and mercury intrusion porosimetry (MIP) analyses revealed that systems incorporating low addition levels of recycled micro powder and slag powder exhibit calcium silicate hydrate (C-S-H) gel, acicular ettringite crystals, and a denser pore structure. However, at higher dosages (>10%), the porosity increases significantly and the pore structure deteriorates, resulting in reduced shrinkage performance. Overall, when the replacement rate of cement–fly ash by recycled micro-powder and slag is 10%, the ternary blended system exhibits optimal macroscopic performance and microstructure, providing a scientific basis for the resource utilization of solid waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3032 KiB  
Review
The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review
by Jian Zhou, Yiding Dong, Tong Qiu, Jiaojiao Lv, Peng Guo and Xi Liu
Buildings 2025, 15(15), 2784; https://doi.org/10.3390/buildings15152784 - 6 Aug 2025
Abstract
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of [...] Read more.
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of standardized performance metrics. This review focuses primarily on structural LWAC produced with artificial and natural lightweight aggregates, with intended applications in high-performance civil engineering structures. This review systematically analyzes the microstructure, composition, and physical properties of the ITZ, including porosity, microhardness, and hydration product distribution. Quantitative data from recent studies are highlighted—for instance, incorporating 3% nano-silica increased ITZ bond strength by 134.12% at 3 days and 108.54% at 28 days, while using 10% metakaolin enhanced 28-day compressive strength by 24.6% and reduced chloride diffusion by 81.9%. The review categorizes current ITZ enhancement strategies such as mineral admixtures, nanomaterials, surface coatings, and aggregate pretreatment methods, evaluating their mechanisms, effectiveness, and limitations. By identifying key trends and research gaps—particularly the lack of predictive models and standardized characterization methods—this review aims to synthesize key findings and identify knowledge gaps to support future material design in LWAC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 5284 KiB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

17 pages, 6663 KiB  
Article
Study on Thermal Conductivity Prediction of Granites Using Data Augmentation and Machine Learning
by Yongjie Ma, Lin Tian, Fuhang Hu, Jingyong Wang, Echuan Yan and Yanjun Zhang
Energies 2025, 18(15), 4175; https://doi.org/10.3390/en18154175 - 6 Aug 2025
Abstract
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this [...] Read more.
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this study focused on granites from the Gonghe Basin and Songliao Basin in Qinghai Province. A data augmentation strategy combining cubic spline interpolation and Gaussian noise injection (with noise intensity set to 10% of the original data feature range) was proposed, expanding the original 47 samples to 150. Thermal conductivity prediction models were constructed using Support Vector Machine (SVM), Random Forest (RF), and Backpropagation Neural Network(BPNN). Results showed that data augmentation significantly improved model performance: the RF model exhibited the best improvement, with its coefficient of determination R2 increasing from 0.7489 to 0.9765, Root Mean Square Error (RMSE) decreasing from 0.1870 to 0.1271, and Mean Absolute Error (MAE) reducing from 0.1453 to 0.0993. The BPNN and SVM models also improved, with R2 reaching 0.9365 and 0.8743, respectively, on the enhanced dataset. Feature importance analysis revealed porosity (with a coefficient of variation of 0.88, much higher than the longitudinal wave velocity’s 0.27) and density as key factors, with significantly higher contributions than longitudinal wave velocity. This study provides quantitative evidence for data augmentation and machine learning in predicting rock thermophysical parameters, promoting intelligent geothermal resource development. Full article
Show Figures

Figure 1

26 pages, 7199 KiB  
Article
Investigation of Fresh, Mechanical, and Durability Properties of Rubberized Fibre-Reinforced Concrete Containing Macro-Synthetic Fibres and Tyre Waste Rubber
by Nusrat Jahan Mim, Mizan Ahmed, Xihong Zhang, Faiz Shaikh, Ahmed Hamoda, Vipulkumar Ishvarbhai Patel and Aref A. Abadel
Buildings 2025, 15(15), 2778; https://doi.org/10.3390/buildings15152778 - 6 Aug 2025
Abstract
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre [...] Read more.
The growing disposal of used tyres and plastic waste in landfills poses a significant environmental challenge. This study investigates the potential of utilizing used tyre rubber and macro-synthetic fibres (MSFs) made from recycled plastics in fibre-reinforced rubberized concrete (RuFRC). Various percentages of tyre rubber shreds were used to replace coarse aggregates, calculated as 10%, 20%, and 30% of the volume of fine aggregates; fibre dosages (0%, 0.25%, 0.5%, 0.75%, and 1% by volume) were incorporated into the mix, and a series of physical, mechanical, and durability properties were evaluated. The results show that, as the fibre and rubber content increased, the slump of RuFRC decreased, with the lowest value obtained for concrete with 1% fibre and 30% rubber. The density of RuFRC decreases as the rubber percentage increases due to air voids and increased porosity caused by the rubber. The strength properties of RuFRC were found to decline with the increase in the rubber content, with mixes containing 30% rubber exhibiting reductions of about 60% in compressive strength, 27% in tensile strength, and 13% in flexural strength compared to the control specimen. Durability testing revealed that an increased rubber content led to higher water absorption, water penetration, and chloride ion permeability, with 30% rubber showing the highest values. However, lower rubber content (10%) and higher fibre dosages improved the durability characteristics, with water absorption reduced by up to 5% and shrinkage strains lowered by about 7%, indicating better compaction and bonding. These results indicate that RuFRC with moderate rubber and higher fibre content offers a promising balance between sustainability and performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1779 KiB  
Article
Effect of Using Rotational and Static Kilns on the Properties of Eco-Friendly Lightweight Aggregates Made with Pumice Scraps and Spent Coffee Grounds
by Fabiana Altimari, Fernanda Andreola, Isabella Lancellotti, Carlos Javier Cobo-Ceacero, Teresa Cotes-Palomino, Carmen Martínez-García, Ana Belen López-García and Luisa Barbieri
Materials 2025, 18(15), 3692; https://doi.org/10.3390/ma18153692 - 6 Aug 2025
Abstract
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the [...] Read more.
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the materials, the correct firing temperature was evaluated. The obtained aggregates were fired in two different modes: in a rotary kiln and in a static kiln; the influence of the firing processes on the finished products was assessed. This study can be useful for industrially scaling up this process. Firing in a rotary kiln reduced the average diameter of the aggregates (negative expansion index), resulting in a higher compressive strength and dry particle density compared to an aggregate containing only clay. The pH and electrical conductivity values address their use in agronomy without causing problems to crops, while the higher compressive strength, density, and porosity values could allow their use in construction. Full article
Show Figures

Figure 1

22 pages, 9028 KiB  
Article
Mechanochemical Activation of Basic Oxygen Furnace Slag: Insights into Particle Modification, Hydration Behavior, and Microstructural Development
by Maochun Xu, Liuchao Guo, Junshan Wen, Xiaodong Hu, Lei Wang and Liwu Mo
Materials 2025, 18(15), 3687; https://doi.org/10.3390/ma18153687 - 6 Aug 2025
Abstract
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose [...] Read more.
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose angle. As a result, the compressive strength of BOFS paste increased by 25.4 MPa at 28 d with only 0.08 wt.% EDIPA. Conductivity tests demonstrated that EDIPA strongly complexes with Ca2+, Al3+, and Fe3+, facilitating the dissolution of active mineral phases, such as C12A7 and C2F, and accelerating hydration reactions. XRD and TG analyses confirmed that the incorporation of EDIPA facilitated the formation of Mc (C4(A,F)ČH11) and increased the content of C-S-H, both of which contributed to microstructural densification. Microstructural observations further revealed that EDIPA refined Ca(OH)2 crystals, increasing their specific surface area from 4.7 m2/g to 35.2 m2/g. The combined effect of crystal refinement and enhanced hydration product formation resulted in reduced porosity and improved mechanical properties. Overall, the results demonstrated that EDIPA provided an economical, effective, and scalable means of activating BOFS, thereby promoting its high-value utilization in low-carbon construction materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 (registering DOI) - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

12 pages, 240 KiB  
Communication
Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response
by Wenjun Liu, Jian Ming, Margaret Brennan and Charles Brennan
Foods 2025, 14(15), 2735; https://doi.org/10.3390/foods14152735 - 5 Aug 2025
Abstract
This study investigated the individual and combined effects of α-amylase (6 and 10 ppm), xylanase (70 and 120 ppm), and cellulase (35 and 60 ppm) on the physicochemical and nutritional properties of Chinese steamed buns (CSBs) supplemented with 15% buckwheat flour. The addition [...] Read more.
This study investigated the individual and combined effects of α-amylase (6 and 10 ppm), xylanase (70 and 120 ppm), and cellulase (35 and 60 ppm) on the physicochemical and nutritional properties of Chinese steamed buns (CSBs) supplemented with 15% buckwheat flour. The addition of individual enzymes did not significantly affect the volume or texture of the buckwheat-enriched CSBs, although it increased the crumb moisture content and porosity. In contrast, enzyme combinations can improve specific volume and reduce hardness. The enzyme combination (α-amylase 6 ppm, xylanase 70 ppm, and cellulase 60 ppm) yielded the highest specific volume (2.50 mL/g) and the lowest hardness (271.46 g). Regarding chemical properties, individual enzymes had minimal impact, while the combined treatment (6, 70, 60 ppm) decreased starch and dietary fiber content. For nutritional properties, the glycemic response of the CSBs varied depending on the concentration of the enzyme combination used. Full article
13 pages, 1841 KiB  
Article
Valorizing Biomass Waste: Hydrothermal Carbonization and Chemical Activation for Activated Carbon Production
by Fidel Vallejo, Diana Yánez, Luis Díaz-Robles, Marcelo Oyaneder, Serguei Alejandro-Martín, Rasa Zalakeviciute and Tamara Romero
Biomass 2025, 5(3), 45; https://doi.org/10.3390/biomass5030045 - 5 Aug 2025
Abstract
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, [...] Read more.
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, and activation duration on mass yield and iodine adsorption capacity. KOH-activated carbons achieved superior iodine numbers (up to 1289 mg/g) but lower mass yields (18–35%), reflecting enhanced porosity at the cost of material loss. Conversely, H3PO4 activation yielded higher mass retention (up to 54.86%) with moderate iodine numbers (up to 1117.3 mg/g), balancing porosity and yield. HTC pretreatment at 190 °C reduced the ash content, thereby enhancing the stability of hydrochar. These findings highlight the trade-offs between adsorption performance and process efficiency, with KOH suited for high-porosity applications (e.g., water purification) and H3PO4 for industrial scalability. The study advances biomass waste valorization, aligning with circular economy principles and offering sustainable solutions for environmental and industrial applications, such as water purification and energy storage. Full article
Show Figures

Figure 1

9 pages, 1938 KiB  
Brief Report
Single-Component Silicon-Containing Polyurethane for High-Performance Waterproof and Breathable Nanofiber Membranes
by Dongxu Lu, Yanbing Li, Yake Chai, Ximei Wen, Liming Chen and Sanming Sun
Fibers 2025, 13(8), 105; https://doi.org/10.3390/fib13080105 - 5 Aug 2025
Abstract
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach [...] Read more.
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach by utilizing silicon-containing polyurethane (SiPU) as a single-component, fluorine-free raw material to prepare high-performance WBNMs via a simple one-step electrospinning process. The electrospinning technique enables the formation of SiPU nanofibrous membranes with a small maximum pore size (dmax) and high porosity, while the intrinsic hydrophobicity of SiPU imparts excellent water-repellent characteristics to the membranes. As a result, the single-component SiPU WBNM exhibits superior waterproofness and breathability, with a hydrostatic pressure of 52 kPa and a water vapor transmission rate (WVTR) of 5798 g m−2 d−1. Moreover, the optimized SiPU-14 WBNM demonstrates outstanding mechanical properties, including a tensile strength of 6.15 MPa and an elongation at break of 98.80%. These findings indicate that the single-component SiPU-14 WBNMs not only achieve excellent waterproof and breathable performance but also possess robust mechanical strength, thereby enhancing the comfort and expanding the potential applications of protective textiles, such as outdoor apparel and car seats. Full article
Show Figures

Graphical abstract

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 (registering DOI) - 4 Aug 2025
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

15 pages, 5625 KiB  
Article
Effect of Phosphogypsum Characteristics on the Properties of Phosphogypsum-Based Binders
by Nataliya Alfimova, Kseniya Levickaya, Il’ya Buhtiyarov, Ivan Nikulin, Marina Kozhukhova and Valeria Strokova
J. Compos. Sci. 2025, 9(8), 413; https://doi.org/10.3390/jcs9080413 - 4 Aug 2025
Viewed by 89
Abstract
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such [...] Read more.
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such as particle morphology and the presence of impurities, can negatively affect the characteristics of phosphogypsum-based binders. Identification of these factors will allow us to develop methods for their minimization and increasing the efficiency of phosphogypsum use from the required source as a raw material for the production of phosphogypsum-based binders. In this regard, the manuscript contains a comprehensive and comparative analysis of phosphogypsum and natural gypsum, which makes it possible to establish their differences in chemical composition and structural and morphological features, which subsequently affect the properties of the phosphogypsum-based binder. It has been established that the key factor negatively affecting the strength of phosphogypsum-based paste (2.58 MPa) is its high water demand (0.89), which is due to the high values of the specific surface area of the particles and the presence of a large number of conglomerates with significant porosity in phosphogypsum. It has been suggested that preliminary grinding of phosphogypsum can help reduce the amount of water required to obtain fresh phosphogypsum-based paste with a standard consistency and improve its physical and mechanical properties. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials, 2nd Edition)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Viewed by 56
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

Back to TopTop