Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Production of Chinese Steamed Buns
2.3. Physical Properties of CSBs
2.4. Starch and Fiber Content Analysis
2.5. Glycemic Response Analysis
2.6. Design of Experiment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of a Single Enzyme on Physical and Chemical Properties of CSBs Incorporated with 15% Buckwheat Flour
3.2. Effect of Enzyme Combinations on the Physical Properties of CSBs
3.3. Effect of Enzyme Combinations on the Chemical Properties of CSBs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zia-Ul-Haq, M.; AL-Huqail, A.A.; Riaz, M.; Farooq Gohar, U. Essentials of Medicinal and Aromatic Crops, 1st ed.; Springer: Cham, Switzerland, 2023; ISBN 978-3-031-35402-1. [Google Scholar]
- Zhou, M.; Tang, Y.; Deng, X.; Ruan, C.; Kreft, I.; Tang, Y.; Wu, Y. Chapter One—Overview of Buckwheat Resources in the World. In Buckwheat Germplasm in the World; Zhou, M., Kreft, I., Suvorova, G., Tang, Y., Woo, S.H., Eds.; Academic Press: New York, NY, USA, 2018; pp. 1–7. ISBN 978-0-12-811006-5. [Google Scholar]
- Zamaratskaia, G.; Gerhardt, K.; Knicky, M.; Wendin, K. Buckwheat: An Underutilized Crop with Attractive Sensory Qualities and Health Benefits. Crit. Rev. Food Sci. Nutr. 2024, 64, 12303–12318. [Google Scholar] [CrossRef]
- Mumtaz, W.; Klepacka, J.; Czarnowska-Kujawska, M. Modification of Mineral Content in Bread with the Addition of Buckwheat Husk. Appl. Sci. 2025, 15, 4455. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat Proteins and Peptides: Biological Functions and Food Applications. Trends Food Sci. Technol. 2021, 110, 155–167. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Guo, X.; Song, G.; Pang, S.; Fang, W.; Peng, Z. Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrients 2022, 14, 2760. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Zhao, Q.; Wang, Y.; Li, C.; Zou, L.; Hu, Y. Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet. Foods 2021, 10, 2457. [Google Scholar] [CrossRef]
- Dhull, S.B.; Bains, A.; Chawla, P.; Kaur, S. (Eds.) Pseudocereals: Production, Processing, and Nutrition, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-32527-7. [Google Scholar]
- Gao, Y.; Guo, Y.; Pang, J.; Liu, M.; Yuan, T.; Wang, Q.; Liu, J. Comparative Genomics and Characterisation of the Role of Saccharomyces Cerevisiae Respiration in the Fermentation of Chinese Steamed Bread. J. Fungi 2025, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, M.; Gu, C.; Lu, A.; Dong, L.; Zhang, X.; Hu, X.; Liu, Y.; Lu, J. Effect of Fucoidan on Structure and Bioactivity of Chinese Steamed Bread. Foods 2024, 13, 1507. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Brennan, M.; Serventi, L.; Brennan, C. Buckwheat Flour Inclusion in Chinese Steamed Bread: Potential Reduction in Glycemic Response and Effects on Dough Quality. Eur. Food Res. Technol. 2017, 243, 727–734. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Brennan, C.; You, L.; Wu, L. Individual and Combined Effects of α-Amylase, Xylanase, and Cellulase on the Breadmaking and Nutritional Properties of Steamed Bun Enriched in Wheat Bran. J. Food Sci. 2023, 88, 3228–3238. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Brennan, C.; You, L.; Tu, D. Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread. Foods 2023, 12, 273. [Google Scholar] [CrossRef]
- Basit, R.A.; Rakha, A.; Khan, Z.; Lou, X.; Wang, J.; Fan, G. Microbial Enzymes in Cereal-Based Foods: Health Perspectives, Environmental Impact, and Future Directions. Food Rev. Int. 2025. online first. [Google Scholar] [CrossRef]
- Shad, M.; Hussain, N.; Usman, M.; Akhtar, M.W.; Sajjad, M. Exploration of Computational Approaches to Predict the Structural Features and Recent Trends in α-Amylase Production for Industrial Applications. Biotechnol. Bioeng. 2023, 120, 2092–2116. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Bai, J.; Buccato, D.G.; Zhang, J.; He, Y.; Zhu, Y.; Yang, Z.; Xiao, X.; Daglia, M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024, 13, 2369. [Google Scholar] [CrossRef]
- Vélez-Mercado, M.I.; Talavera-Caro, A.G.; Escobedo-Uribe, K.M.; Sánchez-Muñoz, S.; Luévanos-Escareño, M.P.; Hernández-Terán, F.; Alvarado, A.; Balagurusamy, N. Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int. J. Mol. Sci. 2021, 22, 12249. [Google Scholar] [CrossRef]
- Motahar, S.F.S.; Ariaeenejad, S.; Salami, M.; Emam-Djomeh, Z.; Mamaghani, A.S.A. Improving the Quality of Gluten-Free Bread by a Novel Acidic Thermostable α-Amylase from Metagenomics Data. Food Chem. 2021, 352, 129307. [Google Scholar] [CrossRef]
- Yadav, V.; Biswas, S.; Goyal, A. Enzymes of Industrial Significance and Their Applications. In Industrial Microbiology and Biotechnology: An Insight into Current Trends; Verma, P., Ed.; Springer Nature: Singapore, 2024; pp. 277–307. ISBN 978-981-97-1912-9. [Google Scholar]
- Aacc, C. Approved Methods of the American Association of Cereal Chemists; AACC: Washington, DC, USA, 2000. [Google Scholar]
- Ahmed, J.; Thomas, L.; Khashawi, R.A. Effect of Inulin on Rheological, Textural, and Structural Properties of Brown Wheat Flour Dough and in Vitro Digestibility of Developed Arabic Bread. J. Food Sci. 2020, 85, 3711–3721. [Google Scholar] [CrossRef]
- Shibata, M.; Tsuta, M.; Sugiyama, J.; Fujita, K.; Kokawa, M.; Araki, T.; Nabetani, H. Image Analysis of Bread Crumb Structure in Relation to Mechanical Properties. Int. J. Food Eng. 2013, 9, 115–120. [Google Scholar] [CrossRef]
- Brennan, M.A.; Merts, I.; Monro, J.; Woolnough, J.; Brennan, C.S. Impact of Guar and Wheat Bran on the Physical and Nutritional Quality of Extruded Breakfast Cereals. Starch Stärke 2008, 60, 248–256. [Google Scholar] [CrossRef]
- Brennan, M.A.; Derbyshire, E.J.; Brennan, C.S.; Tiwari, B.K. Impact of Dietary Fibre-Enriched Ready-to-Eat Extruded Snacks on the Postprandial Glycaemic Response of Non-Diabetic Patients. Mol. Nutr. Food Res. 2012, 56, 834–837. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Effect of Cellulase, Xylanase and α-Amylase Combinations on the Rheological Properties of Chinese Steamed Bread Dough Enriched in Wheat Bran. Food Chem. 2017, 234, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Brennan, M.; Tu, D.; Brennan, C. Influence of α-Amylase, Xylanase and Cellulase on the Rheological Properties of Bread Dough Enriched with Oat Bran. Sci. Rep. 2023, 13, 4534. [Google Scholar] [CrossRef]
- Chen, Y.; Eder, S.; Schubert, S.; Gorgerat, S.; Boschet, E.; Baltensperger, L.; Boschet, E.; Städeli, C.; Kuster, S.; Fischer, P.; et al. Influence of Amylase Addition on Bread Quality and Bread Staling. ACS Food Sci. Technol. 2021, 1, 1143–1150. [Google Scholar] [CrossRef]
- Lagrain, B.; Leman, P.; Goesaert, H.; Delcour, J.A. Impact of Thermostable Amylases during Bread Making on Wheat Bread Crumb Structure and Texture. Food Res. Int. 2008, 41, 819–827. [Google Scholar] [CrossRef]
- Dhital, S.; Warren, F.J.; Butterworth, P.J.; Ellis, P.R.; Gidley, M.J. Mechanisms of Starch Digestion by α-Amylase—Structural Basis for Kinetic Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ral, J.-P.; Saulnier, L.; Kansou, K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods 2022, 11, 1223. [Google Scholar] [CrossRef]
- Samanta, S. Structural and Catalytical Features of Different Amylases and Their Potential Applications. Jordan J. Biol. Sci. 2022, 15, 311–337. [Google Scholar] [CrossRef]
- Su, L.; Wu, J. Applications of Starch Debranching Enzymes in Starch Processing. In Industrial Starch Debranching Enzymes; Wu, J., Xia, W., Eds.; Springer Nature: Singapore, 2023; pp. 225–267. ISBN 978-981-19-7026-9. [Google Scholar]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of Xylanase and Pentosanase Enzymes on Dough Rheological Properties and Quality of Baguette Bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Xie, D.; Sun, Y.; Lei, Y. Effect of Glucose Levels on Carbon Flow Rate, Antioxidant Status, and Enzyme Activity of Yeast during Fermentation. J. Sci. Food Agric. 2022, 102, 5333–5347. [Google Scholar] [CrossRef]
- Wang, L.; Yan, M.; Jiang, Q.; Wang, B.; Luo, D.; Yue, C.; Guo, J.; Qiu, J.; Wang, H.; Wu, W.; et al. Effect of Buckwheat Bran Protein Enzymatic Hydrolysates on the Rheological, Textural and Structural Properties of Non-Fermented Wheat Dough. Food Chem. X 2025, 27, 102501. [Google Scholar] [CrossRef]
- Hmad, I.B.; Ghribi, A.M.; Bouassida, M.; Ayadi, W.; Besbes, S.; Chaabouni, S.E.; Gargouri, A. Combined Effects of α-Amylase, Xylanase, and Cellulase Coproduced by Stachybotrys Microspora on Dough Properties and Bread Quality as a Bread Improver. Int. J. Biol. Macromol. 2024, 277, 134391. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X.; Zhang, Z.; Zhou, T.; Gao, R.; Li, Y.; Ding, X. Effect of β-Endoxylanase and α-Arabinofuranosidase Enzymatic Hydrolysis on Nutritional and Technological Properties of Wheat Brans. Food Chem. 2020, 302, 125332. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-Q.; Sun, X.-H.; Zhu, K.-X.; Guo, X.-N. Improving the Quality of Frozen Steamed Stuffed Buns after Freeze-Thaw Cycles: Synergistic Effects of Cellulase, Xylanase and Sourdough. Food Biosci. 2025, 68, 106524. [Google Scholar] [CrossRef]
- Kostyuchenko, M.; Martirosyan, V.; Nosova, M.; Dremucheva, G.; Nevskaya, E.; Savkina, O. Effects of α-Amylase, Endo-Xylanase and Exoprotease Combination on Dough Properties and Bread Quality. Agron. Res. 2021, 19, 1234–1248. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Rui, X.; Li, W.; Li, T.; Xu, X.; Dong, M. Use of Fermented Glutinous Rice as a Natural Enzyme Cocktail for Improving Dough Quality and Bread Staling. RSC Adv. 2017, 7, 11394–11402. [Google Scholar] [CrossRef]
- Azizi, S.; Azizi, M.H.; Moogouei, R.; Rajaei, P. The Effect of Quinoa Flour and Enzymes on the Quality of Gluten-Free Bread. Food Sci. Nutr. 2020, 8, 2373–2382. [Google Scholar] [CrossRef]
- Ebling, C.D.; Thys, R.C.S.; Klein, M.P. Influence of Amyloglucosidase, Glucose Oxidase, and Transglutaminase on the Technological Quality of Gluten-Free Bread. Cereal Chem. 2022, 99, 802–810. [Google Scholar] [CrossRef]
- Matsushita, K.; Tamura, A.; Goshima, D.; Santiago, D.M.; Myoda, T.; Takata, K.; Yamauchi, H. Effect of Combining Additional Bakery Enzymes and High Pressure Treatment on Bread Making Qualities. J. Food Sci. Technol. 2020, 57, 134–142. [Google Scholar] [CrossRef]
- Sadeghian Motahar, S.F.; Salami, M.; Ariaeenejad, S.; Emam-Djomeh, Z.; Sheykh Abdollahzadeh Mamaghani, A.; Kavousi, K.; Moghadam, M.; Hosseini Salekdeh, G. Synergistic Effect of Metagenome-Derived Starch-Degrading Enzymes on Quality of Functional Bread with Antioxidant Activity. Starch Stärke 2022, 74, 2100098. [Google Scholar] [CrossRef]
- Park, E.Y.; Fuerst, E.P.; Baik, B.-K. Effect of Bran Hydration with Enzymes on Functional Properties of Flour–Bran Blends. Cereal Chem. 2019, 96, 273–282. [Google Scholar] [CrossRef]
- Jagelaviciute, J.; Staniulyte, G.; Cizeikiene, D.; Basinskiene, L. Influence of Enzymatic Hydrolysis on Composition and Technological Properties of Apple Pomace and Its Application for Wheat Bread Making. Plant Foods Hum. Nutr. 2023, 78, 307–313. [Google Scholar] [CrossRef]
- Chauhan, J.; Shukla, R.; Bishoyi, A.K.; Goyal, S.; Sanghvi, G. Investigation of Physical, Nutritional and Sensory Properties of Wheat Bread Treated with Purified Thermostable Cellulase and Alpha Amylase. Cogent Food Agric. 2023, 9, 2261839. [Google Scholar] [CrossRef]
- Arte, E.; Rizzello, C.G.; Verni, M.; Nordlund, E.; Katina, K.; Coda, R. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran. J. Agric. Food Chem. 2015, 63, 8685–8693. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhu, J.; Cheung, P.C.K.; Li, C. The Physical and Chemical Interactions between Starch and Dietary Fiber: Their Impact on the Physicochemical and Nutritional Properties of Starch. Trends Food Sci. Technol. 2024, 149, 104566. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Ai, L. Physical Barrier Effects of Dietary Fibers on Lowering Starch Digestibility. Curr. Opin. Food Sci. 2022, 48, 100940. [Google Scholar] [CrossRef]
- Santacruz-Juárez, E.; Buendia-Corona, R.E.; Ramírez, R.E.; Sánchez, C. Fungal Enzymes for the Degradation of Polyethylene: Molecular Docking Simulation and Biodegradation Pathway Proposal. J. Hazard. Mater. 2021, 411, 125118. [Google Scholar] [CrossRef]
- Kittiwisut, S.; Amnuoypol, S.; Pathompak, P.; Setharaksa, S. α-Glucosidase and α-Amylase Inhibitory Effects with Anti-Oxidative Activity of Tetracera Loureiri (Finet & Gagnep.) Pierre Ex Craib Leaf Extracts. Pharm. Sci. Asia 2021, 48, 175–184. [Google Scholar] [CrossRef]
- Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L.; et al. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Int. J. Mol. Sci. 2023, 24, 3652. [Google Scholar] [CrossRef]
- Liu, M.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Effect of Different Enzymes on Thermal and Structural Properties of Gluten, Gliadin, and Glutenin in Triticale Whole-Wheat Dough. Int. J. Biol. Macromol. 2023, 253, 127384. [Google Scholar] [CrossRef] [PubMed]
Bun Samples | Wheat Flour | 15% Buckwheat (Control) | 15% Buckwheat + 10 ppm Amylase | 15% Buckwheat + 70 ppm Xylanase | 15% Buckwheat + 35 ppm Cellulase |
---|---|---|---|---|---|
Specific volume (mL/g) | 2.50 ± 0.03 A | 2.19 ± 0.01 B | 2.20 ± 0.01 B | 2.20 ± 0.01 B | 2.22 ± 0.01 B |
Loaf height (mm) | 62.14 ± 0.38 A | 57.65 ± 0.30 B | 57.31 ± 0.31 B | 56.46 ± 0.68 B | 56.91 ± 0.88 B |
Moisture (%) | 40.10 ± 0.01 D | 41.15 ± 0.10 C | 45.93 ± 0.21 A | 42.68 ± 0.29 B | 45.91 ± 0.12 A |
Hardness (g) | 228.24 ± 25.92 B | 451.31 ± 11.49 A | 441.42 ± 10.80 A | 459.16 ± 18.17 A | 450.56 ± 15.89 A |
Chewiness (g) | 179.83 ± 19.34 C | 347.93 ± 9.46 B | 398.93 ± 9.35 A | 401.35 ± 5.11 A | 383.68 ± 13.75 A |
Cohesiveness (ratio) | 0.88 ± 0.01 A | 0.85 ± 0.02 A | 0.87 ± 0.02 A | 0.87 ± 0.01 A | 0.88 ± 0.02 A |
Springiness (mm) | 0.95 ± 0.01 A | 0.89 ± 0.01 B | 0.96 ± 0.02 A | 0.95 ± 0.02 A | 0.96 ± 0.02 A |
Cell density (cells/cm2) | 53.00 ± 1.03 B | 51.35 ± 2.05 B | 56.85 ± 0.66 A | 55.17 ± 1.86 AB | 58.60 ± 1.20 A |
Cell size (mm) | 0.49 ± 0.01 A | 0.39 ± 0.02 C | 0.46 ± 0.01 B | 0.51± 0.01 A | 0.47 ± 0.02 AB |
Mean cell area (%) | 21.88 ± 1.33 A | 20.12 ± 0.78 B | 22.36 ± 0.12 A | 23.15 ± 0.51 A | 21.68 ± 0.21 B |
IDF (%) | 3.48 ± 0.11 B | 4.76 ± 0.15 A | 4.66 ± 0.21 A | 4.72± 0.15 A | 4.69 ± 0.26 A |
SDF (%) | 0.53 ± 0.01 B | 2.50 ± 0.05 A | 2.39 ± 0.15 A | 2.43 ± 0.05 A | 2.37 ± 0.06 A |
TDF (%) | 4.01 ± 0.10 C | 7.26 ± 0.12 A | 7.05 ± 0.25 A | 7.15 ± 0.13 A | 7.06 ± 0.25 A |
Total starch (%) | 43.82 ± 1.30 A | 42.07 ± 0.21 B | 41.86 ± 0.08 B | 42.02 ± 0.06 B | 41.76 ± 0.18 B |
AUC | 431.31 ± 21.4 A | 337.27 ± 2.81 B | 326.25 ± 12.26 B | 332.58 ± 12.20 B | 350.17 ± 11.79 B |
Blocks | A | B | C | Specific Volume (mL/g) | Loaf Height (mm) | Moisture (%) | Hardness (g) | Springiness (mm) | Cohesiveness (ratio) | Chewiness (g) | Cells (Cells/cm2) | Cell Size (mm) | Cell Area (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wheat flour | 0 | 0 | 0 | 2.50 | 62.14 | 40.10 | 228.24 | 0.94 | 0.88 | 179.83 | 53.00 | 0.488 | 21.88 |
Buckwheat | 0 | 0 | 0 | 2.19 | 57.65 | 41.15 | 401.31 | 0.89 | 0.85 | 307.97 | 51.35 | 0.39 | 20.12 |
1 | 6 | 70 | 35 | 2.25 | 57.18 | 45.18 | 398.42 | 0.92 | 0.87 | 334.43 | 49.18 | 0.55 | 23.82 |
2 | 6 | 70 | 60 | 2.50 | 60.88 | 47.69 | 271.46 | 0.95 | 0.88 | 230.43 | 46.68 | 0.70 | 26.98 |
3 | 6 | 120 | 60 | 2.31 | 61.28 | 46.31 | 391.76 | 0.97 | 0.89 | 349.32 | 50.10 | 0.65 | 23.90 |
4 | 6 | 120 | 35 | 2.30 | 59.68 | 44.25 | 364.13 | 0.98 | 0.88 | 314.25 | 51.50 | 0.55 | 24.13 |
5 | 10 | 70 | 35 | 2.28 | 54.79 | 46.31 | 390.35 | 0.97 | 0.97 | 343.27 | 49.63 | 0.53 | 23.18 |
6 | 10 | 120 | 35 | 2.27 | 57.51 | 43.63 | 356.43 | 0.96 | 0.90 | 327.09 | 52.50 | 0.49 | 23.85 |
7 | 10 | 120 | 60 | 2.22 | 57.88 | 44.33 | 379.78 | 0.95 | 0.90 | 359.09 | 51.50 | 0.51 | 22.05 |
8 | 10 | 70 | 60 | 2.29 | 54.91 | 46.28 | 346.86 | 0.98 | 0.91 | 305.13 | 49.67 | 0.60 | 22.29 |
Coefficient Estimate | Specific Volume (mL/g) | Loaf Height (mm) | Moisture (%) | Hardness (g) | Springiness (mm) | Cohesiveness (Ratio) | Chewiness (g) | Cell Density (cells/cm2) | Cell Size (mm) | Cell Area (%) |
---|---|---|---|---|---|---|---|---|---|---|
Constant (β0) | 2.26 | 56.88 | 45.65 | 331.68 | 0.96 | 0.90 | 308.18 | 49.52 | 0.58 | 22.88 |
Amylase (β1) | −0.02 | −3.01 | 0.33 | 18.20 | −0.01 | NS | 23.53 | 1.86 | −0.11 | −0.68 |
Xylanase (β2) | −0.05 | −0.03 | 0.47 | 11.33 | −0.02 | NS | 8.52 | 1.26 | −0.06 | −0.56 |
Cellulase (β3) | −0.07 | −1.46 | 0.56 | NS | −0.01 | NS | 11.31 | −1.81 | NS | −0.33 |
Amylase*Xylanase(β12) | 0.02 | 0.12 | −1.96 | −2.14 | 0.02 | NS | −3.21 | 3.66 | −0.03 | 0.88 |
Amylase*Cellulase(β13) | 0.03 | 0.11 | 0.66 | −6.69 | NS | NS | −12.11 | NS | 0.03 | 0.27 |
Xylanase*Cellulase(β23) | 0.01 | NS | 0.26 | −11.74 | NS | NS | −3.08 | −1.66 | 0.07 | 0.33 |
Amylase*Xylanase*Cellulase | 0.02 | NS | −0.44 | −13.21 | 0.01 | NS | −18.22 | NS | −0.03 | NS |
R2 | 98.45% | 91.85% | 99.81% | 98.18% | 89.98% | 40.82% | 98.69% | 91.19% | 96.89% | 89.85% |
Blocks | A | B | C | IDF % | SDF % | TDF % | Total Starch % | AUC |
---|---|---|---|---|---|---|---|---|
Wheat flour | 0 | 0 | 0 | 3.48 | 0.52 | 4.01 | 43.82 | 491.30 |
Buckwheat flour | 0 | 0 | 0 | 4.76 | 2.50 | 7.26 | 42.07 | 337.27 |
1 | 6 | 70 | 35 | 4.46 | 2.39 | 7.05 | 41.26 | 351.65 |
2 | 6 | 70 | 60 | 4.09 | 2.33 | 6.42 | 40.89 | 341.74 |
3 | 6 | 120 | 60 | 4.12 | 2.38 | 6.50 | 40.02 | 346.24 |
4 | 6 | 120 | 35 | 4.11 | 2.35 | 6.46 | 40.59 | 344.67 |
5 | 10 | 70 | 35 | 4.23 | 2.30 | 6.53 | 40.26 | 351.06 |
6 | 10 | 120 | 35 | 4.09 | 2.45 | 6.54 | 42.15 | 358.83 |
7 | 10 | 120 | 60 | 4.11 | 2.38 | 6.49 | 41.36 | 338.22 |
8 | 10 | 70 | 60 | 4.23 | 2.40 | 6.63 | 40.78 | 312.20 |
Coefficient Estimate | IDF % | SDF % | TDF % | Total Starch % | AUC |
---|---|---|---|---|---|
Constant (β0) | 4.32 | 2.02 | 6.56 | 40.13 | 377.93 |
Amylase (β1) | −0.02 | −0.01 | −0.08 | −0.01 | −7.18 |
Xylanase (β2) | −0.13 | 0.03 | −0.21 | −0.02 | −8.08 |
Cellulase (β3) | 0.07 | −0.11 | −0.10 | −0.08 | −9.22 |
Amylase*Xylanase (β12) | NS | −0.08 | −0.12 | 0.15 | NS |
Amylase*Cellulase (β13) | 0.02 | −0.02 | −0.08 | −0.26 | 8.19 |
Xylanase*Cellulase (β23) | 0.01 | NS | NS | −0.52 | 8.44 |
Amylase*Xylanase*Cellulase | 0.05 | −0.03 | NS | NS | 1.72 |
R2 | 91.11% | 90.12% | 96.58% | 96.96% | 95.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Ming, J.; Brennan, M.; Brennan, C. Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response. Foods 2025, 14, 2735. https://doi.org/10.3390/foods14152735
Liu W, Ming J, Brennan M, Brennan C. Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response. Foods. 2025; 14(15):2735. https://doi.org/10.3390/foods14152735
Chicago/Turabian StyleLiu, Wenjun, Jian Ming, Margaret Brennan, and Charles Brennan. 2025. "Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response" Foods 14, no. 15: 2735. https://doi.org/10.3390/foods14152735
APA StyleLiu, W., Ming, J., Brennan, M., & Brennan, C. (2025). Enzymes (α-Amylase, Xylanase, and Cellulase) in Steamed Buckwheat Buns: The Effects on Quality and Predicted Glycemic Response. Foods, 14(15), 2735. https://doi.org/10.3390/foods14152735