Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = pork industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1463 KiB  
Article
Linseed, Walnut, and Algal Oil Emulsion Gels as Fat Replacers in Chicken Frankfurters: Effects on Composition, Lipid Profile and Sensory Quality
by Tamara Stamenić, Vanja Todorović, Maja Petričević, Tanja Keškić, Bogdan Cekić, Nenad Stojiljković and Nikola Stanišić
Foods 2025, 14(15), 2677; https://doi.org/10.3390/foods14152677 - 30 Jul 2025
Viewed by 423
Abstract
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the [...] Read more.
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the proximate composition, fatty acid profile, nutritional indices, lipid oxidation, and sensory properties of chicken frankfurters were investigated. Four formulations were prepared: a control group (25% pork fat) and three groups that were completely reformulated using oil emulsions (ratio inulin/water/oil 1:2:1). The fat substitute significantly reduced total fat, SFA, cholesterol (up to 30%), and calorie density, while Ʃn-3 fatty acids were enriched (p < 0.05). The linseed oil samples had the highest levels of α-linolenic acid (47.53%), while the algal oil had the highest levels of eicosapentaenoic acid (10.98%) and docosahexaenoic acid (64.73%) and the most favourable Ʃn-6/Ʃn-3 ratio (p < 0.05). All reformulated groups showed significantly improved atherogenic and thrombogenic indices and increased hypocholesterolaemic/hypercholesterolaemic ratios, which reached 17.43 in the algal oil samples (p < 0.05). Lipid oxidation was increased in the linseed and algal oil treatments, with the walnut oil group showing moderate TBARS levels and minimal accumulation of secondary oxidation products. Principal component analysis revealed that walnut oil offered the most balanced compromise between nutritional improvement, oxidative stability and sensory acceptability. These findings support a healthier reformulation of meat products by identifying oil-based fat substitutes that improve nutritional value without compromising sensory quality, which is beneficial for both research and industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

29 pages, 5825 KiB  
Article
BBSNet: An Intelligent Grading Method for Pork Freshness Based on Few-Shot Learning
by Chao Liu, Jiayu Zhang, Kunjie Chen and Jichao Huang
Foods 2025, 14(14), 2480; https://doi.org/10.3390/foods14142480 - 15 Jul 2025
Viewed by 331
Abstract
Deep learning approaches for pork freshness grading typically require large datasets, which limits their practical application due to the high costs associated with data collection. To address this challenge, we propose BBSNet, a lightweight few-shot learning model designed for accurate freshness classification with [...] Read more.
Deep learning approaches for pork freshness grading typically require large datasets, which limits their practical application due to the high costs associated with data collection. To address this challenge, we propose BBSNet, a lightweight few-shot learning model designed for accurate freshness classification with a limited number of images. BBSNet incorporates a batch channel normalization (BCN) layer to enhance feature distinguishability and employs BiFormer for optimized fine-grained feature extraction. Trained on a dataset of 600 pork images graded by microbial cell concentration, BBSNet achieved an average accuracy of 96.36% in a challenging 5-way 80-shot task. This approach significantly reduces data dependency while maintaining high accuracy, presenting a viable solution for cost-effective real-time pork quality monitoring. This work introduces a novel framework that connects laboratory freshness indicators to industrial applications in data-scarce conditions. Future research will investigate its extension to various food types and optimization for deployment on portable devices. Full article
Show Figures

Figure 1

19 pages, 3584 KiB  
Article
PRV Induces Neurological Inflammatory Injury by Activating Necroptosis of Brain Tissue
by Chunzi Peng, Jinwu Zhang, Changxu Wu, Danning Liu, Jing Liang, Maojie Lv, Shisen Yang, Xiaoning Li, Yingyi Wei, Hailan Chen, Jiakang He, Tingjun Hu and Meiling Yu
Microorganisms 2025, 13(7), 1531; https://doi.org/10.3390/microorganisms13071531 - 30 Jun 2025
Viewed by 409
Abstract
Pseudorabies virus (PRV) can infect a wide range of animal species, including swine and rodents. Infection in pigs is associated with significant economic losses in the global pork industry and is characterized by acute, often fatal disease, as well as central nervous system [...] Read more.
Pseudorabies virus (PRV) can infect a wide range of animal species, including swine and rodents. Infection in pigs is associated with significant economic losses in the global pork industry and is characterized by acute, often fatal disease, as well as central nervous system (CNS) invasion, which leads to neurological manifestations. Although PRV replication has been extensively characterized in certain murine neuronal cell lines such as Neuro-2a, the mechanisms underlying PRV-induced neuroinflammatory injury and necroptosis remain largely unclear. In this study, Kunming mice and mouse astrocytes (C8-D1A) were infected with PRV-GXLB-2013 at different doses to evaluate neurological injury and inflammatory responses. Given that the NF-κB/MLKL signaling pathway was found to be activated during PRV infection, a selective MLKL inhibitor, necrosulfonamide (NSA), was applied to investigate the role of necroptosis in PRV-induced neuroinflammatory damage. Mice infected with higher viral doses showed increased mortality, severe neurological symptoms, elevated brain inflammation, and pathological changes. In C8-D1A cells, PRV infection significantly upregulated inflammatory cytokines and key components of the NF-κB/MLKL pathway. Importantly, NSA treatment markedly reduced these inflammatory responses, mitochondrial damage, and cellular necrosis. Collectively, these findings suggest that PRV infection triggers neuroinflammatory injury through the activation of necroptosis and the NF-κB/MLKL signaling pathway. This study provides novel mechanistic insights into PRV-induced neurological damage and highlights potential therapeutic targets for intervention. Full article
(This article belongs to the Special Issue The Host Response to Animal Virus Infection)
Show Figures

Figure 1

25 pages, 4878 KiB  
Article
Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstatninos Zaharioudakis, Charalampos Proestos, Emmanuel P. Giannelis, Nikolaos Chalmpes, Constantinos E. Salmas and Aris E. Giannakas
Polymers 2025, 17(11), 1518; https://doi.org/10.3390/polym17111518 - 29 May 2025
Cited by 1 | Viewed by 1507
Abstract
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this [...] Read more.
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this regard. In this study, pork-derived gelatin was used to develop novel edible active packaging films, designed for meat products. Glycerol (Gl) was used as a plasticizer. Two types of montmorillonite-based nanohybrids were employed as both reinforcing agents and carriers of antioxidant/antibacterial compounds: eugenol-functionalized montmorillonite (EG@Mt) and citral-functionalized montmorillonite (CT@Mt). The active films were formulated as Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt, where x = 5, 10, or 15 wt.%. Controlled-release kinetics showed that EG@Mt released up to 95% of its adsorbed eugenol, whereas CT@Mt released up to 55% of its adsorbed citral. The films were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and tested for antibacterial activity against Escherichia coli and Listeria monocytogenes. Results demonstrated that the Gel/Gl/xEG@Mt films exhibited superior antioxidant and antibacterial performance compared to the Gel/Gl/xCT@Mt films. All formulations were impermeable to oxygen. Although the incorporation of EG and CT slightly reduced cell viability, values remained above 80%, indicating non-toxicity. In conclusion, the film containing 15 wt.% EG@Mt achieved an oxygen transmission rate of zero, an effective concentration (EC60) of 9.9 mg/L to reach 60% antioxidant activity, and reduced E. coli and L. monocytogenes populations by at least 5.8 log CFU/mL (p < 0.05), bringing them below the detection limit. Moreover, it successfully extended the shelf life of fresh minced pork by two days. Full article
(This article belongs to the Special Issue Nano-Enhanced Biodegradable Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

20 pages, 885 KiB  
Review
Genetic Contributions to Aggressive Behaviour in Pigs: A Comprehensive Review
by Anastasiya Kazantseva, Airat Bilyalov, Nikita Filatov, Stepan Perepechenov and Oleg Gusev
Genes 2025, 16(5), 534; https://doi.org/10.3390/genes16050534 - 29 Apr 2025
Viewed by 1120
Abstract
Aggressive behaviour in pigs poses significant challenges to animal welfare, production efficiency, and economic performance in the pork industry. This review explores the multifaceted causes of pig aggression, focusing on genetic, environmental, and physiological factors. Aggression in pigs is categorized into social, maternal, [...] Read more.
Aggressive behaviour in pigs poses significant challenges to animal welfare, production efficiency, and economic performance in the pork industry. This review explores the multifaceted causes of pig aggression, focusing on genetic, environmental, and physiological factors. Aggression in pigs is categorized into social, maternal, fear-induced, play, and redirected aggression, with early-life hierarchies and environmental stressors playing critical roles. Physiological markers, such as elevated cortisol and reduced serotonin levels, are closely linked to aggressive behaviour, while dietary interventions, including tryptophan supplementation, have shown promise in mitigating aggression. Environmental factors, such as overcrowding, noise, and heat stress, exacerbate aggressive tendencies, whereas enrichment strategies, like music and improved housing conditions, can reduce stress and aggression. Genome-wide analyses have pinpointed specific polymorphisms in neurotransmitter genes (DRD2, SLC6A4, MAOA) and stress-response loci (RYR1) as significant predictors of porcine aggression. Advances in genomic technologies, including genome-wide association studies (GWASs) and transcriptomic analyses, have further elucidated the genetic and epigenetic underpinnings of aggressive behaviour. Practical application in breeding programmes remains challenging due to aggression polygenic nature and industry hesitancy toward genomic approaches. Future research should focus on integrating genetic markers into breeding programmes, developing multitrait selection indices, and exploring epigenetic modifications to improve animal welfare and production efficiency. By addressing these challenges, the pork industry can enhance both the well-being of pigs and the sustainability of production systems. Full article
(This article belongs to the Special Issue Advances in Pig Genetic and Genomic Breeding)
Show Figures

Figure 1

18 pages, 2280 KiB  
Article
Genome-Wide Association Study for Belly Traits in Canadian Commercial Crossbred Pigs
by Zohre Mozduri, Graham Plastow, Jack Dekkers, Kerry Houlahan, Robert Kemp and Manuel Juárez
Animals 2025, 15(9), 1254; https://doi.org/10.3390/ani15091254 - 29 Apr 2025
Cited by 1 | Viewed by 982
Abstract
The improvement of carcass traits is a key focus in pig genetic breeding programs. To identify quantitative trait loci (QTLs) and genes linked to key carcass traits, we conducted a genome-wide association study (GWAS) using whole-genome sequencing data from 1118 commercial pigs (Duroc [...] Read more.
The improvement of carcass traits is a key focus in pig genetic breeding programs. To identify quantitative trait loci (QTLs) and genes linked to key carcass traits, we conducted a genome-wide association study (GWAS) using whole-genome sequencing data from 1118 commercial pigs (Duroc sires and Yorkshire/Landrace F1 dams). This study focused on six phenotypes: iodine value, belly firmness, belly side fat, total side thickness (belly SThK), belly subcutaneous fat (Subq), and belly seam. Phenotypes were measured using image analysis, DEXA, and fatty acid profiling, and genotyping was performed using low-pass sequencing (SkimSeq). After quality control, 18,911,793 single nucleotide polymorphisms (SNPs) were retained for further analysis. A GWAS was conducted using a linear mixed model implemented in GCTA. Key findings include a significant QTL on SSC15 (110.83–112.23 Mb), which is associated with the iodine value, containing genes such as COX15, CHUK, SCD, and HIF1AN, which have known roles in fatty acid metabolism. Additionally, PNKD, VIL1, and PRKAG3 (120.74–121.88 Mb on SSC15) were linked to belly firmness, influencing muscle structure and fat composition. Three QTLs for belly side fat were identified on SSC1, SSC2, and SSC3, highlighting genes like SLC22A18, PHLDA2, and OSBPL5, which regulate fat deposition and lipid metabolism. The results provide novel molecular markers that can be incorporated into selective breeding programs to improve pork quality, fat distribution, and meat composition. These findings enhance our understanding of the genetic mechanisms underlying carcass belly traits while offering tools to improve pork quality, optimize fat composition, and align with consumer preferences in the meat production industry. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1425 KiB  
Article
Optimizing Finishing Pig Performance and Sustainability: The Role of Protein Levels and Eco-Friendly Additive
by Weihan Zhao, Kyejin Lee and Inho Kim
Animals 2025, 15(9), 1248; https://doi.org/10.3390/ani15091248 - 28 Apr 2025
Viewed by 523
Abstract
This study contributes to promoting green farming and achieving sustainable pork production. Especially under the conditions of resource scarcity and rising environmental demands, efficient and eco-friendly feeding strategies have become key to industry development. We evaluated the effects of supplementing an eco-friendly additive [...] Read more.
This study contributes to promoting green farming and achieving sustainable pork production. Especially under the conditions of resource scarcity and rising environmental demands, efficient and eco-friendly feeding strategies have become key to industry development. We evaluated the effects of supplementing an eco-friendly additive (EFA) in diets with normal and low protein (−2% CP) levels on growth performance, nutrient digestibility, gas emission, fecal score, meat quality, and blood profile in finishing pigs. In this 10-week (70-day and 7-day adaptation period) feeding experiment, 200 crossbred pigs [Duroc × (Landrace × Yorkshire)] with an initial average body weight (BW) of 55.05 ± 3.35 kg were used. The pigs were randomly assigned to four treatment groups in a 2 × 2 factorial arrangement, with five pigs per replicate group, including two gilts and three barrows per pen, and each treatment group was repeated 10 times. The experimental treatments included the following: two protein levels (normal CP and −2% CP) and two EFA levels (0% and 0.5% EFA). The results showed that pigs fed high-protein + EFA diets had a significantly higher ADG from weeks 0–5 compared to the high-protein control group (p < 0.05). From weeks 5–10 and overall, both high-protein + EFA and low-protein + EFA groups had a higher ADG than the low-protein − EFA group (p < 0.05). At week 10, the low-protein + EFA group showed significantly higher nitrogen digestibility and significantly lower ammonia emissions compared to the high-protein − EFA group (p < 0.05). Both EFA supplementation and protein level had significant effects on ammonia emissions. The fecal score was not significantly affected (p > 0.05). In blood profiles, NPY was higher in the high-protein + EFA group than in the low-protein − EFA group (p < 0.05). In terms of meat quality, both EFA-supplemented groups had a higher WHC compared to the low-protein − EFA group, while the high-protein + EFA group had a greater LMA (p < 0.05) and lower drip loss on day 7 after slaughter (p < 0.05). In conclusion, supplementing low-protein diets with EFA can effectively enhance the growth performance of finishing pigs, mitigate environmental pollution, and offer feeding advantages while lowering feed costs. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

20 pages, 3835 KiB  
Article
Control of Persistent Listeria monocytogenes in the Meat Industry: From Detection to Prevention
by Belén Romero de Castilla López, Diego Gómez Lozano, Antonio Herrera Marteache, Pilar Conchello Moreno and Carmen Rota García
Foods 2025, 14(9), 1519; https://doi.org/10.3390/foods14091519 - 26 Apr 2025
Viewed by 819
Abstract
Listeria monocytogenes poses a significant food safety risk, particularly in ready-to-eat (RTE) products, due to its persistence in food processing environments. This study aimed to assess the significance of L. monocytogenes contamination routes, persistence, and monitoring and control in two Spanish food industries: [...] Read more.
Listeria monocytogenes poses a significant food safety risk, particularly in ready-to-eat (RTE) products, due to its persistence in food processing environments. This study aimed to assess the significance of L. monocytogenes contamination routes, persistence, and monitoring and control in two Spanish food industries: a fresh pork-cutting industry (Industry A) and an RTE food production industry (Industry B). A total of 698 samples from raw materials, final products, food contact surfaces (FCSs), and non-food contact surfaces (NFCSs) were analyzed using impedanciometry, isolation and identification on chromogenic agars, and molecular typing using serotyping and pulsed-field gel electrophoresis. In Industry A, L. monocytogenes contamination increased from 16.7% in raw materials to 53.3% in final products, with four persistent strains detected mainly on FCSs, pointing to their role in pathogen dissemination. In Industry B, the presence of L. monocytogenes decreased from 21.2% in raw materials to undetectable levels in the final products. Only one persistent strain was identified, mainly on NFCSs. Serotype 1/2a predominated in both environments. These findings emphasize the importance of robust monitoring, including contamination characterization, for L. monocytogenes prevention and control. Strengthening control measures in fresh meat processing and enhancing facility and equipment designs could improve overall hygiene and reduce the persistence of L. monocytogenes. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 3445 KiB  
Article
Study on the Effects of Different Thawing Methods on the Thawing Efficiency of Pork
by Anyuan Xue, Shanshan Chen and Yuyao Sun
Processes 2025, 13(4), 1067; https://doi.org/10.3390/pr13041067 - 2 Apr 2025
Viewed by 527
Abstract
The production and consumption of pork are substantial worldwide, with frozen pork being the primary form for storage and transportation. To evaluate the efficiency and quality of different thawing methods, we conducted experiments using 2 kg pork samples, comparing natural air thawing (NAT), [...] Read more.
The production and consumption of pork are substantial worldwide, with frozen pork being the primary form for storage and transportation. To evaluate the efficiency and quality of different thawing methods, we conducted experiments using 2 kg pork samples, comparing natural air thawing (NAT), vacuum steam thawing (VST), and a novel vacuum sublimation–rehydration thawing (VSRT). This study focused on evaluating the thawing efficiency, particularly energy consumption and thawing effectiveness, by analyzing key parameters such as the thawing time, thawing loss rate, and quality attributes. The results showed that VSRT achieved the shortest thawing time (54.60 min), with reductions of 55.37% and 34.61% compared to NAT and VST, respectively. VSRT also significantly reduced the thawing loss rate (by 85.66% and 79.27%) and total color difference (by 87.04% and 82.76%) compared to NAT and VST. The color and texture parameters of VSRT-thawed pork were closer to those of fresh meat (p > 0.05), while its specific energy consumption was 40.67% lower than that of VST. These findings highlight the potential of VSRT to preserve pork quality more effectively while offering faster thawing rates and lower energy consumption, making it a promising candidate for industrial-scale applications. Full article
Show Figures

Figure 1

18 pages, 4825 KiB  
Review
Recent Advances in Polysaccharide-Based Electrospun Nanofibers for Food Safety Detection
by Jie Shi, Junjie Tang, Mengfei Zhang, Yingqi Zou, Jie Pang and Chunhua Wu
Sensors 2025, 25(7), 2220; https://doi.org/10.3390/s25072220 - 1 Apr 2025
Viewed by 1005
Abstract
The continuous advancement of food safety analytical technologies is ensuring food safety and regulatory compliance. Electrospinning, a versatile fabrication platform, has emerged as a transformative methodology in materials science due to its unique capacity to generate nanoscale fibrous architectures with tunable morphologies. When [...] Read more.
The continuous advancement of food safety analytical technologies is ensuring food safety and regulatory compliance. Electrospinning, a versatile fabrication platform, has emerged as a transformative methodology in materials science due to its unique capacity to generate nanoscale fibrous architectures with tunable morphologies. When combined with the inherent biodegradability and biocompatibility of polysaccharides, electrospun polysaccharide nanofibers are positioning themselves as crucial components in innovative applications in the fields of food science. This review systematically elucidates the fundamental principles and operational parameters governing electrospinning processes, with particular emphasis on polysaccharide-specific fiber formation mechanisms. Furthermore, it provides a critical analysis of state-of-the-art applications involving representative polysaccharide nanofibers (e.g., starch, chitosan, cellulose, sodium alginate, and others) in food safety detection, highlighting their innovative application in livestock (chicken, pork, beef), aquatic (yellow croaker, Penaeus vannamei, Plectorhynchus cinctus), fruit and vegetable (olive, peanut, coffee), and dairy (milk) products. The synthesis of current findings not only validates the unique advantages of polysaccharide nanofibers but also establishes new paradigms for advancing rapid, sustainable, and intelligent food safety technologies. This work further proposes a roadmap for translating laboratory innovations into industrial-scale applications while addressing existing technological bottlenecks. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Figure 1

23 pages, 2611 KiB  
Article
Does Online Public Opinion Regarding Swine Epidemic Diseases Influence Fluctuations in Pork Prices?—An Analysis Based on TVP-VAR and LDA Models
by Fei Li, Huishang Li, Xin Dai, Hongjie Ren and Huaiyang Li
Agriculture 2025, 15(7), 730; https://doi.org/10.3390/agriculture15070730 - 28 Mar 2025
Viewed by 518
Abstract
In modern society with a highly developed Internet, online public opinions on swine epidemic diseases have become one of the important influencing factors for the fluctuation of pork prices. In this paper, the Baidu AI large model, Time-Varying Parameter-Stochastic Volatility-Vector Auto Regression (TVP-VAR) [...] Read more.
In modern society with a highly developed Internet, online public opinions on swine epidemic diseases have become one of the important influencing factors for the fluctuation of pork prices. In this paper, the Baidu AI large model, Time-Varying Parameter-Stochastic Volatility-Vector Auto Regression (TVP-VAR) and Latent Dirichlet allocation (LDA) approaches are employed to investigate the dynamic impact of online public opinion regarding live swine epidemic diseases on fluctuations in pork price. The results show that: (1) Online public attention and negative sentiment exert significant time-varying impacts on pork price fluctuations, with these impacts being most pronounced in the short term and gradually diminishing over the medium and long term. (2) During the outbreaks of swine epidemic diseases, the impulse impact of online public attention and negative sentiment on pork price fluctuations exhibits distinct stage-specific characteristics. Initially, the impact is negative and subsequently turns positive before eventually waning. (3) The online discourse surrounding swine epidemic diseases can be categorized into four topics including disease transmission, vaccine technology, industry development, and disease prevention and control. Online public attention towards these four topics associated with negative sentiments generally contributes to variations in pork prices. Based on findings, several policy recommendations are proposed, including the timely release of swine epidemic disease information, the establishment and enhancement of the online public opinion monitoring and early warning system, as well as adherence to routine prevention and control of pig epidemic diseases. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

23 pages, 5930 KiB  
Article
Modulation of Structural and Physical-Chemical Properties of Fish Gelatin Hydrogel by Natural Polysaccharides
by Aidar T. Gubaidullin, Aliya I. Galeeva, Yuriy G. Galyametdinov, Georgiy G. Ageev, Alexey A. Piryazev, Dimitri A. Ivanov, Elena A. Ermakova, Alena A. Nikiforova, Svetlana R. Derkach, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(7), 2901; https://doi.org/10.3390/ijms26072901 - 22 Mar 2025
Viewed by 1050
Abstract
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious [...] Read more.
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious and some other restrictions. In recent years, there has been a significant increase in the production of gelatin from alternative sources, such as raw fish materials. Unfortunately, fish gelatin is characterized by weak gelling ability and a decrease in gelation and melting temperature, which are a consequence of the amino acid composition and structural features of fish gelatin. One of the ways to strengthen the natural gelling properties of fish gelatin is the structural modification of gelatin hydrogels by the introduction of polysaccharides of various natural origins. We have studied the association of our laboratory-made fish gelatin with three polysaccharides, namely, κ-carrageenan, alginate, and chitosan, which have distinct chemical structures and gelling capabilities. Structural features of the studied systems were analyzed by small-angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). We applied computer modeling of molecular interactions between fish gelatin and polysaccharides by means of molecular docking and molecular dynamics approaches. The existence of a correlation between the structure of gelatin-polysaccharide systems and their physicochemical properties was demonstrated by wetting angles (flow angles) and dynamic light scattering (DLS) studies of hydrodynamic sizes and surface ζ-potential. Full article
(This article belongs to the Special Issue New Trends and Challenges in Polysaccharide Biomaterials)
Show Figures

Figure 1

20 pages, 12220 KiB  
Article
Characterization of Key Aroma Compounds in Dongpo Pork Dish and Their Dynamic Changes During Storage
by Min Xu, Yang Kang, Ying Wang, Lan Li, Yu Liu, Qin Xiang, Hongbin Lin, Ping Liu and Jie Tang
Foods 2025, 14(7), 1084; https://doi.org/10.3390/foods14071084 - 21 Mar 2025
Viewed by 554
Abstract
The objective of this study was to identify the key aroma compounds of Dongpo pork dish (DPD) and to explore the changes in key aroma compounds of DPD during the storage period. Quantitative descriptive analysis (QDA) combined with two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) [...] Read more.
The objective of this study was to identify the key aroma compounds of Dongpo pork dish (DPD) and to explore the changes in key aroma compounds of DPD during the storage period. Quantitative descriptive analysis (QDA) combined with two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) was employed to investigate the aroma characteristics and the volatile profiles of DPD. Further, a sensomic approach was used to decipher its key aroma compounds. The typical flavors identified in DPD were described as meat, grease, garlic, wine, soy sauce, and spice flavors by the QDA. The key aroma compounds contributing to the flavor of DPD include 2-heptanol, 1-octen-3-ol, hexanal, (E)-2-octenal, 3-methylthiopropanal, decanal, ethyl caproate, 2,5-dimethylpyrazine, and dimethyl trisulfide. In addition, the changes of key aroma compounds of DPD at different storage temperatures (25 °C, 4 °C) were explored, and the results demonstrated that the key aroma compounds showed an overall trend of attenuation with the increase in time. The content of ethyl caproate decayed by more than 60%. Compared with the storage temperature of 25 °C, DPD storage at 4 °C was more effective in slowing down the change of key aroma compounds. These results can provide theoretical evidence for the flavor modulation and the industrial production of DPD. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 17051 KiB  
Article
Biosecurity Risk Factors and Predictive Index for Hepatitis E Virus Serological Status in Belgian Pig Farms: Conventional and Free-Range Systems
by Constance Wielick, Louisa Ludwig-Begall, Stefaan Ribbens, Étienne Thiry, Christel Faes and Claude Saegerman
Viruses 2025, 17(3), 432; https://doi.org/10.3390/v17030432 - 18 Mar 2025
Cited by 1 | Viewed by 529
Abstract
Hepatitis E viruses (HEV) cause hepatitis E in humans. In industrialized countries, sporadic HEV infections, typically caused by HEV genotypes 3 or 4, can become chronic and progress to liver cirrhosis in immunocompromised individuals. Pigs are a significant animal reservoir, implicating raw or [...] Read more.
Hepatitis E viruses (HEV) cause hepatitis E in humans. In industrialized countries, sporadic HEV infections, typically caused by HEV genotypes 3 or 4, can become chronic and progress to liver cirrhosis in immunocompromised individuals. Pigs are a significant animal reservoir, implicating raw or undercooked pork products as potential sources of human infection. To better understand HEV dissemination in the Belgian pig population, potential risk factors were investigated by linking farm-level HEV serological status to biosecurity questionnaire data. Farrow-to-finish herd type, free-range systems, and poor boot hygiene were significantly associated with higher within-herd prevalences. This enabled an initial risk profiling of various farming types and the development of predictions for all Belgian pig farms. When combined with the census of the Belgian wild boar population, the predicted HEV status of all professional Belgian pig farms (based on these associations) does not suggest that the proximity of wild boars is a main source of HEV in free-ranging herds. Identifying risk factors for increased circulation of HEV between and within pig farms is critical to controlling its spread and reducing human infection. Full article
Show Figures

Figure 1

25 pages, 7343 KiB  
Review
Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development
by Zhan He, Fangfang Li, Min Liu, Jiali Liao and Chunhe Guo
Vaccines 2025, 13(3), 260; https://doi.org/10.3390/vaccines13030260 - 28 Feb 2025
Cited by 2 | Viewed by 1874
Abstract
Persistent infection of porcine reproductive and respiratory syndrome virus (PRRSV) significantly hampers both the quantity and quality of pork production in China. Although PRRSV is widely prevalent worldwide, the absence of effective vaccines has made it one of the major pathogens threatening the [...] Read more.
Persistent infection of porcine reproductive and respiratory syndrome virus (PRRSV) significantly hampers both the quantity and quality of pork production in China. Although PRRSV is widely prevalent worldwide, the absence of effective vaccines has made it one of the major pathogens threatening the sustainable development of the global swine industry. Vaccination remains one of the most effective measures for controlling pathogen infections. However, the continuous genetic recombination and mutation of PRRSV demand more comprehensive strategies to address emerging threats, while ensuring the efficacy and safety of vaccines. This review provides an overview of the latest advances in PRRSV vaccine research, highlighting the importance of understanding the unique strengths and limitations of various vaccines in developing effective therapeutic approaches and vaccination strategies. Moreover, the development of adjuvants and antiviral drugs as adjuncts to combat PRRSV infection offers significant potential for enhancing disease control efforts. With the advancement of technologies such as proteolysis-targeting chimera (PROTAC) and mRNA, new avenues for controlling PRRSV and other pathogens are emerging, offering considerable hope. Ultimately, the goal of these vaccine developments is to alleviate the impact of PRRSV on animal health and the profitability of the swine industry. Full article
(This article belongs to the Special Issue The Vaccine Development and Study of Swine Diseases)
Show Figures

Figure 1

Back to TopTop