Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = porcelain fused to metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12021 KiB  
Article
The Thermomechanical, Functional and Biocompatibility Properties of a Au–Pt–Ge Alloy for PFM Dental Restorations
by Peter Majerič, Minja Miličić Lazić, Dijana Mitić, Marko Lazić, Ema Krdžović Lazić, Gyöngyi Vastag, Ivan Anžel, Vojkan Lazić and Rebeka Rudolf
Materials 2024, 17(22), 5491; https://doi.org/10.3390/ma17225491 - 10 Nov 2024
Viewed by 1686
Abstract
A high-noble Au–Pt–Ge porcelain-fused-to-metal (PFM) dental alloy without the known adverse metallic elements and with the addition of germanium (Ge) was produced as a more cost-effective alternative to other precious alloying metals, with investigations for determining the functionality and clinical use of this [...] Read more.
A high-noble Au–Pt–Ge porcelain-fused-to-metal (PFM) dental alloy without the known adverse metallic elements and with the addition of germanium (Ge) was produced as a more cost-effective alternative to other precious alloying metals, with investigations for determining the functionality and clinical use of this alloy. The thermomechanical, biocompatibility, durability, workability and economic characteristics of the produced dental alloy were investigated. These properties were investigated with in vitro biocompatibility testing on human gingival fibroblasts (HGFs); static immersion testing for metal ion release; DSC analysis; hardness, tensile testing, density and coefficient of thermal expansion (CTE) measurements; metallographic and SEM/EDX microstructure investigations; and finally with the production of a test PFM dental bridge. The results of the thermomechanical testing showed alloy properties suitable for dental restorations and clinical use, with somewhat lower mechanical properties, making the alloy not suitable for extensive multiunit fixed restorations. The microstructure investigations showed segregations of Ge in the homogeneous alloy matrix, which reduce the alloy’s mechanical properties. The produced PFM dental bridge showed excellent workability of the alloy in a dental laboratory setting, as well as a high standard of the final dental restoration. The ion release was negligible, well below any harmful quantities, while the cell viability examination showed significantly higher viability ratings on polished alloy samples as compared to as-cast samples. The results showed that a dental substructure in direct contact with oral tissue and fluids should be highly polished. The performed investigations showed that the produced PFM dental alloy is suitable for clinical use in producing high-quality dental restorations with high biocompatibility for patients prone to metal allergies. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

14 pages, 8957 KiB  
Article
Effect of Prosthetic Material and Support Type on Stress Distribution of Fixed Partial Dentures: A Finite Element Study
by Jelena Eric, Ljiljana Bjelovic, Igor Radovic, Jelena Krunic, Aleksandra Milic-Lemic, Nidhi Gupta and Kamran Ali
Ceramics 2024, 7(3), 1204-1217; https://doi.org/10.3390/ceramics7030079 - 8 Sep 2024
Viewed by 1859
Abstract
Choosing an appropriate prosthetic material for the superstructure of an implant-supported or tooth-implant supported fixed partial denture (FPD) is crucial for the success of the prostheses. The objective of this study was to examine the effect of prosthetic material type and tooth-to-implant support [...] Read more.
Choosing an appropriate prosthetic material for the superstructure of an implant-supported or tooth-implant supported fixed partial denture (FPD) is crucial for the success of the prostheses. The objective of this study was to examine the effect of prosthetic material type and tooth-to-implant support on stress distribution of FPDs using three-dimensional finite element analysis (3D FEA). Two FEA models were generated, distinguished by their support configurations: Model I representing an FPD supported by implants, and Model II depicting an FPD supported by both a tooth and an implant. Two different restorative materials, porcelain-fused-to-metal (PFM) and monolithic zirconia, were evaluated for stress distribution under axial and oblique loads of 300 N applied to the pontic. Under both axial and oblique loading conditions, the maximum von Mises stress values were observed to be higher in the implant-abutment complex of both zirconia implant-supported and tooth-implant-supported FPDs compared to PFM FPDs. In the case of axial loading, comparable stress values were found in the cortical bone for PFM (12.65 MPa) and zirconia implant-supported FPDs (12.71 MPa). The zirconia tooth-implant-supported FPD exhibited the highest stress values in the implant-abutment system. Full article
Show Figures

Figure 1

13 pages, 2225 KiB  
Article
Evaluation of the Effect of Electronic Cigarette Devices/Vape on the Color of Dental Ceramics: An In Vitro Investigation
by Ghada Alrabeah, Syed Rashid Habib, Nawaf M. Alamro and Meshari A. Alzaaqi
Materials 2023, 16(11), 3977; https://doi.org/10.3390/ma16113977 - 26 May 2023
Cited by 6 | Viewed by 2698
Abstract
The use of vaping or electronic cigarette devices (ECDs) has recently increased as an alternative to conventional tobacco smoking products. By recording the CIELAB coordinates (L*a*b*) and computing the total color difference (ΔE) values using a spectrophotometer, the effect of ECDs on contemporary [...] Read more.
The use of vaping or electronic cigarette devices (ECDs) has recently increased as an alternative to conventional tobacco smoking products. By recording the CIELAB coordinates (L*a*b*) and computing the total color difference (ΔE) values using a spectrophotometer, the effect of ECDs on contemporary aesthetic dental ceramics was investigated in this in-vitro study. A total of seventy-five (N = 75) specimens from five different (n = 15) dental ceramic materials (Pressable ceramics (PEmax); Pressed and layered ceramics (LEmax); Layered zirconia (LZr); Monolithic zirconia (MZr) and Porcelain fused to metal (PFM)) were prepared and exposed to aerosols produced by the ECDs. The color assessment was performed using a spectrophotometer at six time intervals (0 = baseline; 250-puff exposures; 500-puff exposures; 750-puff exposures; 1000-puff exposures; 1250-puff exposures; and 1500-puff exposures). By recording L*a*b* and computing total color difference (ΔE) values, the data were processed. A one-way ANOVA and Tukey procedure for pairwise comparisons were used to assess color differences between tested ceramics (p < 0.05). All test materials demonstrated significant color differences (ΔE) after exposure to vaping (p < 0.05). The LZr group displayed noticeably high ΔE values at all the distinct puff exposure intervals, with the highest ΔE value of (13.67) after 1500 puffs. The lowest (ΔE) values were observed in the PFM group after 250 and 500 puffs (0.85 and 0.97, respectively). With the exception of the group PEmax (p = 0.999), all groups produced readings of “ΔE” that indicated significant differences (p < 0.05) at various degrees of puff exposures. ECDs can noticeably alter the color of the dental ceramics affecting the esthetics of the patients. All the materials tested demonstrated significant color changes (ΔE > 3.33) above the clinically acceptable threshold, except for the PFM and PEmax group (ΔE < 3.33) which showed color stability after exposure to the ECDs. Full article
Show Figures

Figure 1

17 pages, 4010 KiB  
Article
Fundamental Properties and Clinical Application of 3D-Printed Bioglass Porcelain Fused to Metal Dental Restoration
by Yangan Yun, Hyeon Kang, Eun-Chae Kim, Sangwon Park, Yong-Seok Lee and Kwidug Yun
Int. J. Mol. Sci. 2023, 24(8), 7203; https://doi.org/10.3390/ijms24087203 - 13 Apr 2023
Cited by 4 | Viewed by 3980
Abstract
The purpose of this study is to evaluate the mechanical properties and clinical fitness of 3D-printed bioglass porcelain fused to metal (PFM) dental crowns. To evaluate the mechanical properties, tensile strength, Vickers microhardness, shear bond strength, and surface roughness tests of the SLM [...] Read more.
The purpose of this study is to evaluate the mechanical properties and clinical fitness of 3D-printed bioglass porcelain fused to metal (PFM) dental crowns. To evaluate the mechanical properties, tensile strength, Vickers microhardness, shear bond strength, and surface roughness tests of the SLM printed Co-Cr alloy was conducted. A right mandibular 1st molar tooth was prepared for a single dental crown (n = 10). For a three-unit metal crown and bridge, the right mandibular first premolar and first molar were prepared. Bioglass porcelain was fired to fabricate PFM dental restorations. A clinical gap was observed and measured during each of the four times porcelain was fired. A statistical analysis was conducted. The SLM technique showed the largest statistically significant tensile strength and a 0.2% yield strength value. The milling technique had the lowest statistically significant compressive strength value. The shear bond strength and surface roughness showed no statistically significant difference between the fabricated method. There was a statistically significant change in marginal discrepancy according to the porcelain firing step. The casting technique showed the greatest statistically significant margin discrepancy value. The SLM method showed better fitness than the traditional casting method and showed better mechanical properties as a dental material. Full article
(This article belongs to the Special Issue Recent Process Design and Development Strategies for Dental Materials)
Show Figures

Figure 1

9 pages, 811 KiB  
Article
Influence of Thickness of Opaque Porcelain and Alloy Color on the Final Color of Porcelain-Fused-to-Metal Restorations
by Alessandro Vichi, Gabriele Corciolani, Michele Carrabba, Alvaro Munoz and Chris Louca
Materials 2023, 16(1), 457; https://doi.org/10.3390/ma16010457 - 3 Jan 2023
Cited by 2 | Viewed by 2778
Abstract
Despite the advent of metal-free solutions, porcelain-fused-to-metal restorations (PFM) are still widely used. Particularly for the latest ceramic systems, scarce information is present in the scientific literature about the ideal opaque layer thickness and the alloy color impact to achieve the desired final [...] Read more.
Despite the advent of metal-free solutions, porcelain-fused-to-metal restorations (PFM) are still widely used. Particularly for the latest ceramic systems, scarce information is present in the scientific literature about the ideal opaque layer thickness and the alloy color impact to achieve the desired final color of PFM restorations. This study aimed to evaluate the influence of opaque thickness variation layered on different metal alloys on the final color of PFM restorations. Opaque porcelain of one metal–ceramic system (VITA VM13) was layered in four different thicknesses (0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm) on three differently colored dental alloys: a gold–platinum alloy (yellowish), a gold–palladium alloy (light grayish), and a nickel–chromium alloy (dark grayish). The veneering porcelain layered over the opaque was kept constant (Base Dentine 0.45 mm, Transpa Dentine 0.50 mm, and Enamel 0.20 mm). Sixty specimens were fabricated, five samples for each combination of alloy/opaque thickness. The color difference (ΔE) between specimen and reference was measured using a clinical spectrophotometer. The two-way ANOVA revealed that the thickness of both the opaque (p < 0.001) and the metal alloy (p < 0.001) significantly influenced the ΔE values. Gray-colored alloys covered by a 0.10 mm thick opaque layer enabled the closest color match, whereas this occurred for yellow-color alloys covered by a 0.15 mm thick opaque layer. In contrast, the samples covered by a 0.25 mm thick opaque layer obtained the worst ΔE. Full article
Show Figures

Figure 1

15 pages, 540 KiB  
Review
Survival of Complete Coverage Tooth-Retained Fixed Lithium Disilicate Prostheses: A Systematic Review
by Abdulmohsen AlMashaan and Abdullah Aldakheel
Medicina 2023, 59(1), 95; https://doi.org/10.3390/medicina59010095 - 31 Dec 2022
Cited by 4 | Viewed by 3155
Abstract
Background and objectives: Porcelain-fused-to-metal (PFM) prostheses are considered the gold standard for the replacement of missing teeth, however, these have several drawbacks. Therefore, lithium disilicate (LDS) prostheses have been introduced for the construction of fixed crowns and bridges. The aim of this [...] Read more.
Background and objectives: Porcelain-fused-to-metal (PFM) prostheses are considered the gold standard for the replacement of missing teeth, however, these have several drawbacks. Therefore, lithium disilicate (LDS) prostheses have been introduced for the construction of fixed crowns and bridges. The aim of this systematic review was to ascertain the long-term survival of LDS fixed prostheses in comparison to other materials. Materials and methods: The focused question was ‘In patients who have undergone prosthodontic treatment (participants), what are the overall survival rate of lithium disilicate (LDS) crowns and fixed bridges; and how do they relate to survival rates of non-LDS similar restoration are the survival and com-plication rates (outcomes) of LDS-based fixed prostheses with complete coverage (intervention) higher or lower when compared to non-LDS materials (controls)?’. An electronic search was conducted in PubMED/Medline, EMBASE, Google Scholar, and ClinicalTrials.gov for articles published between January 2006 and August 2022 using appropriate MeSH terms and keywords. The following types of studies were included: (1) All types of prospective clinical studies; (2) Clinical studies focusing on the survival of fixed LDS bridges and crowns; (3) Studies using natural teeth with complete coverage as abutment for fixed LDS bridges and crowns; and (4) Studies in English. The following studies were excluded: (1) Laboratory/in vitro studies and studies on LDS prostheses with no description of outcomes or survival rates; (2) Commentaries; (3) Letters to the editor; (4) Reviews; and (5) Internal data from manufacturers. The data from included studies were extracted and the risk of bias was assessed within the studies using ROBINS-I. Results: A total of 25 studies were included in this systematic review. The overall 5-year and 10-year survival rates were of 95–100% and 71.4–100%, respectively. Generally, three-unit bridges had a significantly lower survival rate over 5 and 10 years compared to single-unit crowns. Overall, the risk of bias in the included studies was moderate. Conclusions: The LDS-based complete coverage prostheses have a survival rate ranging between 48.6% and 100%. Furthermore, due to the lack of comparative studies, the long-term function and survival of LDS prostheses compared to other material prosthesis (PFM and ZrO) is debatable. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

10 pages, 2409 KiB  
Article
Biomechanical Behavior of Narrow Dental Implants Made with Aluminum- and Vanadium-Free Alloys: A Finite Element Analysis
by José Manuel Zapata, Eduardo Leal, Renato Hunter, Raphael Freitas de Souza and Eduardo Borie
Materials 2022, 15(24), 8903; https://doi.org/10.3390/ma15248903 - 13 Dec 2022
Cited by 4 | Viewed by 2299
Abstract
Titanium (Ti) alloys used for narrow dental implants usually contain aluminum (Al) and vanadium (V) for improved resistance. However, those elements are linked to possible cytotoxic effects. Thus, this study evaluated the biomechanical behavior of narrow dental implants made with Al- and V-free [...] Read more.
Titanium (Ti) alloys used for narrow dental implants usually contain aluminum (Al) and vanadium (V) for improved resistance. However, those elements are linked to possible cytotoxic effects. Thus, this study evaluated the biomechanical behavior of narrow dental implants made with Al- and V-free Ti alloys by the finite element method. A virtual model of a partially edentulous maxilla received single implants (diameter: 2.7 and 2.9 mm; length: 10 mm) at the upper lateral incisor area, with respective abutments and porcelain-fused-to-metal crowns. Simulations were performed for each implant diameter and the following eight alloys (and elastic moduli): (1) Ti–6Al–4V (control; 110 GPa), (2) Ti–35Nb–5Sn–6Mo–3Zr (85 GPa), (3) Ti–13Nb–13Zr (77 GPa), (4) Ti–15Zr (113 GPa), (5) Ti–8Fe–5Ta (120 GPa), (6) Ti–26.88Fe–4Ta (175 GPa), (7) TNTZ–2Fe–0.4O (107 GPa), and (8) TNTZ–2Fe–0.7O (109 GPa). The implants received a labially directed total static load of 100 N at a 45° angle relative to their long axis. Parameters for analysis included the maximum and minimum principal stresses for bone, and von Mises equivalent stress for implants and abutments. Ti–26.88Fe–4Ta reaches the lowest maximum (57 MPa) and minimum (125 MPa) principal stress values, whereas Ti–35Nb–5Sn–6Mo–3Zr (183 MPa) and Ti–13Nb–13Zr (191 MPa) models result in the highest principal stresses (the 2.7 mm model surpasses the threshold for bone overload). Implant diameters affect von Mises stresses more than the constituent alloys. It can be concluded that the narrow implants made of the Ti–26.88Fe–4Ta alloy have the most favorable biomechanical behavior, mostly by mitigating stress on peri-implant bone. Full article
(This article belongs to the Special Issue New Implant Materials)
Show Figures

Figure 1

17 pages, 11725 KiB  
Article
Reducing the Distortion in Particle Filled Material Extrusion (MEX)-Based Additive Manufacturing (AM) by Means of Modifying the Printing Strategy
by Johannes Abel, Siddharth Tiwari, Milán Kardos, Maria Reichel and Uwe Scheithauer
Ceramics 2022, 5(4), 1225-1241; https://doi.org/10.3390/ceramics5040087 - 8 Dec 2022
Cited by 6 | Viewed by 3360
Abstract
This study addresses a ubiquitous challenge in powder metallurgy: sintering distortion. Sintering distortion can have various causes. On one hand, external factors such as friction with the sintering support during sintering or temperature gradients in the furnace, and, on the other hand, internal [...] Read more.
This study addresses a ubiquitous challenge in powder metallurgy: sintering distortion. Sintering distortion can have various causes. On one hand, external factors such as friction with the sintering support during sintering or temperature gradients in the furnace, and, on the other hand, internal factors such as anisotropic shrinkage due to directional layer build-up or residual stresses during production, can cause deformation by relieving mechanical stress. This paper presents an approach to reducing residual stresses in components produced by ceramic Fused Filament Fabrication (CerAM FFF) by changing the printing strategy using thermoplastic porcelain filaments with a solid loading of 57% vol. The starting point of the investigation was the torsion of standard sliced porcelain fragments after solvent debinding, which led to the idea to change the printing direction to prevent the distortion. Therefore, a Python™-based post-processor was developed to control the printing direction. It has been shown that this approach can even prevent warpage both for printed ceramic and also for the metal components for technical applications. This simple observation will help all powder metallurgical manufacturers using Material Extrusion (MEX)-based Additive Manufacturing (AM). Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

17 pages, 7581 KiB  
Article
Influence of Filler Metal on Electrochemical Characteristics of a Laser-Welded CoCrMoW Alloy Used in Prosthodontics
by Lukasz Reimann, Zbigniew Brytan and Grzegorz Jania
Materials 2022, 15(16), 5721; https://doi.org/10.3390/ma15165721 - 19 Aug 2022
Cited by 5 | Viewed by 2158
Abstract
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including [...] Read more.
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including the next stage of porcelain-fused-to-metal (PFM) firing. Corrosion tests were performed by electrochemical methods registering anodic polarization curves and electrochemical impedance spectroscopy (EIS). The microstructures were assessed by scanning microscopy (SEM) and chemical composition analysis (EDS) at the connection and heat-affected zones. Welding CoCrMoW alloy with and without a filler material increased the open circuit potential of the samples by 40–100 mV compared to unwelded base alloy. At the same time, a potentiodynamic test showed a polarization resistance Rpol reduction in welded samples, both for CoCr and stainless steel wires, as compared to the base CoCrMoW material. On the other hand, when comparing the current density and polarization resistance between materials welded with two different filler metals, better results were obtained for samples welded with stainless steel wire. The polarization resistance Rpol for the base alloy was 402 kΩ·cm2, for the CoCr wire weld it was 436 kΩ·cm2, and the value was 452 kΩ·cm2 for stainless steel wire welds. Comparing polarization resistance Rpol from the Tafel analysis and the total charge transfer resistance from Rp(EIS) from EIS, the CoCrMoW alloy welded with a stainless steel wire after heat treatment equaled or even slightly exceeded the corrosion resistance of the base alloy and alloy welded with dedicated CoCr wire after heat treatment. These results indicated the possibility of using stainless steel wire for the laser welding of CoCrMoW alloys dental prostheses, including the next stage of PFM, without sacrificing the corrosion resistance of such connections, and this was confirmed by most electrochemical parameters. Full article
(This article belongs to the Special Issue Corrosion Resistance of Alloy and Coating Materials)
Show Figures

Figure 1

13 pages, 3224 KiB  
Article
Differences in Supragingival Microbiome in Patients with and without Full-Crown Prostheses
by Manli Guo, Zhidong Zhang, Jiyuan Lu, Di Wang, Yimin Yan, Shen Zhang, Xin Yu, Songhua Su, Lu Yuan, Zhige Li and Baoping Zhang
Dent. J. 2022, 10(8), 152; https://doi.org/10.3390/dj10080152 - 15 Aug 2022
Cited by 2 | Viewed by 2552
Abstract
Objectives: To characterize the microflora profile of supragingival biofilm in patients with and without full-crown prostheses. Methods: Plaque samples of full-crown prostheses and teeth in patients with porcelain-fused-to-metal crowns, all-ceramic crowns, and no prostheses were collected (three patients per group), using 16S rRNA [...] Read more.
Objectives: To characterize the microflora profile of supragingival biofilm in patients with and without full-crown prostheses. Methods: Plaque samples of full-crown prostheses and teeth in patients with porcelain-fused-to-metal crowns, all-ceramic crowns, and no prostheses were collected (three patients per group), using 16S rRNA high-throughput sequencing technology to conduct DNA sequencing on the samples and using Qiime, R, and PICRUSt2 software to perform bioinformatics analyses and functional analyses on sequencing data. Results: In total, 110,209 valid sequences were obtained in the experiment, corresponding to 11 phyla and 120 genera. The predominant species shared by the three groups were phyla Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria and genera Rothia, Porphyromonas, Prevotella, Streptococcus, Veillonella, Leptotrichia, Neisseria, Citrobacter, and Pseudomonas. The species-difference analysis showed that genus Hameophilus significantly increased after the patient wore the dental prosthesis. Compared with the no-prosthesis samples, the functional analysis showed that cell motility increased in the samples from full-crown prostheses, while replication and repair, and translation decreased. Conclusions: This study reveals the changes in the oral microbial community of patients with full-crown prostheses, which could provide insights regarding the safety of materials for long-term use in the oral cavity. Full article
Show Figures

Figure 1

15 pages, 6202 KiB  
Article
Characterization of Co-Cr-W Dental Alloys with Veneering Materials Manufactured via Subtractive Milling and Additive Manufacturing LDED Methods
by Óscar Barro, Felipe Arias-González, Fernando Lusquiños, Rafael Comesaña, Jesús del Val, Antonio Riveiro, Aida Badaoui, Félix Gómez-Baño and Juan Pou
Materials 2022, 15(13), 4624; https://doi.org/10.3390/ma15134624 - 30 Jun 2022
Cited by 4 | Viewed by 2386
Abstract
Laser-directed energy deposition (LDED) is an additive manufacturing (AM) technology which can be an alternative to the traditional subtractive milling process for the obtention of porcelain-fused-to-metal (PFM) prosthesis. Still, the adhesion performance of the veneering ceramics for this material has been not studied [...] Read more.
Laser-directed energy deposition (LDED) is an additive manufacturing (AM) technology which can be an alternative to the traditional subtractive milling process for the obtention of porcelain-fused-to-metal (PFM) prosthesis. Still, the adhesion performance of the veneering ceramics for this material has been not studied yet. The main objective of this study is to perform a systematic comparison of the adhesion performance of Co-Cr-W metal frameworks obtained through LDED and conventional milling techniques. Comparison includes microstructural, superficial, and adhesion analysis. Co-Cr manufactured via LDED technique presents similar behavior (p < 0.05) in comparison to the material obtained via milling techniques, and its performance was validated with the veneering ceramics and veneering composites currently employed in the dental industry. Full article
(This article belongs to the Special Issue Characterization of Dental Implants)
Show Figures

Figure 1

19 pages, 5707 KiB  
Article
The Effect of Surface Processing on the Shear Strength of Cobalt-Chromium Dental Alloy and Ceramics
by Liaisan Saleeva, Ramil Kashapov, Farid Shakirzyanov, Eduard Kuznetsov, Lenar Kashapov, Viktoriya Smirnova, Nail Kashapov, Gulshat Saleeva, Oskar Sachenkov and Rinat Saleev
Materials 2022, 15(9), 2987; https://doi.org/10.3390/ma15092987 - 20 Apr 2022
Cited by 6 | Viewed by 2557
Abstract
Porcelain fused to metal is widespread dental prosthetic restoration. The survival rate of metal-ceramic restorations depends not only on the qualifications of dentists, dental technicians but also on the adhesive strength of ceramics to a metal frame. The goal of the research is [...] Read more.
Porcelain fused to metal is widespread dental prosthetic restoration. The survival rate of metal-ceramic restorations depends not only on the qualifications of dentists, dental technicians but also on the adhesive strength of ceramics to a metal frame. The goal of the research is to determine the optimal parameters of the surface machining of the metal frame to increase the adhesion of metal to ceramics. Adhesion of cobalt-chromium alloy and ceramics was investigated. A profilometer and a scanning electron microscope were used to analyze the morphology. To estimate the adhesion the shear strength was measured by the method based on ASTM D1002-10. A method of surface microrelief formation of metal samples by plasma-electrolyte treatment has been developed. Regimes for plasma-electrolyte surface treatment were investigated according to current-voltage characteristics and a surface roughness parameter. The samples were subjected to different surface machining techniques such as polishing, milling, sandblasting (so-called traditional methods), and plasma-electrolyte processing. Morphology of the surface for all samples was studied and the difference in microrelief was shown. The roughness and adhesive strength were measured for samples either. As a result, the mode for plasma- electrolytic surface treatment under which the adhesive strength was increased up to 183% (compared with the traditional methods) was found. Full article
Show Figures

Figure 1

13 pages, 4650 KiB  
Article
Influence of Sandblasting and Chemical Etching on Titanium 99.2–Dental Porcelain Bond Strength
by Malgorzata Lubas, Jaroslaw Jan Jasinski, Anna Zawada and Iwona Przerada
Materials 2022, 15(1), 116; https://doi.org/10.3390/ma15010116 - 24 Dec 2021
Cited by 7 | Viewed by 2888
Abstract
The metal–ceramic interface requires proper surface preparation of both metal and ceramic substrates. This process is complicated by the differences in chemical bonds and physicochemical properties that characterise the two materials. However, adequate bond strength at the interface and phase composition of the [...] Read more.
The metal–ceramic interface requires proper surface preparation of both metal and ceramic substrates. This process is complicated by the differences in chemical bonds and physicochemical properties that characterise the two materials. However, adequate bond strength at the interface and phase composition of the titanium-bioceramics system is essential for the durability of dental implants and improving the substrates’ functional properties. In this paper, the authors present the results of a study determining the effect of mechanical and chemical surface treatment (sandblasting and etching) on the strength and quality of the titanium-low-fusing dental porcelain bond. To evaluate the strength of the metal-ceramic interface, the authors performed mechanical tests (three-point bending) according to EN ISO 9693 standard, microscopic observations (SEM-EDS), and Raman spectroscopy studies. The results showed that depending on the chemical etching medium used, different bond strength values and failure mechanisms of the metal-ceramic system were observed. The analyzed samples met the requirements of EN ISO 9693 for metal-ceramic systems and received strength values above 25 MPa. Higher joint strength was obtained for the samples after sandblasting and chemical etching compared to the samples subjected only to sandblasting. Full article
(This article belongs to the Special Issue Advances in Dental Composite Materials and Biomaterials)
Show Figures

Figure 1

13 pages, 2858 KiB  
Article
Mechanical Stability of Screw-Retained Monolithic and Bi-layer Posterior Hybrid Abutment Crowns after Thermomechanical Loading: An In Vitro Study
by Frank A. Spitznagel, Estevam A. Bonfante, Tiago M. B. Campos, Maximilian A. Vollmer, Johannes Boldt, Sam Doerken and Petra C. Gierthmuehlen
Materials 2021, 14(24), 7539; https://doi.org/10.3390/ma14247539 - 8 Dec 2021
Cited by 3 | Viewed by 2922
Abstract
To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), [...] Read more.
To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), porcelain-fused-to-zirconia (PFZ-test) and monolithic LDS (LDS-test). Half of the specimens (n = 12/group) were subjected to fatigue in a chewing-simulator (1.2 million cycles, 198 N, 1.67 Hz, thermocycling 5–55 °C). All samples were exposed to single-load-to-failure without (PFM0, PFZ0, LDS0) or with fatigue (PFM1, PFZ1, LDS1). Comparisons were statistically analyzed with t-tests and regression-models and corrected for multiple-testing using the Student–Neuman–Keuls method. All PFM and LDS crowns survived fatigue exposure, whereas 16.7% of PFZ showed chipping failures. The mean failure-loads (±SD) were: PFM0: 2633 ± 389 N, PFM1: 2349 ± 578 N, PFZ0: 2152 ± 572 N, PFZ1: 1686 ± 691 N, LDS0: 2981 ± 798 N, LDS1: 2722 ± 497 N. Fatigue did not influence load to failure of any group. PFZ ISSC showed significantly lower failure-loads than monolithic-LDS regardless of artificial aging (p < 0.05). PFM ISSC showed significantly higher failure loads after fatigue than PFZ (p = 0.032). All ISSC failed in a range above physiological chewing forces. Premature chipping fractures might occur in PFZ ISSC. Monolithic-LDS ISSC showed high reliability as an all-ceramic material for screw-retained posterior hybrid-abutment-crowns. Full article
(This article belongs to the Special Issue Prospects for Dental Materials in Prosthodontics)
Show Figures

Figure 1

10 pages, 15842 KiB  
Article
Comparison of the Fracture Resistance and Fracture Mode of Contemporary Restorative Materials to Overcome the Offset of Mandibular Implant-Supported, Cement-Retained Crowns
by Salwa Omar Bajunaid, Ibraheem Alshiddi, Lamya Alhomaidhi, Rania Almutairi, Shoq Alolayan and Syed Rashid Habib
Materials 2021, 14(17), 4838; https://doi.org/10.3390/ma14174838 - 26 Aug 2021
Cited by 3 | Viewed by 2292
Abstract
Background: The purpose was to compare the fracture resistance and the mode of failure of different contemporary restorative materials to restore implant supported, cement-retained mandibular molars. Methods: Two 5 × 10 mm titanium dental implants were mounted in resin blocks and prefabricated titanium [...] Read more.
Background: The purpose was to compare the fracture resistance and the mode of failure of different contemporary restorative materials to restore implant supported, cement-retained mandibular molars. Methods: Two 5 × 10 mm titanium dental implants were mounted in resin blocks and prefabricated titanium and zirconia abutments were connected to each implant. Each implant received forty crowns resembling mandibular first molars. The specimens were divided into four groups (n = 10/group) for each abutment according to the type of material; Group A: porcelain fused to metal crowns; Group B: monolithic zirconia crowns; Group C: zirconia coping with ceramic veneer; Group D: all ceramic lithium disilicate crowns. Specimens were cemented to the abutments, mounted into a universal testing machine, and vertical static load was applied at a speed of 1 mm/min. The test stopped at signs of visual/audible fracture/chipping. Fracture resistance values were analyzed using ANOVA and Tukey’s tests (α ≤ 0.05). The modes of failure were visually observed. Results: A statistically significant difference (p < 0.001) of the fracture resistance values among tested groups was found. The group that showed the highest fracture resistance was Group A for both the titanium and the zirconia abutments (3.029 + 0.248 and 2.59 ± 0.39, respectively) while Group D for both abutments (1.134 + 0.289 and 1.68 ± 0.13) exhibited the least resistance. Conclusions: Fracture resistance and fracture mode varied depending on type of restorative material. For both titanium and zirconia abutments, porcelain fused to metal showed the highest fracture resistance values followed by monolithic zirconia. Full article
Show Figures

Figure 1

Back to TopTop