Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = polyphenolic fingerprints

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2022 KiB  
Article
The Natural Fermentation of Greek Tsounati Olives: Microbiome Analysis
by Marina Georgalaki, Ilario Ferrocino, Davide Buzzanca, Rania Anastasiou, Georgia Zoumpopoulou, Despoina Giabasakou, Danai Ziova, Alexandra Kokkali, George Paraskevakos and Effie Tsakalidou
Foods 2025, 14(15), 2568; https://doi.org/10.3390/foods14152568 - 22 Jul 2025
Viewed by 378
Abstract
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of [...] Read more.
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of Tsounati variety olives from the Monemvasia region of Peloponnese, Greece, that were naturally fermented for three months. The bacterial and fungal microbiota of both olives and brines were fingerprinted throughout the fermentation through classical microbiological analysis combined with molecular techniques. Among the 148 isolated bacteria, 85 were lactic acid bacteria (LAB), and 63 belonged to the Enterobacteriaceae family, while the 178 fungal isolates comprised 136 yeasts and 42 non-yeast or yeast-like fungi. Metataxonomic analysis confirmed the dominance of the bacterial genera Lactiplantibacillus, Leuconostoc, along with the Enterobacteriaceae family, and it revealed the presence of Coleofasciculaceae cyanobacteria mostly in olives. The dominant fungal genera were yeasts, namely Saccharomyces, Nakazawaea, and Cyberlindnera. Using the Folin–Ciocalteu assay, the average total polyphenol content of Tsounati fermented olive samples was 761.80 ± 128.87 mg gallic acid equivalents kg−1 after 90 days of fermentation. The concentrations of the triterpenic, maslinic, and oleanolic acids, as determined by HPLC, remained stable throughout fermentation, with average values of 4764 and 1807 mg kg−1, respectively. Finally, sensory analysis revealed the rich aromatic character of Tsounati variety, highlighting its potential to be used for Greek-style table olive production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 2707 KiB  
Article
Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
by Rocío De la Peña-Armada, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini and Jose M. Prieto
Beverages 2025, 11(4), 93; https://doi.org/10.3390/beverages11040093 - 20 Jun 2025
Viewed by 514
Abstract
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring [...] Read more.
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring commercial farm using standard practises and a European commercial cacao powdered beverage. The overall metabolite profile of the 70% aq acetone sample cocoa extracts was analysed using high-performance TLC analyses (HPTLC), and the xanthine alkaloids were analysed using quantitative liquid chromatography–UV photodiode array (HPLC-DAD) analyses. The volatile fraction in the headspace of the freshly ground cocoa was subjected to solid phase micro-extraction and analysed by gas chromatography–mass spectrometry (HS-SPME/GC-MS). Total polyphenol content was determined by the Folin–Ciocalteu method. Despite the reduced production of cocoa by the EETP801 cultivar in comparison with the CCN51 cultivar, the obtained produce is significantly richer in theobromine (130 mg vs. 170 mg per g of cacao), with CCN51 having a double concentration of theophylline (12.6 vs. 6.5 mg per g of cacao). Qualitatively, the two Amazonian cocoa samples had a similar polyphenolic composition (per the HPTLC fingerprint). HS-SPME/GC-MS analyses revealed that all the samples show a spontaneous emission profile mainly rich in non-terpene derivatives, of which hydrocarbons and pyrazines are the most abundant groups. The most represented volatile organic compound is n-tridecane for both EETP801 and CCN51. The variability in the artisan fermentation and roasting processes influenced certain aspects of the volatile composition as reflected by the trimethyl pyrazine/tetramethyl pyrazine ratio, which was zero in EETP-801 and lower than 1 in CCN51. Acetic acid was absent in CCN51 but significant (c.a. 5.5.%) in EETP801 and the commercial samples. The cultivar EETP801 is a viable option for a more ecologically conscious sector of the cocoa beverages consumer group. Full article
Show Figures

Figure 1

18 pages, 13193 KiB  
Article
Tannins from Acacia mearnsii De Wild as a Sustainable Alternative for the Development of Latent Fingerprints
by Danielle Tapia Bueno, Amanda Fonseca Leitzke, Rayane Braga Martins, Daisa Hakbart Bonemann, Emanuel Gomes Bertizzolo, Gabrielly Quartieri Sejanes, Juliana Porciúncula da Silva, Lucas Minghini Gonçalves, Neftali Lenin Villarreal Carreno and Claudio Martin Pereira de Pereira
Organics 2025, 6(2), 27; https://doi.org/10.3390/org6020027 - 18 Jun 2025
Viewed by 412
Abstract
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their [...] Read more.
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their use as LFDs in the existing literature. This study characterized four types of tannins from black wattle, using Fourier Transform Infrared Spectroscopy, revealing key functional groups like C=O, C=C, and O–H. Ultraviolet–visible absorption spectra showed similar behaviors for all tannins, indicating phenolic and benzenoid structures. Energy-dispersive X-ray Spectroscopy identified high concentrations of chlorine, sodium, potassium, and sulfur, naturally found in biomass and soil. Finally, elements in significant concentrations, such as sodium, potassium, iron, zinc, and copper, were found through the incineration of the spent bark. On the basis of these findings, the tannin with the highest potential for LFD was selected. Combining this tannin with spent bark ash resulted in a composite whose performance was evaluated using different methods, including depletion studies, tests with various donors, and assessments on different surfaces. The results demonstrated that this combination significantly enhanced the material’s efficiency by integrating organic and inorganic properties, which improved visual contrast and powder adhesion. Full article
Show Figures

Figure 1

18 pages, 1684 KiB  
Article
Harnessing Light Wavelengths to Enrich Health-Promoting Molecules in Tomato Fruits
by Bruno Hay Mele, Ermenegilda Vitale, Violeta Velikova, Tsonko Tsonev, Carolina Fontanarosa, Michele Spinelli, Angela Amoresano and Carmen Arena
Int. J. Mol. Sci. 2025, 26(12), 5712; https://doi.org/10.3390/ijms26125712 - 14 Jun 2025
Viewed by 527
Abstract
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide [...] Read more.
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide range of applications in the fields of nutrition, pharmacy, and biotechnology. This study explores a sustainable and innovative approach: the modulation of specific light spectra to boost the production of bioactive compounds in tomatoes (cultivar ‘Microtom’). We investigated how three light regimes—white fluorescent (FL), full-spectrum (FS), and red-blue (RB)—influence the accumulation of polyphenols and other key nutraceuticals during plant growth. Our findings reveal that full-spectrum (FS) light significantly enhances the levels of polyphenols, flavonoids, tannins, ascorbic acid, and lycopene in tomato fruits, compared to those grown under RB or FL light. Interestingly, fruits from RB light-grown plants showed the highest carotenoid concentrations and antioxidant capacity. These results suggest that light quality actively modulates the expression of key enzymes in the phenylpropanoid and flavonoid biosynthetic pathways, shaping each fruit’s unique metabolic fingerprint. Cluster analysis confirmed that RB, FL, and FS conditions lead to distinct polyphenolic profiles, each with notable health-promoting potential. Our results highlight a promising avenue: tailoring light environments to enhance the functional value of crops, bridging agriculture, nutrition, and biomedicine in a sustainable way. Full article
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 785
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

19 pages, 1885 KiB  
Article
Targeting Drug Resistance in Cancer: Dimethoxycurcumin as a Functional Antioxidant Targeting ABCC3
by Jochem Nelen, Valeria Naponelli, José Manuel Villalgordo-Soto, Marco Falasca and Horacio Pérez-Sánchez
Antioxidants 2025, 14(5), 599; https://doi.org/10.3390/antiox14050599 - 16 May 2025
Viewed by 609
Abstract
The development of new anticancer therapies remains challenging due to tumor heterogeneity and the frequent emergence of multidrug resistance (MDR). Natural products have garnered increasing attention as alternative or complementary therapeutic agents due to their bioactivity and reduced toxicity. Polyphenols, particularly curcumin and [...] Read more.
The development of new anticancer therapies remains challenging due to tumor heterogeneity and the frequent emergence of multidrug resistance (MDR). Natural products have garnered increasing attention as alternative or complementary therapeutic agents due to their bioactivity and reduced toxicity. Polyphenols, particularly curcumin and its derivatives, have shown promise in modulating signaling pathways, enhancing chemosensitivity, and overcoming drug resistance. The anticancer potential of dimethoxycurcumin, a chemically modified curcumin derivative identified through consensus fingerprint similarity screening, was investigated for its potential to inhibit ABCC3 (MRP3)—a member of the ATP-binding cassette (ABC) transporter family implicated in drug efflux, tumor cell survival, and resistance. In vitro experiments demonstrated that dimethoxycurcumin significantly reduced cancer cell viability and colony formation, indicating a strong inhibitory effect on ABCC3 function. These results suggest that dimethoxycurcumin may sensitize cancer cells to chemotherapy by targeting resistance pathways. The data presented contribute to the growing body of evidence suggesting that bioactive plant-derived compounds, including chemically modified derivatives, may hold therapeutic potential in oncology by modulating multidrug resistance pathways. Targeting ABC transporters with natural compound derivatives could offer a promising strategy for developing more effective and less toxic anticancer therapies. Full article
(This article belongs to the Special Issue Anti-Cancer Potential of Plant-Based Antioxidants)
Show Figures

Figure 1

20 pages, 5044 KiB  
Article
¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils
by Silvana M. Azcarate, Maria P. Segura-Borrego, Rocío Ríos-Reina and Raquel M. Callejón
Chemosensors 2025, 13(5), 162; https://doi.org/10.3390/chemosensors13050162 - 1 May 2025
Cited by 1 | Viewed by 744
Abstract
The authentication of organic extra virgin olive oils (OEVOOs) is crucial for quality control and fraud prevention. This study applies proton-nuclear magnetic resonance (1H-NMR) spectroscopy combined with chemometric analysis as a non-destructive, untargeted approach to differentiate EVOOs based on cultivation method [...] Read more.
The authentication of organic extra virgin olive oils (OEVOOs) is crucial for quality control and fraud prevention. This study applies proton-nuclear magnetic resonance (1H-NMR) spectroscopy combined with chemometric analysis as a non-destructive, untargeted approach to differentiate EVOOs based on cultivation method (organic vs. conventional) and variety (Hojiblanca vs. Picual). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) demonstrated well-defined sample differentiation, while the variable importance in projection (VIP) selection and Tukey’s test identified key spectral regions responsible for classification. The results showed that sterols and lipid-related compounds played a major role in distinguishing organic from conventional oils, whereas fatty acids and phenolic compounds were more relevant for cultivar differentiation. These findings align with known metabolic differences, where Picual oils generally exhibit higher polyphenol content, and a distinct fatty acid composition compared to Hojiblanca. The agreement between chemometric classification models and statistical tests supports the potential of 1H-NMR for OEVOO authentication. This method provides a comprehensive and reproducible metabolic fingerprint, enabling differentiation based on both agronomic practices and genetic factors. These findings suggest that 1H-NMR spectroscopy, coupled with multivariate analysis, could be a valuable tool for quality control and fraud detection in the olive oil industry. Full article
(This article belongs to the Special Issue Chemometrics for Food, Environmental and Biological Analysis)
Show Figures

Figure 1

24 pages, 5739 KiB  
Article
Multifaceted Biological Activities of Culinary Herb and Spice Extracts: In Vitro and In Silico Simulation Insights into Inflammation-Related Targets
by Nance Hontman, Jéssica Gonçalves, José S. Câmara and Rosa Perestrelo
Foods 2025, 14(9), 1456; https://doi.org/10.3390/foods14091456 - 23 Apr 2025
Viewed by 656
Abstract
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the [...] Read more.
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the volatile fingerprint of culinary herbs (lemon verbena, chives, basil, sage, coriander, and parsley) and spices (curcuma, nutmeg, cumin, black pepper, Jamaica pepper, and juniper berry) using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS). The predominant volatile organic metabolites (VOMs) identified were subjected to in silico molecular docking simulations of anti-Alzheimer’s (e.g., acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), antioxidants (e.g., monoamine oxidase B (MAO-B), inducible nitric oxide synthase (iNOS)), and anti-inflammatory receptors (e.g., 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2)). The culinary herb and spice extracts were also subjected to in vitro assays to evaluate their potential as antioxidant (DPPH, ABTS, and ORAC) and anti-inflammatory (% protein denaturation) agents. A total of 121 VOMs were identified in the culinary herbs and spices, with the predominant chemical families being monoterpenoids (48.3%), sesquiterpenoids (14.0%), esters (11.9%), and carbonyl compounds (8.8%). In silico molecular docking simulations revealed that cuminaldehyde, β-caryophyllene, γ-curcumene, germacrene D, and τ-cadinol exhibited the strongest inhibitory activities against the selected receptors. Among the extracts, Jamaica pepper showed the highest antioxidant and anti-inflammatory activities, while lemon verbena exhibited the lowest ones. These findings highlight the promising potential of the studied culinary herbs and spices in the modulation of inflammatory processes related to Alzheimer’s disease. However, further investigations, particularly clinical studies, are recommended to validate these results and explore their therapeutic applications. Full article
Show Figures

Figure 1

14 pages, 1346 KiB  
Technical Note
Fluorescence Spectroscopy and a Convolutional Neural Network for High-Accuracy Japanese Green Tea Origin Identification
by Rikuto Akiyama, Kana Suzuki, Yvan Llave and Takashi Matsumoto
AgriEngineering 2025, 7(4), 95; https://doi.org/10.3390/agriengineering7040095 - 1 Apr 2025
Viewed by 686
Abstract
This study aims to develop a system combining fluorescence spectroscopy and machine learning through a convolutional neural network (CNN) to identify the origins of various Japanese green teas (Sayama tea, Kakegawa tea, Yame tea, and Chiran tea). Although food origin labeling is important [...] Read more.
This study aims to develop a system combining fluorescence spectroscopy and machine learning through a convolutional neural network (CNN) to identify the origins of various Japanese green teas (Sayama tea, Kakegawa tea, Yame tea, and Chiran tea). Although food origin labeling is important for ensuring consumer quality and safety, ac-curate identification remains a priority for the food industry due to the emergence of problems with false origin labeling. In this study, image data of the fluorescent fingerprints of green teas were collected using fluorescence spectroscopy and analyzed using a CNN model implemented in Python (ver. 3.13.2), TensorFlow (ver. 2.18.0), and Keras (ver. 3.9). The fluorescence of each sample was measured in the range of 250 to 550 nm, highlighting the differences in chemical composition that reflect each region. Using these data, a CNN suitable for image recognition successfully identified the origins of the teas with an average accuracy of 92.83% in 10 trials. For Chiran tea and Yame tea, precision and recall rates of over 95% were achieved, showing clear differences from other regions. In contrast, the classification of Kakegawa and Sayama teas proved challenging due to their similar fluorescence patterns in the 300–350 nm spectral range, corresponding to catechins and polyphenolic compounds. These similarities are presumed to reflect the comparable growing conditions and processing methods characteristic of the two regions. This study shows the potential of this system in food origin identification, suggesting applications in preventing origin fraud and quality control. Future research will aim to extend the system to other regions and foods, enhance data preprocessing to improve accuracy, and develop a versatile identification system. Full article
(This article belongs to the Special Issue The Future of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

22 pages, 4444 KiB  
Article
Discrimination of Romanian Wines Based on Phenolic Composition and Identification of Potential Phenolic Biomarkers for Wine Authenticity and Traceability
by Corina-Teodora Ciucure, Marius Gheorghe Miricioiu and Elisabeta-Irina Geana
Beverages 2025, 11(2), 44; https://doi.org/10.3390/beverages11020044 - 25 Mar 2025
Viewed by 945
Abstract
Demonstrating the authenticity and traceability of quality wines based on parameters that reflect their composition and provenance contributes to protecting wine authenticity and to increasing consumer confidence in moderate wine consumption, which is associated with numerous health-promoting properties. A wine’s phenolic fingerprint is [...] Read more.
Demonstrating the authenticity and traceability of quality wines based on parameters that reflect their composition and provenance contributes to protecting wine authenticity and to increasing consumer confidence in moderate wine consumption, which is associated with numerous health-promoting properties. A wine’s phenolic fingerprint is increasingly used to assess its authenticity, even though wine phenolic composition is influenced by genetic and environmental factors, as well as vineyard management and enological practices, and storage conditions. This study presents a comprehensive analysis of the bioactive characteristics (total polyphenols—TPs, total flavonoids—TFs, antioxidant activity—AA, and total anthocyanins—TAs) by spectrophotometric analysis and phenolic compound profile (by UHPLC-HRMS analysis) of 19 white and 21 red wines with a Protected Designation of Origin (PDO) from four vineyards located in the wine-growing region of Oltenia, Romania. Multivariate statistical analysis, specifically principal component analysis and heat map analysis, applied to analytical data, enables the discrimination of wines based on grape variety and terroir, and across four consecutive vintages (2019–2022). The phenolic profiles of the wines obtained under standardized winemaking conditions depend on the climatic data specific to each harvest year (temperature, precipitation, duration of sun exposure during grape berry phenological stages, and ripening). The phenolic biomarkers of red wines, such as epicatechin, catechin, gallic, caffeic, t-ferulic acids, t-resveratrol and hesperidin, represent specific biomarkers of warmer and sunnier harvest years with lower precipitation, as observed in the 2021 harvest year. Additionally, our results contribute to the identification of specific phenolic biomarkers for geographical and varietal discrimination, as well as to the promotion of high-quality wines produced in a renowned wine-growing region of Romania. Full article
Show Figures

Figure 1

22 pages, 879 KiB  
Article
Metabolomic Profiling and Antioxidant Properties of Chilean Eucryphia cordifolia Cav.: Insights from Leaves, Flowers, and Monofloral Honey
by Rafael Viteri, Ady Giordano, Gloria Montenegro, Mario J. Simirgiotis and Flavia C. Zacconi
Antioxidants 2025, 14(3), 292; https://doi.org/10.3390/antiox14030292 - 28 Feb 2025
Cited by 1 | Viewed by 814
Abstract
This study aimed to characterize the metabolomic profile of monofloral honey from Eucryphia cordifolia (ulmo) and evaluate the potential transfer of bioactive compounds from the plant parts, including the leaves and flowers, to the honey. Using UHPLC/Q-TOF-MS analysis, various flavonoids and phenolic acids [...] Read more.
This study aimed to characterize the metabolomic profile of monofloral honey from Eucryphia cordifolia (ulmo) and evaluate the potential transfer of bioactive compounds from the plant parts, including the leaves and flowers, to the honey. Using UHPLC/Q-TOF-MS analysis, various flavonoids and phenolic acids were identified and quantified in extracts from the leaves, flowers, and honey from E. cordifolia. Given their rich polyphenolic composition, E. cordifolia leaves were included in this study to assess their potential contribution to the antioxidant properties and chemical markers of ulmo honey. Additionally, the polyphenolic compounds in honey samples were quantified. Chromatographic analysis via UHPLC-MS/MS revealed that ulmo honey contains phenolic acids such as gallic, syringic, ferulic, chlorogenic, caffeic, and coumaric acid, as well as flavonoids including pinocembrin, quercetin, luteolin, kaempferol, epicatechin, apigenin, and isorhamnetin. The results indicate that pinocembrin and gallic acid are the main chemical markers of ulmo honey, while isorhamnetin could complement its characterization as a complementary marker. UHPLC/Q-TOF-MS analysis was also utilized to compare the compounds present in the honey with those found in the plant parts (leaves and flowers), respectively. A total of 10 shared compounds were identified, 9 of which were preliminarily identified, while 1 remains unknown. Notably, dihydroquercetin 3-O-rhamnoside, quercetin 3-O-rhamnoside, cyanidin 3-(p-coumaroyl)-glucoside, and eupatorin were detected in ulmo honey for the first time. Along with gallic acid, pinocembrin, and isorhamnetin, these compounds could contribute to a characteristic fingerprint for identifying the botanical origin of the honey. Overall, these findings provide valuable insights into the chemical composition of ulmo honey and its potential application as a functional product with antioxidant properties. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

17 pages, 2867 KiB  
Article
Phytochemical Profile and Biological Activity of the Ethanol Extracts from the Aerial Parts of Adonis tianschanica (Adolf.) Lipsch. Growing in Kazakhstan
by Saule Orynbekova, Wirginia Kukula-Koch, Zuriyadda Sakipova, Bashaer Alsharif, Beibhinn Rafferty, Talgat Nurgozhin, Zoya Allambergenova, Piotr Dreher, Kazimierz Głowniak and Fabio Boylan
Molecules 2024, 29(23), 5754; https://doi.org/10.3390/molecules29235754 - 5 Dec 2024
Viewed by 1366
Abstract
Adonis tianschanica is a lesser-known plant species belonging to the genus Adonis that grows in Kazakhstan. The aim of this study was to characterize the composition of the ethanolic, water, and hydroethanolic extracts from the aerial parts of A. tianschanica by HPLC-ESI-QTOF-MS/MS to [...] Read more.
Adonis tianschanica is a lesser-known plant species belonging to the genus Adonis that grows in Kazakhstan. The aim of this study was to characterize the composition of the ethanolic, water, and hydroethanolic extracts from the aerial parts of A. tianschanica by HPLC-ESI-QTOF-MS/MS to isolate the major compound isoquercitrin by HSCCC (High-Speed Counter-Current Chromatography) and to determine the cytotoxicity and anti-inflammatory potential of the extracts produced with this plant. Fingerprinting of the analyzed extracts showed the presence of a multitude of metabolites comprising polyphenols, organic acids, and coumarins, and only trace quantities of cardiac glycosides in the analyzed samples. Flavonoids were certainly the best-represented group, with kaempferol, quercetin, and their derivatives as the major components of the extracts. Key findings in this paper were that the ethanol: water (50:50 v/v) extract of A. tianschanica and its major compound isoquercitrin were able to reduce the production of NO induced by LPS, in addition to demonstrating anti-inflammatory effects by reducing cytokines such as IL-6, TNF-α, and IL-1β. Full article
Show Figures

Figure 1

16 pages, 2076 KiB  
Article
Unlocking Molecular Fingerprint of an Ombrotrophic Peat Bog: Advanced Characterization Through Hexamethyldisilazane Thermochemolysis and Principal Component Analysis
by Sara Moghnie, Emil Obeid, Jalal Halwani, Laurent Grasset and Khaled Younes
Molecules 2024, 29(23), 5537; https://doi.org/10.3390/molecules29235537 - 23 Nov 2024
Viewed by 983
Abstract
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the [...] Read more.
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies. The goal was to develop characteristic indicators for the state of lignin degradation based on the relative distribution of lignin phenols, measured by gas chromatography coupled with mass spectrometry (GC-MS) after the HMDS thermochemolysis. For that purpose, the singular contribution of the 11 aromatic moieties yielded, along with SGC (sum of lignin moieties) and the most lignin degradation proxies, were applied. It has been shown that HMDS thermochemolysis exhibited the capacity to reveal oxidized and degraded lignin fractions, following the increasing trend yielded for most moieties and SGC proxy, in the mesotelm and catotelm layers. In addition, the C/G (Cinnamyl/Guaiacyl) and S/G (Syringyl/Guaiacyl) ratios showed their highest input in the upper half of the core. This bias in the aforementioned ratios could indicate that HMDS thermochemolysis is to be applied for geological samples, where low G-compounds exist. For the sake of validating HMDS thermochemolysis’ application, Principal Component Analysis (PCA) was then applied to the molecular fingerprint. For ratios and proxies of aromatic moieties of HMDS thermochemolysis, the PCA approach exhibited a higher contribution (79%). This indicates the efficiency of these ratios in describing the molecular fingerprint of peat depth records. In addition, a higher separation between the contributions of the investigated variables (molecular proxies) along the first two PCs was noticed. In other words, the variables that showed a high contribution towards PC1 exhibited a low contribution towards PC2, and vice versa. These findings indicate the high reliance of applying the ratios and proxies of HMDS thermochemolysis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

20 pages, 1322 KiB  
Article
Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation
by Vadym Samukha, Francesca Fantasma, Gilda D’Urso, Ester Colarusso, Anna Schettino, Noemi Marigliano, Maria Giovanna Chini, Gabriella Saviano, Vincenzo De Felice, Gianluigi Lauro, Francesco Maione, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Biomolecules 2024, 14(10), 1336; https://doi.org/10.3390/biom14101336 - 20 Oct 2024
Cited by 1 | Viewed by 1720
Abstract
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean [...] Read more.
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE). Lipid content represents a minor fraction of the whole metabolome in dry beans, and little is known about their polar lipids, which could be potentially bioactive components. Thirty-three compounds were detected through UHPLC-MS/MS, including oxylipins, phospholipids, N-acyl glycerolipids, and several fatty acids. The dichloromethane extracts were subjected to principal component analysis (PCA), with the results showing greater differentiation for the Borlotti variety. Moreover, 27 components belonging to different polyphenol classes, such as phenolic acids, flavonoids, catechins, anthocyanins and their glycosides, and some saponins, were identified in the hydroalcoholic seed extracts. In addition, the mineral content of the beans was determined. Considering the high number of compounds in the five apolar seed extracts, all samples were examined to determine their in vitro inhibitory activity against the enzyme cyclooxygenase-2 (COX-2), which is inducible in inflammatory cells and mediates inflammatory responses. Only PVCO showed the best inhibition of the COX-2 enzyme with an IC50 = 31.15 ± 2.16 µg/mL. In light of these results, the potential anti-inflammatory properties of PVCO were evaluated in the LPS-stimulated murine macrophage cell line J774A.1. Herein, we demonstrate, for the first time, that PVCO at 30 µg/mL can significantly reduce the release of TNF-α, with a less significant anti-inflammatory effect being observed in terms of IL-6 release. Full article
Show Figures

Graphical abstract

27 pages, 2039 KiB  
Review
Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders
by Telma Marisa Gomes, Patrícia Sousa, Catarina Campos, Rosa Perestrelo and José S. Câmara
Foods 2024, 13(14), 2289; https://doi.org/10.3390/foods13142289 - 20 Jul 2024
Cited by 2 | Viewed by 3073
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer’s (AD) and Parkinson’s (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from [...] Read more.
Neurodegenerative disorders (NDDs) such as Alzheimer’s (AD) and Parkinson’s (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer’s, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop