¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. 1H-NMR Analysis
2.3. Data Analysis and Software
3. Results and Discussion
3.1. Visualization and Interpretation of 1H-NMR Spectra of Extra Virgin Olive Oils
3.2. Differentiation and Classification of Extra Virgin Olive Oils According to the Variety, Cultivation Method, Rippening or Harvest Year
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EVOO | Extra virgin olive oil |
OEVOO | Organic extra virgin olive oil |
H | Hojiblanca |
P | Picual |
CAL | Calibration |
CV | Cross-validation |
PCA | Principal component analysis |
PLS-DA | Partial least-discriminant analysis |
References
- Ministerio de Industria, Comercio y Turismo. Balanza Comercial Agroalimentaria 2022. Gobierno de España. 2022. Available online: https://comercio.gob.es/ImportacionExportacion/Informes_Estadisticas/Historico_Balanza/Balanza_Comercial_Agroalimentaria_2022.pdf (accessed on 1 January 2025).
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 establishing a common organization of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. Official Journal of the European Union, L 347, 20 December 2013, pp. 671–854. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R1308 (accessed on 28 January 2025).
- Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Official Journal of the European Union, L 283, 4 November 2022, pp. 1–36. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R2104 (accessed on 15 January 2025).
- Commission Implementing Regulation (EU) 2022/2105 of 29 July 2022 laying down rules on conformity checks of marketing standards for olive oil and methods of analysis of the characteristics of olive oil. Official Journal of the European Union, L 283, 4 November 2022, pp. 37–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R2105 (accessed on 15 January 2025).
- Jiménez, B.; Callejón, R.; Sánchez-Ortiz, A.; Ortega, E.; Lorenzo, M.L.; Rivas, A. Agronomic parameters, quality indices, and sensory attributes of virgin olive oils from Hojiblanca and Picudo varieties from three successive crop years. Eur. J. Lipid Sci. Technol. 2014, 116, 1647–1653. [Google Scholar] [CrossRef]
- Patumi, M.; D’andria, R.; Marsilio, V.; Fontanazza, G.; Morelli, G.; Lanza, B. Olive and olive oil quality after intensive monocone olive growing (Olea europaea L.; cv. Kalamata) in different irrigation regimes. Food Chem. 2002, 77, 27–34. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Pérez, A.G.; Sanz, C. Cultivar Differences on Nonesterified Polyunsaturated Fatty Acid as a Limiting Factor for the Biogenesis of Virgin Olive Oil Aroma. J. Agric. Food Chem. 2007, 55, 7869–7873. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; García, J.M.; Torres-Ruiz, J.M.; Monteo, A.; Sánchez-Ortiz, A.; Fernández, J.E. Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil? Agric. Water Manag. 2013, 123, 79–92. [Google Scholar] [CrossRef]
- Jiménez, B.; Sánchez-Ortiz, A.; Rivas, A. Influence of the malaxation time and olive ripening stage on oil quality and phenolic compounds of virgin olive oils. Int. J. Food Sci. Technol. 2014, 49, 2521–2527. [Google Scholar] [CrossRef]
- Jiménez, B.; Sánchez-Ortiz, A.; Lorenzo, M.L.; Rivas, A. Effect of organic cultivation of Picual and Hojiblanca olive varieties on the quality of virgin olive oil at four ripening stages. Eur. J. Lipid Sci. Technol. 2014, 116, 1634–1646. [Google Scholar] [CrossRef]
- Bengana, M.; Bakhouche, A.; Lozano-Sánchez, J.; Amir, Y.; Youyou, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil. Food Res. Int. 2013, 54, 1868–1875. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Castro-García, S.; Blanco-Roldán, G.L.; Jiménez-Jiménez, F.; Castillo-Ruiz, F.J.; Gil-Ribes, J.A. Traditional olive tree response to oil olive harvesting technologies. Biosyst. Eng. 2014, 118, 186–193. [Google Scholar] [CrossRef]
- Hermoso, M.; González, J.; Uceda, M.; García-Ortiz, A.; Morales, J.; Frías, L.; Fernández, A. Production of quality oil. In Obtained by the Two-Phase System; Ministry of Agriculture and Fisheries, Junta de Andalucía: Cordoba, Spain, 1996; ISBN 84-87564-17-8. [Google Scholar]
- Jiménez Herrera, B.; Rivas, A.; Sánchez-Ortiz, A.; Lorenzo Tovar, M.L.; Ubeda Muñoz, M.; Callejón, R.M.; Ortega Bernaldo De Quirós, E. Influencia del proceso de maduración del fruto en la calidad sensorial de aceites de oliva virgen de las variedades Picual, Hojiblanca y Picudo. Grasas Aceites 2012, 63, 1–154. [Google Scholar] [CrossRef]
- Jimenez, B.; Sánchez-Ortiz, A.; Lorenzo, M.L.; Rivas, A. Effect of agronomical practices on the nutritional quality of virgin olive oil at different ripening stages. J. Am. Oil Chem. Soc. 2015, 92, 1491–1501. [Google Scholar] [CrossRef]
- Jiménez, B.; Rivas, A.; Lorenzo, M.L.; Sánchez-Ortiz, A. Chemosensory characterization of virgin olive oils obtained from organic and conventional practices during fruit ripening. Flavour Fragr. J. 2017, 32, 294–304. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Estadísticas 2022: Producción Ecológica. Gobierno de España. 2022. Available online: www.mapa.gob.es/eu/alimentacion/temas/produccion-eco/caracterizacion2022_defconnipo_tcm35-690262.pdf (accessed on 15 January 2025).
- Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Official Journal of the European Union, L 189, 20 July 2007, pp. 1–23. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007R0834 (accessed on 20 January 2025).
- Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 authorizing certain products and substances for use in organic production and establishing their lists. Official Journal of the European Union, L 253, 16 July 2021, pp. 13–104. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R1165 (accessed on 18 January 2025).
- Domínguez-Gento, A.; Di Giorgi, R.; García-Martínez, M.D.; Raigón, M.D. Effects of Organic and Conventional Cultivation on Composition and Characterization of Two Citrus Varieties ‘Navelina’ Orange and ‘Clemenules’ Mandarin Fruits in a Long-Term Study. Horticulturae 2023, 9, 721. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Teixeira, P. Organic versus conventional food: A comparison regarding food safety. Food Rev. Int. 2017, 33, 424–446. [Google Scholar] [CrossRef]
- Lairon, D. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 2010, 30, 33–41. [Google Scholar] [CrossRef]
- Lairon, D.; Huber, M.S. Organic Farming, Prototype for Sustainable Agricultures; Bellon, S., Penvern, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Bahar, B.; Schmidt, O.; Moloney, A.P.; Scrimgeour, C.M.; Begley, I.S.; Monahan, F.J. Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chem. 2008, 106, 1299–1305. [Google Scholar] [CrossRef]
- Lösel, H.; Brockelt, J.; Gärber, F.; Teipel, J.; Kuballa, T.; Seifert, S.; Fischer, M. Comparative Analysis of LC-ESI-IM-qToF-MS and FT-NIR Spectroscopy Approaches for the Authentication of Organic and Conventional Eggs. Metabolites 2023, 13, 882. [Google Scholar] [CrossRef]
- D’Imperio, M.; Mannina, L.; Capitani, D.; Bidet, O.; Rossi, E.; Bucarelli, F.M.; Quaglia, G.B.; Segre, A. NMR and statistical study of olive oils from Lazio: A geographical, ecological and agronomic characterization. Food Chem. 2007, 105, 1256–1267. [Google Scholar] [CrossRef]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef]
- Mannina, L.; Sobolev, A.P. High resolution NMR characterization of olive oils in terms of quality, authenticity and geographical origin. Magn. Reson. Chem. 2011, 49, 53–511. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Napoli, C.; Humpfer, E.; Schuetz, B.; Schaefer, H.; Kontominas, M.G.; Sacco, A. Classification of olive oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis. Food Chem. 2012, 130, 177–183. [Google Scholar] [CrossRef]
- Fragaki, G.; Spyros, A.; Siragakis, G.; Salivaras, E.; Dais, P. Detection of Extra Virgin Olive Oil Adulteration with Lampante Olive Oil and Refined Olive Oil Using Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis. J. Agric. Food Chem. 2005, 53, 2810–2816. [Google Scholar] [CrossRef]
- Ortiz-Romero, C.; Ríos-Reina, R.; García-González, D.L.; Cardador, M.J.; Callejón, R.M.; Arce, L. Comparing the potential of IR-spectroscopic techniques to gas chromatography coupled to ion mobility spectrometry for classifying virgin olive oil categories. Food Chem. X 2023, 19, 100738. [Google Scholar] [CrossRef] [PubMed]
- Philippidis, A.; Kontzedaki, R.; Orfanakis, E.; Fragkoulis, N.; Zoumi, A.; Germanaki, E.; Samartzis, P.C.; Velegrakis, M. Classification of Greek extra virgin olive oils by Raman spectroscopy in conjunction with sensory and cultivation characteristics, and multivariate analysis. JSFA Rep. 2023, 3, 486–493. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Salatti-Dorado, J.A.; Ortiz-Romero, C.; Cardador, M.J.; Arce, L.; Callejón, R.M. A comparative study of fluorescence and Raman spectroscopy for discrimination of virgin olive oil categories: Chemometric approaches and evaluation against other techniques. Food Control 2024, 158, 110250. [Google Scholar] [CrossRef]
- López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of Organic and Conventional Growing Systems on the Phenolic Profile of Extra-Virgin Olive Oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef] [PubMed]
- Marcone, M.F.; Wang, S.; Albabish, W.; Somnarain, D.; Hill, A.; Nie, S. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Guido, F.P.; Birgit, U.J.; Lankin, D.C. Quantitative 1H NMR: Development and Potential of a Method for Natural Products Analysis. J. Nat. Prod. 2005, 68, 133–149. [Google Scholar] [CrossRef]
- Cao, R.; Liu, X.; Liu, X.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem. 2021, 342, 128258. [Google Scholar] [CrossRef]
- Belton, P.S.; Colquhoun, I.J.; Hills, B.P. Applications of NMR to Food Science. In Annual Reports on NMR Spectroscopy; Academic Press: Cambridge, MA, USA, 1993; Volume 26, pp. 1–53. [Google Scholar] [CrossRef]
- Sacco, A.; Brescia, M.A.; Liuzzi, V.; Reniero, F.; Guillou, C.; Ghelli, S.; van der Me, P. Characterization of Italian Olive Oils Based on Analytical and Nuclear Magnetic Resonance Determinations. JAOCS 2000, 77, 6. [Google Scholar] [CrossRef]
- Segura-Borrego, M.P.; Azcarate, S.M.; Amigo, J.M.; Morales, M.L.; Callejón, R.M.; Ríos-Reina, R. Analysis of Beverages. In Non-invasive and Non-Destructive Methods for Food Integrity; Jiménez-Carvelo, A.M., Arroyo-Cerezo, A., Cuadros-Rodríguez, L., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Maggio, R.M.; Kaufman, T.S.; Del Carlo, M.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of fatty acid composition in virgin olive oil by 1H NMR relaxometry: A comparison with gas chromatography. J. Agric. Food Chem 2009, 57, 1722–1730. [Google Scholar] [CrossRef]
- Paiva-Martins, T.; Pronto, N.M.M.; Santos, J.L.V. Phenolic compounds in olive oils by NMR. Magn. Reson. Chem. 2020, 58, 1007–1020. [Google Scholar]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef]
- Pandey, A.K.; Buchholz, C.R.; Nathan Kochen, N.; Pomerantz, W.C.K.; Braun, A.R.; Sachs, J.N. pH Effects Can Dominate Chemical Shift Perturbations in 1H,15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions. ACS Chem. Neurosci. 2023, 14, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Segre, A. High resolution nuclear magnetic resonance: From chemical structure to food authenticity. Grasas Aceites 2002, 53, 22–33. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Gallo, B.; Collado, M.I.; Sasía-Arriba, A.; Viacava, G.E.; García-González, D.L.; Gallina Toschi, T.; Servili, M.; Berrueta, L.Á. 1H–NMR fingerprinting and supervised pattern recognition to evaluate the stability of virgin olive oil during storage. Food Control 2021, 123, 107831. [Google Scholar] [CrossRef]
- Sánchez-López, E. Construcción de Una Base de Datos de Aceites de Oliva Virgen Extra Andaluces Basada en Técnicas de IR, RMN, Raman e IRMS. Doctoral Thesis, Universidad de Córdoba, Córdoba, Spain, 2014. Available online: https://helvia.uco.es/xmlui/handle/10396/12375 (accessed on 15 February 2025).
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Rubio-Sánchez, R.; Ríos-Reina, R.; Ubeda, C. Effect of chemotherapy on urinary volatile biomarkers for lung cancer by HS-SPME-GC-MS and chemometrics. Thorac. Cancer 2023, 14, 3522–3529. [Google Scholar] [CrossRef]
- Wagner, M.; Heredia, J.Z.; Segura-Borrego, M.P.; Morales, M.L.; Camiña, J.M.; Azcarate, S.M.; Callejón, R.M.; Ríos-Reina, R. Identification of potential volatile markers for characterizing Argentine wine vinegars based on their production process. Talanta Open 2024, 10, 100370. [Google Scholar] [CrossRef]
- Ubeda, C.; Cortejosa, D.; Morales, M.L.; Callejón, R.M.; Ríos-Reina, R. Determination of volatile compounds for the differentiation of PDO fortified wines with different ageing methods as a tool for controlling their authenticity. Food Res. Int. 2023, 173, 113320. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, P.; Cardador, M.J.; Ríos-Reina, R.; Sánchez-Carvajal, J.M.; Galán-Relaño, Á.; Jurado-Martos, F.; Luque, I.; Arce, L.; Gómez-Laguna, J.; Rodríguez-Estévez, V. Detection of Mycobacterium tuberculosis complex field infections in cattle using fecal volatile organic compound analysis through gas chromatography-ion mobility spectrometry combined with chemometrics. Microbiol. Spectr. 2023, 11, e01743-23. [Google Scholar] [CrossRef]
- Kyçyk, O. Influencia del Componente Genético y Factores Agronómicos en la Composición de los Esteroles del Aceite de Oliva Virgen. Doctoral Thesis, Universidad de Jaén, Jaén, España, 2009. Available online: https://ruja.ujaen.es/jspui/bitstream/10953/721/1/9788484399988.pdf (accessed on 20 February 2025).
- Oliveras López, M.J. Calidad del Aceite de Oliva Virgen Extra: Antioxidantes y Función Biológica. Doctoral Thesis, Universidad de Granada, Granada, España, 2005. Available online: https://digibug.ugr.es/bitstream/handle/10481/746/15519387.pdf (accessed on 18 February 2025).
- Blasi, F.; Pollini, L.; Cossignani, L. Varietal Authentication of Extra Virgin Olive Oils by Triacylglycerols and Volatiles Analysis. Foods 2019, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Trujillo, M.; Pérez-Camino, M.C.; Moreda, W.; Cert, A. Relationships between Oxidative Stability, Triacylglycerol Composition, and Antioxidant Content in Olive Oil Matrices. J. Agric. Food Chem. 2005, 53, 5766–5771. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Lipowski, J.; Marszalek, K.; Rembialkowska, E. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes. Plant Foods Hum. Nutr. 2013, 68, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Gravel, V.; Blok, W.; Hallmann, E.; Carmona-Torres, C.; Wang, H.Y.; Van de Peppel, A.; Còndor Golec, A.F.; Dorais, M.; Van Meeterens, U.; Heuvelink, E.; et al. Differences in N uptake and fruit quality between organically and conventionally grown greenhouse tomatoes. Agron. Sustain. Dev. 2010, 30, 797–806. [Google Scholar] [CrossRef]
- Garcia, A.; Brenes, M.; Romero Barranco, C.; Garcia, P.; Garrido Fernández, A. Study of phenolic compounds in virgin olive oils of the Picual variety. Eur. Food Res. Technol. 2002, 215, 407–412. [Google Scholar] [CrossRef]
- Akcan, T. Comparative Study of Fatty Acid and Sterol Profiles in Olive Oils from Different Regions. Molecules 2024, 29, 1104. [Google Scholar] [CrossRef]
- El Riachy, M.; Moubarak, P.; Al Hawi, G.; Geha, M.; Mushantaf, W.; Estaphan, N.; Skaff, W. Phenolic and Fatty Acid Profiles of Virgin Olive Oils from Local and European Cultivars Grown in Lebanon. Plants 2023, 12, 2681. [Google Scholar] [CrossRef]
- Zanetic, M.; Spika, M.J.; Ozic, M.M.; Bubola, K.B. Comparative Study of Volatile Compounds and Sensory Profiles of Monovarietal Olive Oils from Four Dalmatian Cultivars. Plants 2021, 10, 1995. [Google Scholar] [CrossRef]
- Jimenez, B.; Sánchez-Ortiz, A.; Lorenzo, M.L.; Rivas, A. Effect of Organic Farming on Picual and Hojiblanca Olive Oil Quality. Eur. J. Lipid Sci. Technol 2014, 116, 1502–1512. [Google Scholar] [CrossRef]
- Rodrigues, N.; Casal, S.; Pinho, T.; Cruz, R.; Baptista, P.; Martín, H.; Asensio-S-Manzanera, M.C.; Peres, A.M.; Pereira, J.A. Olive oil characteristics of eleven cultivars produced in a high-density grove in Valladolid province (Spain). Eur. Food Res. Technol. 2021, 247, 3113–3122. [Google Scholar] [CrossRef]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–525. [Google Scholar] [CrossRef]
Code | Variety | Cultivation Modality | Stage | Filtering | Season |
---|---|---|---|---|---|
HCI-1 | H | Conv | I | F | 1 |
HCII-1 | H | Conv | II | F | 1 |
HCII-NF-1 | H | Conv | II | NF | 1 |
HCIII-1 | H | Conv | III | F | 1 |
HCI-2 | H | Conv | I | F | 2 |
HCII-2 | H | Conv | II | F | 2 |
HOI-1 | H | Org | I | F | 1 |
HOII-1 | H | Org | II | F | 1 |
HOII-NF-1 | H | Org | II | NF | 1 |
HOIII-1 | H | Org | III | F | 1 |
HOI-2 | H | Org | I | F | 2 |
HOII-2 | H | Org | II | F | 2 |
PCE-50C-2 | P | Conv | - | F | 2 |
PCI-1 | P | Conv | I | F | 1 |
PCI-2 | P | Conv | I | F | 2 |
PCII-1 | P | Conv | II | F | 1 |
PCII-2 | P | Conv | II | F | 2 |
PCII-NF-1 | P | Conv | II | NF | 1 |
PCIII-1 | P | Conv | III | F | 1 |
POE-50C-2 | P | Org | - | F | 2 |
POI-1 | P | Org | I | F | 1 |
POI-2 | P | Org | I | F | 2 |
POII-1 | P | Org | II | F | 1 |
POII-2 | P | Org | II | F | 2 |
POII-NF-1 | P | Org | II | NF | 1 |
POIII-1 | P | Org | III | F | 1 |
Interval | Interval Range (ppm) | Chemical Shift (ppm) | Multiplicity | Interpretation * |
---|---|---|---|---|
1 | 0–0.0502 | 0.00 | s | Internal standard (TMS) |
2 | 0.051–0.500 | 0.15 | s | |
0.32–0.35 | d | Cycloartenol | ||
3 | 0.501–0.850 | 0.54 | s | Alcohol, sterol |
0.68 | s | β-Sitosterol or stigmasterol | ||
0.70–0.836 | ||||
4 | 0.851–1.200 | 0.85–0.90 | t | Terminal methyl protons (-CH3) of saturated fatty acids: oleic (ω-9) and linoleic (ω-6) |
0.95–0.99 | t | Linolenic (ω-3) acid. | ||
5 | 1.201–1.400 | 1.24–1.32 | t | Methylene protons (-CH2-) from aliphatic chains of saturated fatty acids (palmitic, stearic) or oleic, linoleic and linolenic. |
6 | 1.401–2.200 | 1.401–1.63 | m | |
1.67 | s | Squalene | ||
1.71–2.20 | ||||
7 | 2.201–2.400 | 2.28–2.32 | d | |
2.32–2.36 | m | Allylic protons (-CH2-CH=CH-) linked to unsaturated fatty acids. | ||
8 | 2.401–2.500 | 2.44–2.49 | ||
9 | 2.501–2.700 | 2.53–2.68 | ||
10 | 2.701–2.900 | 2.74–2.78 | d | |
2.78–2.95 | t | Bis-allylic protons (=CH-CH2-CH=) linked to polyunsaturated fatty acids (linoleic and linolenic acids). | ||
11 | 2.901–3.600 | 2.9–9.95 | t | |
3.00–3.59 | ||||
12 | 3.601–4.000 | 3.63–3.65 | d | sn-1,2-diacylglycerides |
3.68–3.98 | t | |||
13 | 4.001–4.400 | 4.10–4.20 | q | Hydrogens at the 1 and 3 position of glycerol (-CH2-O-CO-) linked to triacylglycerides |
4.25–4.35 | d + d | |||
14 | 4.401–5.000 | 4.43–4.5 | d + d | |
4.57 | d | Terpenes | ||
4.59 | s | |||
4.66 | s | |||
4.71 | s | |||
15 | 5.001–5.700 | 5.0–5.20 | m | Triacylglycerides |
5.24–5.3 | m | Olefinic protons (-CH=CH-) of unsaturated fatty acids | ||
5.31–5.38 | m | |||
5.47–5.60 | d + t | Phenolic compounds | ||
16 | 5.701–7.200 | 6.70–6.80 | s + q | |
6.90–7.10 | t + d | Dialdehyde of ligstroside lacking a carboxymethyl group, aldehydic form of ligstroside | ||
17 | 7.201–7.335 | 7.27 | s | |
18 | 7.336–9.721 | 7.53 | s | Aldehydic form of secoiridoid (oleuropein, ligstroside) |
7.64 | s/d | |||
9.12–9.31 | d + 5 + d + s | Dialdehyde of secoiridoids (oleuropein, ligstroside) lacking a carboxymethyl. | ||
9.42–9.55 | q + d + d + d | Dialdehyde of secoiridoids (oleuropein, ligstroside) lacking a carboxymethyl group + aldehydic form of secoiridoids (oleuropein, ligstroside) + E-2-alkenals (E-2-hexenal). | ||
9.61–9.72 | d + t + s | Aldehydic form of secoiridoids (oleuropein, ligstroside). Hexanaldehyde, oleocanthal. |
Classification Task | LVs | Actual Class | Predicted Class (CAL) | Sensitivity (CAL) | Specificity (CAL) | Predicted Class (CV) | Sensitivity (CV) | Specificity (CV) | ||
---|---|---|---|---|---|---|---|---|---|---|
H | P | H | P | |||||||
Variety | 4 | Hojiblanca (H = HC + HO) | 24 | 0 | 100% | 100% | 24 | 0 | 100% | 100% |
Picual (P = PC + PO) | 0 | 28 | 100% | 100% | 0 | 28 | 100% | 100% | ||
Cultivation modality | Conv | Org | Sensitivity (CAL) | Specificity (CAL) | Conv | Org | Sensitivity (CV) | Specificity (CV) | ||
9 | Conventional (Conv = HC + PC) | 26 | 0 | 100% | 100% | 26 | 0 | 100% | 100% | |
Organic (Org = HO + PO) | 0 | 26 | 100% | 100% | 0 | 26 | 100% | 100% | ||
Cultivation modality of Hojiblanca EVOOs | 2 | HC | HO | Sensitivity (CAL) | Specificity (CAL) | HC | HO | Sensitivity (CV) | Specificity (CV) | |
HC | 12 | 0 | 100% | 100% | 12 | 0 | 100% | 100% | ||
HO | 0 | 12 | 100% | 100% | 0 | 12 | 100% | 100% | ||
Cultivation modality of Picual EVOOs | 6 | PC | PO | Sensitivity (CAL) | Specificity (CAL) | PC | PO | Sensitivity (CV) | Specificity (CV) | |
PC | 14 | 0 | 100% | 100% | 14 | 1 | 100% | 93% | ||
PO | 0 | 14 | 100% | 100% | 0 | 13 | 93% | 100% |
Selected Variables from no. of Interval # | Tentative ID | % Correct classification | |||||||
---|---|---|---|---|---|---|---|---|---|
Predicted Class (CAL) | Predicted Class (CV) | Predicted Class (CAL) | Predicted Class (CV) | ||||||
H | P | H | P | Conv | Org | Conv | Org | ||
#3 | β-Sitosterol or stigmasterol | 83.33 | 82.14 | 83.33 | 75.00 | 84.62 | 84.62 | 80.77 | 76.92 |
#4 | Saturated acids: oleic (ω-9), linoleic (ω-6), linolenic (ω-3) | 83.33 | 53.57 | 79.17 | 53.57 | 88.46 | 65.38 | 84.62 | 65.38 |
#7 | Unsaturated fatty acids | 58.33 | 67.86 | 54.17 | 64.29 | 53.85 | 53.85 | 42.31 | 53.85 |
#9 | Not identified | 100.00 | 85.71 | 100.00 | 85.71 | 88.46 | 84.62 | 88.46 | 84.62 |
#10 | Polyunsaturated fatty acids (linoleic and linolenic acids) | 87.50 | 89.29 | 79.17 | 89.29 | 42.31 | 65.38 | 23.08 | 57.69 |
#11 | Polyunsaturated fatty acids (linoleic and linolenic acids) | 91.67 | 92.86 | 91.67 | 85.71 | 76.92 | 46.15 | 73.08 | 46.15 |
#15 | Triacylglycerides | 83.33 | 89.29 | 83.33 | 85.71 | 88.46 | 46.15 | 84.62 | 34.62 |
#16 | Phenolic compounds and dialdehyde of ligstroside | 87.50 | 92.86 | 83.33 | 89.29 | 65.38 | 65.38 | 65.38 | 53.85 |
#17 | Not identified | 45.83 | 82.14 | 45.83 | 78.57 | 84.62 | 38.46 | 73.08 | 42.31 |
#18 | Oleuropein, ligstroside | 75.00 | 82.14 | 75.00 | 82.14 | 76.92 | 65.38 | 61.54 | 57.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azcarate, S.M.; Segura-Borrego, M.P.; Ríos-Reina, R.; Callejón, R.M. ¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils. Chemosensors 2025, 13, 162. https://doi.org/10.3390/chemosensors13050162
Azcarate SM, Segura-Borrego MP, Ríos-Reina R, Callejón RM. ¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils. Chemosensors. 2025; 13(5):162. https://doi.org/10.3390/chemosensors13050162
Chicago/Turabian StyleAzcarate, Silvana M., Maria P. Segura-Borrego, Rocío Ríos-Reina, and Raquel M. Callejón. 2025. "¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils" Chemosensors 13, no. 5: 162. https://doi.org/10.3390/chemosensors13050162
APA StyleAzcarate, S. M., Segura-Borrego, M. P., Ríos-Reina, R., & Callejón, R. M. (2025). ¹H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils. Chemosensors, 13(5), 162. https://doi.org/10.3390/chemosensors13050162