Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,178)

Search Parameters:
Keywords = polymer extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1034 KB  
Article
Data-Driven Modeling and Simulation for Optimizing Color in Polycarbonate: The Dominant Role of Processing Speed on Pigment Dispersion and Rheology
by Jamal Al Sadi
Materials 2026, 19(2), 366; https://doi.org/10.3390/ma19020366 - 16 Jan 2026
Abstract
Maintaining color constancy in polymer extrusion processes is a key difficulty in manufacturing applications, as fluctuations in processing parameters greatly influence pigment dispersion and the quality of the finished product. Preliminary historical data mining analysis was conducted in 2009. This work concentrates on [...] Read more.
Maintaining color constancy in polymer extrusion processes is a key difficulty in manufacturing applications, as fluctuations in processing parameters greatly influence pigment dispersion and the quality of the finished product. Preliminary historical data mining analysis was conducted in 2009. This work concentrates on Opaque PC Grade 5, which constituted 2.43% of the pigment; it contained 10 PPH of resin2 with a Melt Flow Index (MFI) of 6.5 g/10 min and 90 PPH of resin1. It also employs a fixed resin composition with an MFI of 25 g/10 min. This research identified the significant processing parameters (PPs) contributing to the lowest color deviation. Interactions between processing parameters, for the same color formulation, were analyzed using statistical methods under various processing conditions. A principle-driven General Trends (GT) diagnostic procedure was applied, wherein each parameter was individually varied across five levels while holding others constant. Particle size distribution (PSD) and colorimetric data (CIE Lab*) were systematically measured and analyzed. To complete this, correlations for the impact of temperature (Temp) on viscosity, particle characteristics, and color quality were studied by characterizing viscosity, Digital Optical Microscopy (DOM), and particle size distribution at various speeds. The samples were characterized for viscosity at three temperatures (230, 255, 280 °C) and particle size distribution at three speeds: 700, 750, 800 rpm. This study investigates particle processing features, such as screw speed and pigment size distribution. The average pigment diameter and the fraction of small particles were influenced by the speed of 700–775 rpm. At 700 rpm, the mean particle size was 2.4 µm, with 61.3% constituting particle numbers. The mean particle size diminished to 2 µm at 775 rpm; however, the particle count proportion escalated to 66% at 800 rpm. This research ultimately quantifies the relative influence of particle size on the reaction, resulting in a color value of 1.36. The mean particle size and particle counts are positively correlated; thus, reduced pigment size at increased speed influences color response and quality. The weighted contributions of the particles, 51.4% at 700 rpm and 48.6% at 800 rpm, substantiate the hypothesis. Further studies will broaden the GT analysis to encompass multi-parameter interactions through design experiments and will test the diagnostic assessment procedure across various polymer grades and colorants to create robust models of prediction for industrial growth. The global quality of mixing polycarbonate compounding constituents ensured consistent and smooth pigment dispersion, minimizing color streaks and resulting in a significant improvement in color matching for opaque grades. Full article
Show Figures

Graphical abstract

21 pages, 3808 KB  
Article
Rheological, Thermal and Mechanical Properties of Blown Film Based on Starch and Clay Nanocomposites
by Heidy Tatiana Criollo Guevara, Lis Vanesa Ocoró Caicedo, Jhon Jairo Rios Acevedo, Marcelo Alexander Guancha Chalapud and Carolina Caicedo
Processes 2026, 14(2), 276; https://doi.org/10.3390/pr14020276 - 13 Jan 2026
Viewed by 88
Abstract
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties [...] Read more.
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties of biodegradable materials. In this study, commercial cassava starch powder plasticized with water and 35% glycerol, along with commercial nanoclay at concentrations of 0%, 2%, and 4%, was used as film reinforcement. The manufacturing process employed extrusion to evaluate the effectiveness of the nanomaterial in improving the mechanical and functional characteristics of the films. Films with varying concentrations of glycerol and nanoclay were produced to determine the optimal formulation by assessing their rheological, thermal, and mechanical properties. These films were subjected to comprehensive analysis using internationally standardised techniques, including Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and morphological characterisation via Scanning Electron Microscopy (SEM). Among the properties evaluated, water vapour permeability (WVTR) was of particular interest. Results showed that higher nanoclay content improved moisture retention, thus enhancing the films’ water barrier properties. Mechanical testing indicated that the film with the highest nanoclay concentration, F-g35-NC4, displayed tensile strength values of 0.23 ± 0.02 MPa and elongation of 66.90% ± 4.85, whereas F-g35-NC0 and F-g35-NC2 exhibited lower values. Conversely, the highest tear resistance was also recorded for F-g35-NC4, reaching 0.740 ± 0.009 kg. Contact angle measurements revealed a hydrophilic tendency, with values of 89.93° ± 8.78°. Finally, WVTR analysis confirmed that increased nanoclay content enhanced moisture retention and improved the water barrier performance, with a value of 0.030 ± 0.011 g/m2·day, supporting potential applications in the packaging sector. Full article
Show Figures

Graphical abstract

15 pages, 5958 KB  
Article
Tunable Drug Release from 3D-Printed Bilayer Tablets: Combining Hot-Melt Extrusion and Fused Deposition Modeling
by Sangyeob Lee, Eon Soo Song, Eungyeop Lee, Gabin Kwon and Dong Wuk Kim
Polymers 2026, 18(2), 210; https://doi.org/10.3390/polym18020210 - 13 Jan 2026
Viewed by 185
Abstract
This study presents a practical and tunable 3D printing-based approach for manufacturing oral controlled-release bilayer tablets by modulating drug release solely through layer ratio control within a single dosage form. Theophylline-loaded filaments were prepared via hot-melt extrusion (HME) using Kollicoat® IR or [...] Read more.
This study presents a practical and tunable 3D printing-based approach for manufacturing oral controlled-release bilayer tablets by modulating drug release solely through layer ratio control within a single dosage form. Theophylline-loaded filaments were prepared via hot-melt extrusion (HME) using Kollicoat® IR or hydroxypropyl cellulose as polymer matrices. The mechanical properties of the manufactured filaments were evaluated and compared with commercial filaments to confirm their suitability for fused deposition modeling (FDM) printing. Physicochemical characterization using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy indicated partial crystallinity and molecular dispersion of the drug within the polymer matrices. Using a dual-nozzle FDM 3D printer, five bilayer tablets composed of two drug-loaded filaments at different layer ratios were successfully fabricated without altering formulation composition or processing conditions. Drug release studies revealed distinct dissolution behaviors that were strongly dependent on the bilayer composition. Overall, this study demonstrates that controlled drug release can be effectively achieved through geometric modulation of bilayer structures using a combined HME–FDM 3D printing approach, providing a practical platform for personalized oral drug delivery without increasing formulation complexity. Full article
Show Figures

Graphical abstract

20 pages, 4885 KB  
Article
Development of 3D-Printable Lead-Free Composite Materials for Mixed Photon and Neutron Attenuation
by Shirin Arslonova, Jurgita Laurikaitiene and Diana Adliene
Polymers 2026, 18(2), 176; https://doi.org/10.3390/polym18020176 - 8 Jan 2026
Viewed by 279
Abstract
The growing use of radiation technologies has increased the need for shielding materials that are lightweight, safe, and adaptable to complex geometries. While lead remains highly effective, its toxicity and weight limit its suitability, driving interest in alternative materials. The process of 3D [...] Read more.
The growing use of radiation technologies has increased the need for shielding materials that are lightweight, safe, and adaptable to complex geometries. While lead remains highly effective, its toxicity and weight limit its suitability, driving interest in alternative materials. The process of 3D printing enables the rapid fabrication of customized shielding geometries; however, only limited research has focused on 3D-printed polymer composites formulated specifically for mixed photon–neutron fields. In this study, we developed a series of 3D-printable ABS-based composites incorporating tungsten (W), bismuth oxide (Bi2O3), gadolinium oxide (Gd2O3), and boron nitride (BN). Composite filaments were produced using a controlled extrusion process, and all materials were 3D printed under identical conditions to enable consistent comparison across formulations. Photon attenuation at 120 kVp and neutron attenuation using a broad-spectrum Pu–Be source (activity 4.5 × 107 n/s), providing a mixed neutron field with a central flux of ~7 × 104 n·cm−2·s−1 (predominantly thermal with epithermal and fast components), were evaluated for both individual composite samples and layered (sandwich) configurations. Among single-material prints, the 30 wt% Bi2O3 composite achieved a mass attenuation coefficient of 2.30 cm2/g, approximately 68% of that of lead. Layered structures combining high-Z and neutron-absorbing fillers further improved performance, achieving up to ~95% attenuation of diagnostic X-rays and ~40% attenuation of neutrons. The developed materials provided a promising balance between 3D-printability and dual-field shielding effectiveness, highlighting their potential as lightweight, lead-free shielding components for diverse applications. Full article
(This article belongs to the Special Issue 3D Printing Polymers: Design and Applications)
Show Figures

Graphical abstract

18 pages, 2377 KB  
Article
Photo Crosslinkable Hybrid Hydrogels for High Fidelity Direct Write 3D Printing: Rheology, Curing Kinetics, and Bio-Scaffold Fabrication
by Riley Rohauer, Kory Schimmelpfennig, Perrin Woods, Rokeya Sarah, Ahasan Habib and Christopher L. Lewis
J. Funct. Biomater. 2026, 17(1), 30; https://doi.org/10.3390/jfb17010030 - 4 Jan 2026
Viewed by 366
Abstract
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was [...] Read more.
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was assessed. A custom direct-write (DW) 3D bioprinter was utilized to prepare hybrid hydrogel constructs and scaffolds. A control sample, which consisted of 4% w/v alginate and 4% w/v CMC, was prepared and evaluated in addition to three PEGDA (4.5, 6.5, and 10% w/v)-containing hybrid hydrogels. Rotational rheology was utilized to evaluate the thixotropic behavior of these materials. Filament fusion tests were employed to generate bilayer constructs of various pore sizes, providing metrics for the printability and diffusion rate of hydrogels post-extrusion. Printability indicates the shape fidelity of pore geometry, whereas diffusion rate represents material spreading after deposition. Curing kinetics of PEGDA-containing hydrogels were evaluated using photo-Differential Scanning Calorimetry (DSC) and photorheology. The Kamal model was fitted to photo-DSC results, enabling an assessment and comparison of the curing kinetics for PEGDA-containing hydrogels. Photorheological results highlight the increase in hydrogel stiffness concomitant with PEGDA content. The range of obtained complex moduli (G*) provides utility for the development of brain, kidney, and heart tissue (620–4600 Pa). The in situ UV irradiation of PEGDA-containing hydrogels improved the shape fidelity of printed bilayers and decreased filament diffusion rates. In situ UV irradiation enabled 10-layer scaffolds with 1 × 1 mm pore sizes to be printed. Ultimately, this study highlights the utility of PEGDA-containing hybrid hydrogels for high-resolution DW 3D bioprinting and potential application toward customizable tissue analogs. Full article
(This article belongs to the Special Issue 3D Bioprinting for Tissue Engineering and Regenerative Medicine)
Show Figures

Graphical abstract

17 pages, 2367 KB  
Article
Metals Oxides-Reinforced Epoxy Nanocomposites for Energy Applications: A First Comparative Study of the Structural and Optical Properties of SnO2 and ZnO Oxides
by Noura El Ghoubali, Adnane El Hamidi, Amine El Haimeur, Khalid Nouneh and Abdelkrim Maaroufi
Appl. Nano 2026, 7(1), 2; https://doi.org/10.3390/applnano7010002 - 31 Dec 2025
Viewed by 294
Abstract
This study aims to address a major challenge and find solutions for developing less expensive, lighter, and more efficient energy storage materials while remaining environmentally friendly. This work combines the study of the structural, morphological, and optical properties of epoxy nanocomposites containing ZnO [...] Read more.
This study aims to address a major challenge and find solutions for developing less expensive, lighter, and more efficient energy storage materials while remaining environmentally friendly. This work combines the study of the structural, morphological, and optical properties of epoxy nanocomposites containing ZnO and SnO2 and highlights the influence of oxide filler content on their energy storage performance. To this end, epoxy nanocomposites filled with metal oxides (ZnO and SnO2) prepared by extrusion, a simple, economical, and reliable industrial method, were studied and compared. The materials obtained are inexpensive, lightweight, and highly efficient, and can replace traditional glass-based systems in the energy sector. The results of XRD, SEM, and FTIR analyses show the absence of impurities, the stability of the structures in humid environments, and the homogeneity of the prepared films. They also indicate that the nature and charge content of the oxide integrated into the polymer matrix play a significant role in the properties of the nanocomposites. Optical measurements were used to determine the film thickness, the type of electronic transition, the band gap energy, and the Urbach energy. Based on the results obtained, the prepared nanocomposite films appear to be promising materials for energy-based optical applications. Full article
Show Figures

Figure 1

15 pages, 3458 KB  
Article
Development of a Novel Spinneret Design for Improved Melt Extrusion Performance: A Computational and Empirical Study
by Nereida Guadalupe Ortiz-Leyva, Giuseppe Romano, Jack Wilson, Jonathan C. Hunter and Alessandro De Rosis
Polymers 2026, 18(1), 115; https://doi.org/10.3390/polym18010115 - 30 Dec 2025
Viewed by 299
Abstract
This study presents a comprehensive evaluation of a novel spinneret design to enhance polymer melt extrusion performance in fibre spinning production. Computational fluid dynamics (CFD) simulations using ANSYS Polyflow 2024 R2 are employed to analyse flow behaviour, pressure distribution, and shear profiles within [...] Read more.
This study presents a comprehensive evaluation of a novel spinneret design to enhance polymer melt extrusion performance in fibre spinning production. Computational fluid dynamics (CFD) simulations using ANSYS Polyflow 2024 R2 are employed to analyse flow behaviour, pressure distribution, and shear profiles within the die. The novel design demonstrates improved flow uniformity, reduced pressure fluctuations, and minimized high-shear regions compared to a baseline spinneret. Experimental validation is conducted through side-by-side extrusion tests using polypropylene and thermoplastic polyurethane, confirming the simulation results. Throughput efficiency tests further reveal that the novel spin pack design significantly reduces residence times by 16% and accelerates purging cycles, indicating fewer polymer stagnation zones and enhanced material changeover efficiency. The computational parametric study conducted on PP shows that the novel design demonstrates improved flow uniformity and a significant reduction in operating pressure, achieving an 11% decrease in die-head pressure compared to the baseline spinneret. Additionally, the optimized geometry successfully minimizes high-shear regions while maintaining a manageable maximum shear rate increase of approximately 19% at the walls, which aids in preventing wall slip. These enhancements lead to lower extrusion pressures and more consistent processing across various polymers. By minimizing material waste and improving process reliability, the new spinneret design contributes to a more sustainable, cost-effective manufacturing process. Overall, these improvements provide a valuable framework for advancing extrusion technologies and optimizing spinneret geometries for high-performance polymer extrusion. The novelty of this work lies in introducing a spinneret geometry specifically optimized to minimize melt residence time, an outcome directly linked to reduced material degradation and waste. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 5539 KB  
Article
PEEK/PEI Polymer Blends for Fused Filament Fabrication: Processing, Properties, and Printability
by Conor McCrickard, Adrian Boyd, Krzysztof Rodzen, Edward Archer, Faisal Manzoor and Jawad Ullah
Polymers 2026, 18(1), 113; https://doi.org/10.3390/polym18010113 - 30 Dec 2025
Viewed by 383
Abstract
Printing with high-performance polymers such as polyether ether ketone (PEEK) and polyetherimide (PEI) presents issues regarding shrinkage and warpage due to elevated temperatures. One method highlighted to mitigate against this is through polymer blending. This study explores the development and characterization of PEEK [...] Read more.
Printing with high-performance polymers such as polyether ether ketone (PEEK) and polyetherimide (PEI) presents issues regarding shrinkage and warpage due to elevated temperatures. One method highlighted to mitigate against this is through polymer blending. This study explores the development and characterization of PEEK and PEI blends as filament for fused filament fabrication (FFF) in additive manufacturing. Filaments were produced via melt extrusion using PEEK/PEI weight ratios 100/0, 80/20, 70/30, 60/40, 50/50, 40/60, 20/80, and 0/100 (wt.%). The aim is to identify an optimum blend which enhances printability and maintains mechanical and thermal integrity. The extruded filaments were first characterized through differential scanning calorimetry (DSC) to determine miscibility with all ratios presenting a single glass transition temperature. Samples were then 3D-printed and assessed through mechanical testing, DSC, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PEEK/PEI 80/20 (wt.%) blend was recognized as the optimum blend for maintaining crystallinity (35%) as well as good mechanical properties, averaging ultimate tensile strengths (UTSs) of 75.6 MPa and a Young’s modulus of 1338 MPa. Thermal properties also improved while warpage reduced and printability improved. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

29 pages, 12546 KB  
Article
Enhancing Processability and Multifunctional Properties of Polylactic Acid–Graphene/Carbon Nanotube Composites with Cellulose Nanocrystals
by Siting Guo, Evgeni Ivanov, Vladimir Georgiev, Paul Stanley, Iza Radecka, Ahmed M. Eissa, Roberta Tolve and Fideline Tchuenbou-Magaia
Polymers 2026, 18(1), 99; https://doi.org/10.3390/polym18010099 - 29 Dec 2025
Viewed by 351
Abstract
The growing accumulation of plastic and electronic waste highlights the urgent need for sustainable and biodegradable polymers. However, developing intrinsically conductive biodegradable polymers remains challenging, particularly for packaging and sensing applications. Poly(lactic acid) (PLA) is intrinsically non-conductive, and enhancing its functionality without compromising [...] Read more.
The growing accumulation of plastic and electronic waste highlights the urgent need for sustainable and biodegradable polymers. However, developing intrinsically conductive biodegradable polymers remains challenging, particularly for packaging and sensing applications. Poly(lactic acid) (PLA) is intrinsically non-conductive, and enhancing its functionality without compromising structural integrity is a key research goal. In this study, PLA-based filaments were developed using melt extrusion, incorporating cellulose nanocrystals (CNCs), graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs), individually and in hybrid combinations with total filler contents between 1 and 5 wt%. The inclusion of CNC enhanced the dispersion of GNP and CNT, promoting the formation of interconnected conductive networks within the PLA matrix, allowing the percolation threshold to be reached at a lower fillers concentration. Hybrid formulations showed a balance melt strength and processability suitable for fused deposition modelling (FDM) 3D printing and prototypes successfully made. This study also provides the first systematic evaluation of temperature-dependent thermal conductivity of PLA-based composites at multiple temperatures (25, 5, and −20 °C), relevant to typical food and medical supply chains conditions. Full article
Show Figures

Graphical abstract

25 pages, 9154 KB  
Article
Optimization of Silicon Nitride Nanopowder Content in Polyamide 12 (PA12) in Extrusion-Based Additive Manufacturing
by Markos Petousis, Apostolos Korlos, Nikolaos Michailidis, Vassilis M. Papadakis, Apostolos Argyros, Nikolaos Mountakis, Maria Spyridaki, Athena Maniadi, Amalia Moutsopoulou and Nectarios Vidakis
Nanomaterials 2026, 16(1), 47; https://doi.org/10.3390/nano16010047 - 29 Dec 2025
Viewed by 396
Abstract
The use of polyamide-12 (PA12) thermoplastics in additive manufacturing (AM) is promising owing to their mechanical properties and printability. However, in load-bearing applications, improvements in mechanical strength and stiffness are sought after. Herein, the reinforcement efficiency of silicon nitride (Si3N4 [...] Read more.
The use of polyamide-12 (PA12) thermoplastics in additive manufacturing (AM) is promising owing to their mechanical properties and printability. However, in load-bearing applications, improvements in mechanical strength and stiffness are sought after. Herein, the reinforcement efficiency of silicon nitride (Si3N4) nanoparticles in the PA12 matrix was explored. The filler loading varied between 2.0 wt. % and 10.0 wt. %. The nanocomposites were extruded into filament using melt compounding for subsequent material extrusion (MEX) 3D printing. PA12/Si3N4 nanocomposites were examined for their thermal, rheological, morphological, and structural characteristics. For mechanical characterization, flexural, tensile, microhardness, and Charpy impact data were obtained. For structural examination, porosity and dimensional deviation were assessed. Scanning electron microscopy (SEM) was used to investigate morphology and chemical composition. The results indicate that Si3N4 nanopowder significantly improved all mechanical properties, with a greater than 20% increase in tensile strength and elastic modulus when compared to neat PA12. The structural characteristics were also improved. These findings indicate that Si3N4 nanoparticles provide a viable reinforcement filler for PA12 for use in lightweight, robust structural components fabricated using MEX AM. Furthermore, it can be stated that ceramic–polymer nanocomposites further improve the applicability of PA12, where high mechanical performance is required. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

14 pages, 4360 KB  
Article
Anisotropic Thermal Conductivity in Pellet-Based 3D-Printed Polymer Structures for Advanced Heat Management in Electrical Devices
by Michal Rzepecki and Andrzej Rybak
Polymers 2026, 18(1), 93; https://doi.org/10.3390/polym18010093 - 29 Dec 2025
Viewed by 246
Abstract
Efficient thermal management is critical for modern electrical and electronic devices, where increasing power densities and miniaturization demand advanced heat dissipation solutions. This study investigates anisotropic thermal conductivity in polymer structures fabricated via pellet-based fused granulate fabrication using polyamide 6 composite filled with [...] Read more.
Efficient thermal management is critical for modern electrical and electronic devices, where increasing power densities and miniaturization demand advanced heat dissipation solutions. This study investigates anisotropic thermal conductivity in polymer structures fabricated via pellet-based fused granulate fabrication using polyamide 6 composite filled with thermally conductive, electrically insulative mineral fillers. Three sample orientations were manufactured by controlling the printing path direction to manipulate filler alignment relative to heat flow. The microscopic analysis confirmed a flake-shaped filler orientation dependent on extrusion direction. Thermal conductivity measurements using a guarded heat flow meter revealed significant anisotropy: samples with fillers aligned parallel to heat flow exhibited thermal conductivity of 4.09 W/m·K, while perpendicular alignment yielded 1.21 W/m·K, representing a 238% enhancement and an anisotropy ratio of 3.4. The dielectric measurements showed modest electrical anisotropy with maintained low dielectric loss below 0.05 at 1 kHz, confirming the suitability of the investigated materials for electrical insulation applications. The presented results demonstrate that pellet-based fused granular fabrication uniquely enables in situ control of platelet filler orientation during printing, achieving unprecedented thermal anisotropy, high through-plane thermal conductivity, and excellent electrical insulation in directly 3D-printed polymer structures, offering a breakthrough approach for advanced thermal management in electrical devices. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 1222 KB  
Article
Investigation into the Reprocessability of Polycarbonate/Organoclay Nanocomposites
by Basak Tuna
Polymers 2026, 18(1), 67; https://doi.org/10.3390/polym18010067 - 26 Dec 2025
Viewed by 363
Abstract
With the rapid expansion in the use of nanomaterials, ensuring their reprocessability has become a critical consideration for the sustainable development of polymer-based nanocomposites. In this study, the effects of repetitive thermo-mechanical processing cycles on the properties of polycarbonate (PC)/organoclay nanocomposites, as well [...] Read more.
With the rapid expansion in the use of nanomaterials, ensuring their reprocessability has become a critical consideration for the sustainable development of polymer-based nanocomposites. In this study, the effects of repetitive thermo-mechanical processing cycles on the properties of polycarbonate (PC)/organoclay nanocomposites, as well as the impact of reactive extrusion of reprocessed PC/organoclay nanocomposites using a chain extender, were investigated for the first time. The nanocomposites were processed three times using a twin-screw extruder, and a multi-anhydride functional chain extender was incorporated to counteract the thermo-mechanical degradation observed after the third extrusion cycle. Morphological analysis indicated that the delamination of clay nanolayers within the polymer matrix was slightly enhanced with increasing extrusion cycles, while the addition of the chain extender further promoted nanoclay exfoliation. Despite the improved clay dispersion in PC, both rheological and tensile measurements revealed the detrimental effects of repeated reprocessing on the nanocomposites. The chain extender effectively mitigated this degradation by relinking cleaved polymer chains; consequently, the complex viscosity and storage modulus at 0.1 Hz of the three-times-extruded nanocomposite increased by 248% and 426%, respectively, following chain extender incorporation. The effectiveness of the chain extender was further evidenced by a 27% enhancement in tensile strength. The glass transition temperatures of the samples were not significantly affected by either the extrusion cycles or the addition of the chain extender. The thermal stability of the nanocomposites decreased with increasing numbers of extrusion cycles; however, the incorporation of the chain extender imparted enhanced resistance to thermal degradation, as confirmed by thermogravimetric analysis. Full article
(This article belongs to the Special Issue Advances in Recycling and Reuse of Polymers)
Show Figures

Figure 1

41 pages, 12532 KB  
Systematic Review
A Meta-Synthesis of Review Studies on Wood–Polymer Composites: Mapping the Current Research Landscape
by Marius Nicolae Baba and Mirela Camelia Baba
Polymers 2026, 18(1), 63; https://doi.org/10.3390/polym18010063 - 25 Dec 2025
Viewed by 360
Abstract
Wood–polymer composites (WPCs) consistently garner considerable attention owing to their material versatility and sustainability, resulting in numerous review studies across diverse disciplines. Nonetheless, since a comprehensive synthesis that consolidates these disparate reviews is lacking, this study performs a meta-synthesis of review articles focused [...] Read more.
Wood–polymer composites (WPCs) consistently garner considerable attention owing to their material versatility and sustainability, resulting in numerous review studies across diverse disciplines. Nonetheless, since a comprehensive synthesis that consolidates these disparate reviews is lacking, this study performs a meta-synthesis of review articles focused on WPCs employing a science-mapping approach enhanced by CiteSpace software. A systematic search of the Web of Science Core Collection (last updated in June 2025) was conducted, yielding 51 review-type articles selected using PRISMA screening guidelines. Network-based co-citation, clustering, and keyword analyses reveal that recent WPC research centers on three interconnected areas: (i) reinforcement and interfacial engineering, (ii) processing–structure–property relationships, and (iii) sustainability-focused design involving recycling, fire safety, thermal pretreatment, and PCM-based thermal management. Sixteen author/reference clusters and nine keyword clusters highlight well-defined knowledge communities on durability and fire safety, nano- and bio-based reinforcements, recycled and bioplastic matrices, and advanced manufacturing techniques such as co-extrusion, flat-pressing, 3D printing, and wood–polymer impregnation. Timeline and burst analyses show that mechanical performance remains the primary focus, while emerging areas include recycled/waste-derived polymers, cellulose micro- and nanofibers, moisture-resistant hybrids, and wood-based additive manufacturing for construction applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 3329 KB  
Article
Application of Hot-Melt Extrusion in Modifying the Solubility of Lycopene
by Anna Kulawik, Kamil Wdowiak, Maciej Kulawik, Natalia Rosiak, Magdalena Paczkowska-Walendowska, Judyta Cielecka-Piontek and Przemysław Zalewski
Appl. Sci. 2026, 16(1), 17; https://doi.org/10.3390/app16010017 - 19 Dec 2025
Viewed by 196
Abstract
Lycopene is a potent antioxidant carotenoid with significant health-promoting properties. However, its practical application is limited by poor water solubility. This study aimed to enhance lycopene dispersibility through the development of solid dispersions obtained by hot-melt extrusion (HME). Polymeric carriers composed of polyvinylpyrrolidone [...] Read more.
Lycopene is a potent antioxidant carotenoid with significant health-promoting properties. However, its practical application is limited by poor water solubility. This study aimed to enhance lycopene dispersibility through the development of solid dispersions obtained by hot-melt extrusion (HME). Polymeric carriers composed of polyvinylpyrrolidone K30 (PVP K30), phosphatidylcholine, and xylitol were designed to achieve optimal processing conditions and thermal stability. Nine formulations containing 10–30% lycopene were prepared and characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), and dispersibility testing. TGA confirmed the thermal stability of lycopene at the extrusion temperature (150 °C). DSC and XRPD analyses indicated partial amorphization of lycopene in the extrudates, while FT-IR spectra revealed molecular interactions between lycopene and carrier components, particularly hydroxyl and carbonyl groups. Among the tested systems, the formulation containing PVP K30 and xylitol without phosphatidylcholine exhibited the highest dispersibility (1.0484 mg/mL after 3 h). Dispersibility decreased with increasing lycopene content. These findings demonstrate that HME is an effective technique for producing partially amorphous lycopene dispersions with improved dispersibility, and that polymer–polyol systems are particularly promising carriers for enhancing lycopene bioavailability. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: From Discovery to Applications)
Show Figures

Figure 1

23 pages, 5287 KB  
Article
Development and Characterization of Biodegradable Polymer Filaments for Additive Manufacturing
by Tomáš Balint, Jozef Živčák, Radovan Hudák, Marek Schnitzer, Miroslav Kohan, Maria Danko, Richard Staško, Peter Szedlák, Marek Jałbrzykowski, Katarzyna Leszczyńska, Pavol Alexy, Ivana Bírová, Zuzana Vanovčanová and Martina Culenová
Polymers 2025, 17(24), 3328; https://doi.org/10.3390/polym17243328 - 17 Dec 2025
Viewed by 559
Abstract
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, [...] Read more.
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, microbiological, biofilm formation, and electron microscopy analyses. The complexity of these tests aimed to determine the potential of the developed materials for biomedical applications, particularly in the field of scaffold fabrication. At the initial stage, three types of filaments (technical designations 111, 145, and 146) were produced using Fused Filament Fabrication (FFF) technology. These filaments were based on a PLA/PHB matrix with varying types and concentrations of plasticizers. Standardized destructive tensile and compressive mechanical tests were conducted using an MTS Insight 1 kN testing system equipped with an Instron 2620-601 extensometer. Among the tested samples, the filament labeled 111, composed of PLA/PHB thermoplastic starch and a plasticizer, exhibited the most favorable mechanical performance, with a Young’s modulus of elasticity of 4.63 MPa for 100% infill. The filament labeled 146 had a Young’s modulus of elasticity of 4.53 MPa for 100% infill and the material labeled 145 had a Young’s modulus of elasticity of 1.45 MPa for 100% infill. Microbiological assessments were performed to evaluate the capacity of bacteria and fungi to colonize the material surfaces. During bacterial activity assessment, we observed biofilm formation on the examined sample surfaces of each material from the smooth and rough sides. The colony-forming units (CFUs) increased directly with the exposure time. For all samples from each material, the Log10 (CFU) value reached above 9.41 during 72 h of incubation for the activity of each type of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans). Scanning electron microscopy provided insight into the surface quality of the material and revealed its local quality and purity. Surface defects were eliminated by this method. Overall, the results indicate that the designed biodegradable filaments, especially formulation 111, have promising properties for the development of scaffolds intended for hard tissue replacement and could also be suitable for regenerative applications in the future after achieving the desired biological properties. Full article
Show Figures

Figure 1

Back to TopTop