Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = polymer + nanofiller composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5774 KiB  
Article
Data-Driven Prediction of Polymer Nanocomposite Tensile Strength Through Gaussian Process Regression and Monte Carlo Simulation with Enhanced Model Reliability
by Pavan Hiremath, Subraya Krishna Bhat, Jayashree P. K., P. Krishnananda Rao, Krishnamurthy D. Ambiger, Murthy B. R. N., S. V. Udaya Kumar Shetty and Nithesh Naik
J. Compos. Sci. 2025, 9(7), 364; https://doi.org/10.3390/jcs9070364 - 14 Jul 2025
Viewed by 438
Abstract
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and [...] Read more.
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and 24 processing routes was constructed from the literature. GPR, coupled with Monte Carlo sampling across 2000 randomized iterations, was employed to capture nonlinear dependencies and uncertainty propagation within the dataset. The model achieved a mean coefficient of determination (R2) of 0.96, RMSE of 12.14 MPa, MAE of 7.56 MPa, and MAPE of 31.73% over 2000 Monte Carlo iterations, outperforming conventional models such as support vector machine (SVM), regression tree (RT), and artificial neural network (ANN). Sensitivity analysis revealed the dominant influence of Carbon Nanotubes (CNT) weight fraction, matrix tensile strength, and surface modification methods on predictive accuracy. The findings demonstrate the efficacy of the proposed GPR framework for accurate, reliable prediction of composite mechanical properties under data-scarce conditions, supporting informed material design and optimization. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

17 pages, 3907 KiB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Viewed by 420
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

15 pages, 3993 KiB  
Article
Study on the Electrospinning Fabrication of PCL/CNTs Fiber Membranes and Their Oil–Water Separation Performance
by Desheng Feng, Yanru Li, Yanjun Zheng, Jinlong Chen, Xiaoli Zhang, Kun Li, Junfang Shen and Xiaoqin Guo
Polymers 2025, 17(12), 1705; https://doi.org/10.3390/polym17121705 - 19 Jun 2025
Viewed by 396
Abstract
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. [...] Read more.
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. A highly uniform diameter distribution of the PCL fiber was achieved by using the dichloromethane/dimethylformamide (DCM/DMF) composite solvent with volume ratio of 7:3, as well as a PCL concentration of ca. 17 wt.%. The optimal electrospinning parameters were identified as an applied voltage of 18 kV and a syringe pump flow rate of 1 mL·h−1, which collectively ensured uniform fiber morphology under the specified processing conditions. The critical threshold concentration of CNTs in the composite system was determined to be 1 wt.%, above which the composite fibers exhibit a significant increase in diameter heterogeneity. Both pristine PCL fibrous membranes and PCL/CNTs composite membranes demonstrated excellent and stable oil–water separation performance, with separation efficiencies consistently around 90%. Notably, no significant attenuation in separation efficiency was observed after ten consecutive separation cycles. Furthermore, when incorporating 0.5 wt.% CNTs, the PCL/CNT composite membranes exhibited a 20% increase in separation flux for heavy oils compared to pristine PCL membranes. Additionally, CNTs, as a prototypical class of nanofillers for polymer matrix reinforcement, can potentially enhance the mechanical properties of composite films, thus effectively prolonging their service life. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

16 pages, 2699 KiB  
Article
Investigation of the Mechanical and Thermal Properties of MWCNT/SiC-Filled Ethylene–Butene–Terpolymer Rubber
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Pengxiang Bai, Yuqi Wang, Zuohui Liu, Simin Zhu and Dan Qiao
Crystals 2025, 15(6), 539; https://doi.org/10.3390/cryst15060539 - 5 Jun 2025
Cited by 1 | Viewed by 811
Abstract
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that [...] Read more.
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that the inherent properties of nanofillers themselves, the interfacial bonding force between fillers and the matrix, and the uniform dispersibility of nanofillers in the polymer matrix are the most significant factors for enhancing the performance of rubber nanocomposites. This study systematically investigated the synergistic enhancement effect of silicon carbide (SiC) and multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of ethylene–butene–terpolymer (EBT) composites. By optimizing the addition amount of fillers and improving the interfacial bonding between fillers and the matrix, the influence of filler content on the properties of composites was studied. The results demonstrate that the addition of SiC and MWCNTs significantly improved the storage modulus, tensile strength, hardness, and thermal stability of the composites. In terms of mechanical properties, the tensile strength of the composites increased from 6.68 MPa of pure EBT to 8.46 MPa, and the 100% modulus increased from 2.14 MPa to 3.81 MPa. Moreover, hardness was significantly enhanced under the reinforcement of SiC/CNT fillers. In terms of thermal stability, the composites exhibited excellent resistance to deformation at high temperatures. Through the analysis of the mechanical and thermal properties of the composites, the synergistic enhancement mechanism between SiC and MWCNTs was revealed. The research results provide a theoretical basis for the design and engineering applications of high-performance ethylene–butylene rubber composites. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

38 pages, 1212 KiB  
Review
Insights into the Development of Corrosion Protection Coatings
by Monmi Saikia, Trisha Dutta, Niteen Jadhav and Deep J. Kalita
Polymers 2025, 17(11), 1548; https://doi.org/10.3390/polym17111548 - 2 Jun 2025
Viewed by 1684
Abstract
This review article focuses on providing an accumulated knowledge on state-of-the-art composite polymer coating technologies that are studied for corrosion protection. A specific focus has been given to epoxy resin-based composite systems, considering their wide use due to remarkable chemical resistance, excellent adhesion [...] Read more.
This review article focuses on providing an accumulated knowledge on state-of-the-art composite polymer coating technologies that are studied for corrosion protection. A specific focus has been given to epoxy resin-based composite systems, considering their wide use due to remarkable chemical resistance, excellent adhesion to substrate, thermal stability, and mechanical strength. The addition of various functional polymers to the epoxy matrix has spurred significant advancements in the prevention of corrosion. Light has been shed on the epoxy resin composite systems that are produced by blending with functional polymers like conductive polymers, hydrophobic polymers, etc., and nanofillers. In many cases, the formation of a passive layer at the metal/polymer interface was aided by the addition of such a functional polymer and nanofiller to the epoxy matrix. As a result, corrosive ions are prevented from penetrating by the physical barrier that composite coatings provide. Comparable blends of epoxy and polyamide, epoxy and polyester, and epoxy/poly(vinyl alcohol) and epoxy/polyurethane have superior adhesion, wear, barrier, and anticorrosion properties due to the fine dispersion of nanocarbon and inorganic nanoparticles. The several strategies used to prevent metals from corroding are covered in this review article. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Coatings and Surfaces)
Show Figures

Figure 1

20 pages, 6431 KiB  
Article
Reactive Nanofiller Reinforced Hybrid Polyurea: The Role of CNC in Material Preparation and Characterization
by Kadir Duman, Madalina Ioana Necolau, Elena Iuliana Bîru, Anamaria Zaharia and Horia Iovu
Polymers 2025, 17(11), 1527; https://doi.org/10.3390/polym17111527 - 30 May 2025
Viewed by 573
Abstract
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The [...] Read more.
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The tensile strength increased by up to 16.4%, and the Young modulus improved by approximately 29% compared to the pure polyurea. When CNC was functionalized with isocyanate, the interfacial bonding was further improved, and superior dispersion and load transfer were achieved. At 1.5% CNC-ISO loading, the modulus increased by approximately 128% compared to the unmodified matrix. Comprehensive analyses using FT-IR, XPS, DSC, TGA, DMA, tensile testing, and SEM showed that CNC-ISO films not only achieved higher tensile strength and better thermal stability but also formed a denser polymer network as evidenced by the increased crosslinking density. These findings highlight the importance of tailored nanofiller modification to create advanced polyurea composites with enhanced performance suitable for demanding protective and structural applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

13 pages, 12111 KiB  
Article
Surface-Functionalized Glass Nanoparticles with Algae-Derived Bio-Binder (ADBB) as Reinforcing Agent for Epoxy/ADBB Matrix Nanocomposite
by Abhijeet Mali, Torti Uwaike, Philip Agbo, Shobha Mantripragada, Lijun Wang and Lifeng Zhang
Polymers 2025, 17(10), 1334; https://doi.org/10.3390/polym17101334 - 14 May 2025
Viewed by 386
Abstract
The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based [...] Read more.
The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based nanocomposites, typically reinforced with surface-functionalized nanofillers (e.g., glass nanoparticles (GNPs)) by petroleum-based silane coupling agents. Herein, we explored the use of ADBB as an innovative surface-modifying agent to functionalize GNPs and evaluated the potential of ADBB surface-functionalized GNPs (ADBB-GNPs) as a reinforcing agent in the epoxy/ADBB matrix nanocomposite by comparing them to pristine GNPs and (3-aminopropyl) triethoxysilane (APTES) (a popular silane coupling agent) surface-modified GNPs (APTES-GNPs). The surface functionalization of GNPs with ADBB was carried out and characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Material performance including tensile, flexural, and Izod impact properties and thermal properties of the resulting epoxy/ADBB nanocomposites were investigated by corresponding ASTM mechanical test standards and thermogravimetric analysis (TGA). Our results revealed that the ADBB is a sustainable and effective surface-modifying agent that can functionalize GNPs. The obtained ADBB-GNPs significantly improved the mechanical performance of the epoxy/ADBB system at ultra-low loading (0.5 wt.%) by up to 42% and the maximum decomposition rate temperature increased from 419 °C to 422 °C, both of which outperformed APTES-GNPs. This research sheds light on developing sustainable surface-modifying agents for nanofillers to create high-performance sustainable polymer composite materials. Full article
Show Figures

Figure 1

54 pages, 38719 KiB  
Review
Recent Advances in the Hydrogen Gas Barrier Performance of Polymer Liners and Composites for Type IV Hydrogen Storage Tanks: Fabrication, Properties, and Molecular Modeling
by Omar Dagdag and Hansang Kim
Polymers 2025, 17(9), 1231; https://doi.org/10.3390/polym17091231 - 30 Apr 2025
Viewed by 1234
Abstract
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to [...] Read more.
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to minimize hydrogen gas permeation. It examines key polymeric materials, such as polyamide 6 (PA6) and high-density polyethylene (HDPE), and emerging nanofiller reinforcements, such as graphene and montmorillonite clay. Additionally, it discusses manufacturing methods in relation to their effects on liner integrity and permeability. Molecular modeling techniques, especially molecular dynamics simulations, are emphasized as powerful tools for understanding hydrogen transport mechanisms and optimizing the interactions between polymers and fillers. Despite these notable advancements, challenges remain in achieving ultra-low hydrogen gas permeability, long-term stability, and scalable production methods. Future research should focus on developing multifunctional hybrid fillers, enhancing computational modeling frameworks, and designing novel polymer architectures specifically tailored for hydrogen storage applications. Full article
Show Figures

Graphical abstract

7 pages, 2659 KiB  
Proceeding Paper
Rheological Properties of Functionalized Smart Resins for Transport Applications
by Giorgia De Piano, Raffaele Longo, Liberata Guadagno and Roberto Pantani
Eng. Proc. 2025, 90(1), 6; https://doi.org/10.3390/engproc2025090006 - 7 Mar 2025
Viewed by 708
Abstract
Hydrogen is a promising alternative to fossil fuels, but its efficient storage presents significant challenges. Polymer composite vessels, especially those made from carbon fiber-reinforced plastic (CFRP), are gaining attention, due to their high strength-to-weight ratio for storing compressed or cryogenic hydrogen. The latest [...] Read more.
Hydrogen is a promising alternative to fossil fuels, but its efficient storage presents significant challenges. Polymer composite vessels, especially those made from carbon fiber-reinforced plastic (CFRP), are gaining attention, due to their high strength-to-weight ratio for storing compressed or cryogenic hydrogen. The latest Type V tanks, which lack internal liners, rely solely on fiber composites for both structural integrity and gas containment, enhancing the storage volume-to-weight ratio and supporting recycling. However, this linerless design faces the challenge of preventing gas permeation. Epoxy resins, widely used in aerospace carbon fiber-reinforced composites (CFRCs), offer excellent processability and load-bearing capabilities. The addition of high-aspect-ratio nanofillers can enhance the gas barrier properties, which are essential for preventing hydrogen leakage, while also improving the mechanical, electrical, and thermal properties of the nanocomposites. This study focuses on epoxy-based composites with expanded graphite, aiming to optimize their physical properties and processing for Type V tanks, using a rheological framework to evaluate their processability and multifunctionality in transport applications. Full article
Show Figures

Figure 1

38 pages, 30937 KiB  
Review
Surface-Modification Strategy to Produce Highly Anticorrosive Ti3C2Tx MXene-Based Polymer Composite Coatings: A Mini-Review
by Shufang Zhang, Guoqin Zhang, Liang Fang, Zhiheng Wang, Fang Wu, Gaobin Liu, Qirui Wang and Hongen Nian
Materials 2025, 18(3), 653; https://doi.org/10.3390/ma18030653 - 1 Feb 2025
Cited by 5 | Viewed by 1689
Abstract
MXenes are a group of novel two-dimensional (2D) materials with merits such as large specific surface area, abundant surface-functional groups, high chemical activity, excellent mechanical properties, high hydrophilicity, and good compatibility with various polymers. In recent years, many novel high-performance organic anticorrosion coatings [...] Read more.
MXenes are a group of novel two-dimensional (2D) materials with merits such as large specific surface area, abundant surface-functional groups, high chemical activity, excellent mechanical properties, high hydrophilicity, and good compatibility with various polymers. In recent years, many novel high-performance organic anticorrosion coatings using MXenes as nanofillers have been reported and have attracted widespread attention. As the first successfully prepared MXene material, Ti3C2Tx is the most extensively studied and typical member of the MXene family. Therefore, it is taken as the representative of its family, and the status of Ti3C2Tx MXene/epoxy resin (EP) and MXene/waterborne polyurethane (WPU) polymer anticorrosive composite coatings is reviewed. Firstly, the structure, characteristics, and main synthesis methods of MXenes are briefly introduced. Then, the latest progress of four surface-modification strategies to improve the dispersion, compatibility, stability, and anti-aggregation properties of MXenes, namely functionalization grafting, orientation regulation, heterostructure nanocomposite design, and stabilization and greening treatment, are analyzed and summarized. Finally, the current challenges and future opportunities regarding MXene-based corrosion-resistant organic composite coatings are discussed prospectively. Full article
(This article belongs to the Special Issue Corrosion Behavior and Mechanical Properties of Metallic Materials)
Show Figures

Figure 1

15 pages, 4642 KiB  
Article
Synergistic Enhancement Effect of Polytetrafluoroethylene and WSe2 on the Tribological Performance of Polyetherimide Composites
by Fulin Tu, Bin Wang, Simo Zhao, Mingrui Liu, Jiangye Zheng, Zewen Li, Chengyang Hu, Tao Jiang and Qunchao Zhang
Lubricants 2025, 13(2), 44; https://doi.org/10.3390/lubricants13020044 - 22 Jan 2025
Cited by 1 | Viewed by 957
Abstract
To address the issue of high wear of polymer composites during friction, WSe2 nanofillers were incorporated into the polymer matrix as a reinforcing phase to enhance heat transfer and improve the composites’ wear resistance. Tannic acid (TA) was grafted onto the surface [...] Read more.
To address the issue of high wear of polymer composites during friction, WSe2 nanofillers were incorporated into the polymer matrix as a reinforcing phase to enhance heat transfer and improve the composites’ wear resistance. Tannic acid (TA) was grafted onto the surface of WSe2 through high-energy ball milling, which facilitated the exfoliation of the nanofillers and improved their interfacial compatibility with the matrix material. Tribological experiments revealed that adding 5 wt% TA-WSe2 reduced the friction coefficient and volumetric wear rate to 0.0065 and 8.7 × 10−4 μm3/N·m, respectively, representing reductions of 98% and 94% compared to pure PEI. The TA-WSe2 not only served as a reinforcing phase to enhance heat transfer but also facilitated the timely dissipation of heat generated during friction. Additionally, it formed strong interfacial bonds with both PEI and PTFE, allowing the applied load to be efficiently distributed throughout the composite material. This study offers a practical approach for the functionalization of WSe2 and the development of ternary composite materials for tribological applications. Full article
Show Figures

Figure 1

26 pages, 18048 KiB  
Article
Detonation Nanodiamond Soot—A Structurally Tailorable Hybrid Graphite/Nanodiamond Carbon-Based Material
by Tikhon S. Kurkin, Oleg V. Lebedev, Evgeny K. Golubev, Andrey K. Gatin, Victoria V. Nepomnyashchikh, Valery Yu. Dolmatov and Alexander N. Ozerin
Nanomaterials 2025, 15(1), 56; https://doi.org/10.3390/nano15010056 - 1 Jan 2025
Viewed by 1227
Abstract
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was [...] Read more.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates. The phase composition of the NDS nanoparticles was studied using X-ray diffraction, Raman spectroscopy, electron diffraction, transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The NDS particles were found to comprise both diamond and graphite phases. The ratio of diamond to graphite phase content varied depending on the NDS explosive precursor, while the graphite phase content had a significant impact on the electrical conductivity of NDS. The study of the mechanical and tribological characteristics of polymer nanocomposites, modified with the selected NDS particles, indicated that NDS of various types can serve as a viable set of model nanofillers. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 2937 KiB  
Article
Mechanochemical Functionalization of Oxidized Carbon Black with PLA
by Aida Kiani, Mattia Naddeo, Federica Santulli, Valentina Volpe, Mina Mazzeo and Maria Rosaria Acocella
Molecules 2025, 30(1), 94; https://doi.org/10.3390/molecules30010094 - 29 Dec 2024
Viewed by 1227
Abstract
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid [...] Read more.
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification. At the same time, the influence of f-CB as a nanofiller of residual PLA waste was evaluated using differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), demonstrating its stabilization effect during melt extrusion by preserving the molecular weight of the starting polymer. On the other hand, the dynamic mechanical analysis (DMA) revealed that the addition of f-CB did not negatively affect the mechanical properties of the resulting composite. In conclusion, mechanochemistry was used as a sustainable and unique strategy for the upcycling of waste PLA into a PLA-based composite stabilized by CB functionalized with the waste PLA itself. Full article
Show Figures

Figure 1

16 pages, 4561 KiB  
Article
Characterization of a Low-Shrinkage, Light-Curable Dental Nanocomposite Containing 3-(Methacryloyloxy) Propyltrimethoxysilane (MPTMS) as a Coupling Agent for Dental Restorative Materials
by Ammar Ali Hussein, Mohammed Ali Mutar and Anton Ficai
J. Compos. Sci. 2024, 8(12), 530; https://doi.org/10.3390/jcs8120530 - 15 Dec 2024
Viewed by 929
Abstract
This project intends to develop restorative dental nanomaterial composites that are light-curable and show minimal shrinkage. Such nanocomposites are improved via employing 2,2-bis[4(2-hydroxy-3-methacryloylpropyloxy) phenyl] propane (Bis-GMA) with the unsaturated monomers bisphenol A dimethacrylate, N,N-dimethylacetamide (DMA), ethylene glycol (EG), and methacrylic acid (MAA) and [...] Read more.
This project intends to develop restorative dental nanomaterial composites that are light-curable and show minimal shrinkage. Such nanocomposites are improved via employing 2,2-bis[4(2-hydroxy-3-methacryloylpropyloxy) phenyl] propane (Bis-GMA) with the unsaturated monomers bisphenol A dimethacrylate, N,N-dimethylacetamide (DMA), ethylene glycol (EG), and methacrylic acid (MAA) and loading them with SiO2, ZrO2, or hydroxyapatite (HA) as nanofillers of 10–30 nm. The first step was to create and characterize these novel dental materials. 1,6-hexanediol methacrylate (HDOMA) was used as a cross-linking agent. The composites based on Bis-GMA and HDOMA with a mass ratio of 40/20 were loaded with 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 wt.% of the fillers mentioned above. Photopolymerization was induced by a system of photoinitiation based on Camphorquinone/2- (Diethyl amino) ethyl acrylate (CQ/DMAEMA). The nanofillers were treated with 3-(methacryloyloxy) propyltrimethoxysilane (MPTMS) at a ratio of 1.5, 2.5, as well as 3.5%wt. compared to the filler) and a silane coupling agent to increase bonding between the phases and reduce the tendency of agglomerations. SEM images displayed the adhesion between the matrix and the three functionalized nanofillers. FTIR was used to prove the functionalization of the nanofillers by silanization with MPTMS. According to the polymer matrix, two different series of dental nanocomposites were obtained. The compressive strength of dental nanocomposites treated with 2.5 wt.% MPTMS was considerably more significant than those treated with 1.5 and 3.5%wt. MPTMS. Compressive strength (CS) and volumetric shrinkage (VS) were examined as examples of physicochemical properties. This improved nanocomposite was tested for its suitability as a dental restorative material and found to have low shrinkage and high strength. Full article
Show Figures

Figure 1

40 pages, 18711 KiB  
Article
Testing, Experimental Design, and Numerical Analysis of Nanomechanical Properties in Epoxy Hybrid Systems Reinforced with Carbon Nanotubes and Graphene Nanoparticles
by Giovanni Spinelli, Rosella Guarini, Todor Batakliev, Liberata Guadagno and Marialuigia Raimondo
Polymers 2024, 16(23), 3420; https://doi.org/10.3390/polym16233420 - 5 Dec 2024
Viewed by 1466
Abstract
Hybrid nanocomposites incorporating multiple fillers are gaining significant attention due to their ability to enhance material performance, offering superior properties compared to traditional monophase systems. This study investigates hybrid epoxy-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanosheets (GNs), introduced at [...] Read more.
Hybrid nanocomposites incorporating multiple fillers are gaining significant attention due to their ability to enhance material performance, offering superior properties compared to traditional monophase systems. This study investigates hybrid epoxy-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanosheets (GNs), introduced at two different weight concentrations of the mixed filler, i.e., 0.1 wt% and 0.5 wt% which are, respectively, below and above the Electrical Percolation Threshold (EPT) for the two binary polymer composites that solely include one of the two nanofillers, with varying MWCNTs:GNs ratios. Mechanical properties, such as contact depth, hardness, and reduced modulus, were experimentally assessed via nanoindentation, while morphological analysis supported the mechanical results. A Design of Experiments (DoE) approach was utilized to evaluate the influence of filler concentrations on the composite’s mechanical performance, and Response Surface Methodology (RSM) was applied to derive a mathematical model correlating the filler ratios with key mechanical properties. The best and worst-performing formulations, based on hardness and contact depth results, were further investigated through detailed numerical simulations using a multiphysics software. After validation considering experimental data, the simulations provided additional insights into the mechanical behavior of the hybrid composites. This work aims to contribute to the knowledge base on hybrid composites and promote the use of computational modeling techniques for optimizing the design and mechanical performance of advanced materials. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Graphical abstract

Back to TopTop