Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = polyhedral cages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 925 KiB  
Article
Bi-Symmetric Polyhedral Cages with Nearly Maximally Connected Faces and Small Holes
by Bernard Piette
Symmetry 2025, 17(6), 940; https://doi.org/10.3390/sym17060940 - 12 Jun 2025
Viewed by 403
Abstract
Polyhedral cages (p-cages) provide a good description of the geometry of some families of artificial protein cages. In this paper we identify p-cages made out of two families of equivalent polygonal faces/protein rings, where each face has at least four neighbours and where [...] Read more.
Polyhedral cages (p-cages) provide a good description of the geometry of some families of artificial protein cages. In this paper we identify p-cages made out of two families of equivalent polygonal faces/protein rings, where each face has at least four neighbours and where the holes are contributed by at most four faces. We start the construction from a planar graph made out of two families of equivalent nodes. We construct the dual of the solid corresponding to that graph, and we tile its faces with regular or nearly regular polygons. We define an energy function describing the amount of irregularity of the p-cages, which we then minimise using a simulated annealing algorithm. We analyse over 600,000 possible geometries but restrict ourselves to p-cages made out of faces with deformations not exceeding 10%. We then present graphically some of the most promising geometries for protein nanocages. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

11 pages, 2072 KiB  
Article
Thermal Insulating and Mechanically Strong Polyimide Aerogel Composites Reinforced by Polyhedral Oligomeric Silsesquioxane-Grafted Carbon Nanotubes
by Yating Wang, Ruirui Yang, Zhe Zhang, Zicheng Shan and Liying Zhang
Polymers 2025, 17(3), 332; https://doi.org/10.3390/polym17030332 - 25 Jan 2025
Cited by 2 | Viewed by 1183
Abstract
In the ship industry, developing thermal insulation materials with exceptional high-temperature resistance, structural stability and light weight is essential. Herein, polyimide (PI) composite aerogels were synthesized. Carbon nanotubes (CNTs) introduced cross-linking structures within the aerogel matrix, effectively reducing shrinkage and forming micrometer-scale pores. [...] Read more.
In the ship industry, developing thermal insulation materials with exceptional high-temperature resistance, structural stability and light weight is essential. Herein, polyimide (PI) composite aerogels were synthesized. Carbon nanotubes (CNTs) introduced cross-linking structures within the aerogel matrix, effectively reducing shrinkage and forming micrometer-scale pores. Furthermore, the rigid cage-like structure of polyhedral oligomeric silsesquioxane (POSS) generated additional nanoscale pores. This multiscale pore structure enhanced both compressive strength and thermal insulation properties. The PI-CNT-POSS composite aerogel with a 2 wt% CNT content (PI-CP2) demonstrated outstanding overall performance, with compressive strength, modulus and thermal conductivity values of 167.7 KPa, 360.3 Kpa and 40.6 mW/(m·K), respectively, possessing remarkable advantages over the neat PI aerogel. Consequently, this PI composite aerogel can be used as a promising material for heat management in complex environments. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 374 KiB  
Article
Randomly Formed Polyhedral Cages
by Árpád Lukács and Bernard M. A. G. Piette
Axioms 2025, 14(2), 83; https://doi.org/10.3390/axioms14020083 - 23 Jan 2025
Viewed by 883
Abstract
Polyhedral cages (or p-cages) are a generalisation of the polyhedron surface: they are objects in three-dimensional space consisting of planar polygons attached along shared edges but allowed to have holes and thus edges not shared by two polygons. The main motivation driving the [...] Read more.
Polyhedral cages (or p-cages) are a generalisation of the polyhedron surface: they are objects in three-dimensional space consisting of planar polygons attached along shared edges but allowed to have holes and thus edges not shared by two polygons. The main motivation driving the research into the properties of p-cages is the structure of artificial protein cages such as the TRAP cage recently discovered by the Heddle group. Recently, the main activity concerned p-cages with faces being slightly deformed from regular and a certain level of uniformity (geometric or merely combinatorial) among the faces. In the present work, we examine typical randomly formed p-cages without any prescribed symmetries. Full article
Show Figures

Graphical abstract

20 pages, 731 KiB  
Article
Bi-Symmetric Polyhedral Cages with Maximally Connected Faces and Small Holes
by Bernard Piette and Árpad Lukács
Symmetry 2025, 17(1), 101; https://doi.org/10.3390/sym17010101 - 10 Jan 2025
Cited by 2 | Viewed by 758
Abstract
Polyhedral cages (p-cages) describe the geometry of some families of artificial protein cages. We identify the p-cages made out of families of equivalent polygonal faces such that the faces of one family have five neighbors and P1 edges, while those of the [...] Read more.
Polyhedral cages (p-cages) describe the geometry of some families of artificial protein cages. We identify the p-cages made out of families of equivalent polygonal faces such that the faces of one family have five neighbors and P1 edges, while those of the other family have six neighbors and P2 edges. We restrict ourselves to polyhedral cages where the holes are adjacent to four faces at most. We characterize all p-cages with a deformation of the faces, compared to regular polygons, not exceeding 10%. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

14 pages, 12209 KiB  
Article
Evolution of the Structure and Morphology of Dual-Linker ZIF-301-eIm
by Ping Wei, Boyao Xie, Jiang Wang, Yanjun Wu, Qi Shi and Jinxiang Dong
Molecules 2024, 29(14), 3395; https://doi.org/10.3390/molecules29143395 - 19 Jul 2024
Cited by 2 | Viewed by 1129
Abstract
Few studies have reported on the continuous evolution of dual-linker zeolitic imidazolate frameworks’ (ZIFs) structure and morphology during the crystal growth process. Herein, we report the synthesis of a novel ZIF material with CHA topology (ZIF-301-eIm) via the combination of a small-sized 2-ethylimidazole [...] Read more.
Few studies have reported on the continuous evolution of dual-linker zeolitic imidazolate frameworks’ (ZIFs) structure and morphology during the crystal growth process. Herein, we report the synthesis of a novel ZIF material with CHA topology (ZIF-301-eIm) via the combination of a small-sized 2-ethylimidazole (eIm) with the large-sized 5-chlorobenzimidazole ligand. A series of derivative materials with distinct structures and morphologies were obtained via two pathways: (1) insufficient amount of eIm with prolonged crystallization time (pathway A) and (2) sufficient amount of eIm with prolonged crystallization time (pathway B). Various characterization techniques revealed the continuous evolution of structure and morphology during the crystal growth process. Insufficient amount of eIm and crystallization time (crystallization pathway A) led to ZIF-301-eIm derivatives with defective and open structures alongside an aggregated morphology of nanoparticles. Prolonging the crystallization time allowed small-sized eIm ligands to gradually fill into the framework, resulting in the formation of ZIF-301-eIm-A5 characterized by complete but dense structures with a perfect polyhedral morphology. Remarkably, a sufficient amount of eIm during synthesis (crystallization pathway B) formed ZIF-301-eIm-B1 with a similar structure and morphology to ZIF-301-eIm-A5 in just 1 day. ZIF-301-eIm-B3, with intact, dense structures, exhibits superior acetone/butanol separation performance compared to ZIF-301-eIm-A3 due to small pore windows and large cages facilitating selective adsorption of acetone through exclusion separation. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

17 pages, 4688 KiB  
Article
Novel Reactive Polyhedral Oligomeric Silsesquioxane-Reinforced and Toughened Epoxy Resins for Advanced Composites
by Weibo Liu, Caiyun Wang, Yu Feng, Yongfeng Chen, Liqiang Wan, Farong Huang, Zuozhen Liu, Jianhua Qian and Weiping Liu
Polymers 2024, 16(13), 1877; https://doi.org/10.3390/polym16131877 - 1 Jul 2024
Cited by 2 | Viewed by 1697
Abstract
Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three [...] Read more.
Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three reactive polyhedral oligomeric silsesquioxanes with a thiol group (OMPPS), a carboxyl group (OCOPS), and an epoxy group (OGCPS) were synthesized and characterized. They were utilized as modifiers to toughen 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH)/4,4′-methylenebis(2-ethylaniline) (MOEA) (epoxy resin) with different molar ratios to obtain hybrid resins named OMPPS-EP-i, OCOPS-EP-j, and OGCPS-EP-k. The effects of the amount of modifier added and the length of the organic chain on the cage structure on various properties of the hybrid resins were investigated. The results show that all three modifiers show good compatibility with the epoxy resin. The hybrid resins have a low viscosity at 45~85 °C and can be cured at a low temperature (110 °C). The cured hybrid resins display improved toughness. Typically, the critical stress intensity factor (KIC) and impact strength of OGCPS-EP-0.6-C are 2.54 MPa∙m−1/2 and 19.33 kJ∙m−2, respectively, which increased by 58.75% and 22.48% compared with the pristine epoxy resin, respectively. In addition, the glass transition temperature and flexural strength of the hybrid resins are basically unchanged. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

22 pages, 693 KiB  
Article
Biequivalent Planar Graphs
by Bernard Piette
Axioms 2024, 13(7), 437; https://doi.org/10.3390/axioms13070437 - 28 Jun 2024
Cited by 3 | Viewed by 983
Abstract
We define biequivalent planar graphs, which are a generalisation of the uniform polyhedron graphs, as planar graphs made out of two families of equivalent nodes. Such graphs are required to identify polyhedral cages with geometries suitable for artificial protein cages. We use an [...] Read more.
We define biequivalent planar graphs, which are a generalisation of the uniform polyhedron graphs, as planar graphs made out of two families of equivalent nodes. Such graphs are required to identify polyhedral cages with geometries suitable for artificial protein cages. We use an algebraic method, which is followed by an algorithmic method, to determine all such graphs with up to 300 nodes each with valencies ranging between three and six. We also present a graphic representation of every graph found. Full article
(This article belongs to the Special Issue Advancements in Applied Mathematics and Computational Physics)
Show Figures

Figure 1

18 pages, 7634 KiB  
Review
Biomedical Applications of Sulfonylcalix[4]arene-Based Metal–Organic Supercontainers
by Ya-Wen Fan, Meng-Xue Shi, Zhenqiang Wang, Feng-Rong Dai and Zhong-Ning Chen
Molecules 2024, 29(6), 1220; https://doi.org/10.3390/molecules29061220 - 8 Mar 2024
Cited by 3 | Viewed by 1961
Abstract
Coordination cages sustained by metal–ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal–organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an [...] Read more.
Coordination cages sustained by metal–ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal–organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an endo cavity and multiple exo cavities, are emerging as a new family of coordination cages. The well-defined built-in multiple binding domains of MOSCs allow the efficient encapsulation of guest molecules, especially for drug delivery. Here, we critically discuss the design strategy, and, most importantly, the recent advances in research surrounding cavity-specified host–guest chemistry and biomedical applications of MOSCs. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 14466 KiB  
Article
Non-Covalent Functionalization of Graphene Oxide with POSS to Improve the Mechanical Properties of Epoxy Composites
by Ting Xu, Yumin Jiao, Zhenglian Su, Qin Yin, Lizhou An and Yefa Tan
Polymers 2023, 15(24), 4726; https://doi.org/10.3390/polym15244726 - 16 Dec 2023
Cited by 5 | Viewed by 2155
Abstract
Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π–π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent [...] Read more.
Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π–π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent functionalization of GO (POSS-GO). The POSS-GO-reinforced EP (POSS-GO/EP) composite material is prepared using the casting molding process. The surface morphology of GO before and after modification and its peel dispersion in EP are examined. Furthermore, the mechanical properties, cross-sectional morphology, and reinforcement mechanism of POSS-GO/EP are thoroughly examined. The results show that the cage-like skeleton structure of POSS is embedded between the GO layers, increasing the spacing between the GO layers and leading to a steric hindrance effect, which effectively prevents their stacking and aggregation and improves the dispersion performance of GO. In particular, the 0.4 phr POSS-GO/EP sample shows the best mechanical properties. This is because, on the one hand, POSS-GO is uniformly dispersed in the EP matrix, which can more efficiently induce crack deflection and bifurcation and can also cause certain plastic deformations in the EP matrix. On the other hand, the POSS-GO/EP fracture cross-section with a stepped morphology of interlaced “canine teeth” shape is rougher and more uneven, leading to more complex crack propagation paths and greater energy consumption. Moreover, the mechanical meshing effect between the rough POSS-GO surface and the EP matrix is stronger, which is conducive to the transfer of interfacial stress and the strengthening and toughening effects of POSS-GO. Full article
(This article belongs to the Special Issue Molecular Simulation of Polymers)
Show Figures

Figure 1

16 pages, 5618 KiB  
Article
Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group
by Evgenii Yu. Matveev, Olga S. Dontsova, Varvara V. Avdeeva, Alexey S. Kubasov, Andrey P. Zhdanov, Svetlana E. Nikiforova, Lyudmila V. Goeva, Konstantin Yu. Zhizhin, Elena A. Malinina and Nikolay T. Kuznetsov
Molecules 2023, 28(24), 8073; https://doi.org/10.3390/molecules28248073 - 13 Dec 2023
Cited by 2 | Viewed by 1592
Abstract
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2− and [2-B10H9O(CH2)5N3]2− of the closo [...] Read more.
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2− and [2-B10H9O(CH2)5N3]2− of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2′-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

15 pages, 4103 KiB  
Article
A Study of the Degradation Mechanism of Ladder-like Polyhedral Oligomeric Silsesquioxane via Fourier Transform Infrared Spectroscopy
by Shengdong Xiao, Xuemei Cui and Jude O. Iroh
Fire 2023, 6(11), 429; https://doi.org/10.3390/fire6110429 - 9 Nov 2023
Cited by 3 | Viewed by 2770
Abstract
As a result of global warming, fire outbreaks are becoming a common occurrence. There is, therefore, the need for an effective, low-cost and environmentally friendly fire-retardant material. Amine-terminated polyhedral oligomeric silsesquioxane, ATL-POSS, is a low-cost, water-soluble, fire-retardant material based on aminosilane coupling agents. [...] Read more.
As a result of global warming, fire outbreaks are becoming a common occurrence. There is, therefore, the need for an effective, low-cost and environmentally friendly fire-retardant material. Amine-terminated polyhedral oligomeric silsesquioxane, ATL-POSS, is a low-cost, water-soluble, fire-retardant material based on aminosilane coupling agents. Because of its solubility in water, it can serve as a general-purpose fire retardant. The ATL-POSS nanoparticles reported in this paper have high char retentions of about 75 and 54% in nitrogen and air atmospheres, respectively. Differential scanning calorimetry (DSC) was used to determine the phase transition temperatures. It was shown that ATL-POSS is an amorphous material. The thermal stability and rate of decomposition of POSS was determined by using thermogravimetric analysis (TGA). The TGA derivative curves (DTA) show that the degradation of ladder-like POSS occurred in multiple stages and that the rate of degradation is affected by the heating rate. The mechanism of decomposition of ATL-POSS was determined by using Fourier transform infrared spectroscopy, FTIR. The FTIR technique was chosen for this study because of its accessibility and ability to distinguish ladder-like POSS from the cage-type POSS structures. The FTIR spectra showed that the -Si-O-Si- cyclic structure was the predominant structure of POSS. By analyzing the FTIR spectra of the thermally treated POSS residues, obtained at the specified test temperatures, the detailed degradation mechanism of POSS was inferred. It was shown that the terminal silanol group was degraded at test temperatures below 400 °C. Silica was shown to be the final product of the pyrolysis of POSS. The presence of the FTIR transmission peaks at 1000 and 1100 cm−1, due to asymmetric vertical and horizontal stretching vibrations of the Si-O-Si, respectively, was the key evidence used to infer the ladder-like structure of POSS. Full article
(This article belongs to the Special Issue Recent Developments in Flame Retardant Materials)
Show Figures

Figure 1

13 pages, 3370 KiB  
Article
A “Green” Stirring Plasma Functionalization Strategy for Controllable Oxygen-Containing Functional Groups on Octa-Methyl POSS Microstructure
by Xiao Chen, Kevin Magniez, Pengchao Zhang, Wojciech Kujawski, Zhiqiang Chen and Ludovic F. Dumée
Nanomaterials 2023, 13(20), 2770; https://doi.org/10.3390/nano13202770 - 16 Oct 2023
Cited by 1 | Viewed by 1984
Abstract
The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing [...] Read more.
The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing to the limitations of wet-chemistry approaches, which frequently result in the generation of hazardous chemical by-products. In this paper, a “green” stirring plasma strategy is presented for the functionalization of octa-methyl POSS sub-micron particles into designable oxygen-containing functional groups using a low-pressure oxygen plasma from combined continuous wave and pulsed (CW+P) modes. Plasma from oxygen gas with CW mode offers highly oxygen-reactive species to continuously etch and activate the surface of the POSS. The resulting pulsed plasma assists in grafting more reactive oxygen species onto the active methyl groups of the POSS to form specific oxygen-containing functional groups including hydroxyl and carboxyl. A precise control of nearly one hydroxyl or one carboxyl group at the corner of the cage structure of the POSS is demonstrated, without damaging the core. Therefore, the plasma process discussed in this work is suggested by the authors as controllable fundamental research for the surface functionalization of sub-micron particles, promoting a more environmentally friendly pathway for the preparation of designable fillers. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Graphical abstract

29 pages, 756 KiB  
Article
Near-Miss Bi-Homogenous Symmetric Polyhedral Cages
by Bernard Piette and Árpad Lukács
Symmetry 2023, 15(9), 1804; https://doi.org/10.3390/sym15091804 - 21 Sep 2023
Cited by 4 | Viewed by 1703
Abstract
Following the discovery of an artificial protein cage with a paradoxical geometry, we extend the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages, for which all the faces are equivalent, and define bi-homogeneous symmetric polyhedral cages made of two different types of [...] Read more.
Following the discovery of an artificial protein cage with a paradoxical geometry, we extend the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages, for which all the faces are equivalent, and define bi-homogeneous symmetric polyhedral cages made of two different types of faces, where all the faces of a given type are equivalent. We parametrise the possible connectivity configurations for such cages, analytically derive p-cages that are regular, and numerically compute near-symmetric p-cages made of polygons with 6 to 18 edges and with deformation not exceeding 10%. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Nature-Inspired, Bio-Based Materials)
Show Figures

Figure 1

15 pages, 12858 KiB  
Article
Catalyzing Benzoxazine Polymerization with Titanium-Containing POSS to Reduce the Curing Temperature and Improve Thermal Stability
by Xiaoyi Sun, Qixuan Fu, Pei Dai, Caili Zhang and Riwei Xu
Molecules 2023, 28(14), 5450; https://doi.org/10.3390/molecules28145450 - 17 Jul 2023
Cited by 5 | Viewed by 1855
Abstract
Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized [...] Read more.
Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized on the Ti-Ph-POSS cage could form covalent bonds with the N or O atoms on polybenzoxazine, improving the thermal stability of PBZ. The catalytic activity of the Ti-Ph-POSS/BZ mixtures was assessed and identified through 1H nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) analyses, while thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to determine the thermal properties of the composite. It was found that PBZ exhibited a higher glass transition temperature (Tg) and better thermal stability when Ti-Ph-POSS was added. The curing behavior of the Ti-Ph-POSS/BZ mixtures showed that the initial (Ti) and peak (Tp) curing temperatures sharply decreased as the content of Ti-Ph-POSS and the heating rate increased. The curing kinetics of these Ti-Ph-POSS/BZ systems were analyzed using the Kissinger method, and the morphology of Ti-Ph-POSS/PBZ was determined via scanning electron microscopy (SEM). It was found that the Ti-Ph-POSS particles were well distributed in the composites. When the content exceeded 2 wt%, several Ti-Ph-POSS particles could not react with benzoxazine and were only dispersed within the PBZ matrix, resulting in aggregation of the Ti-Ph-POSS molecules. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

52 pages, 37229 KiB  
Review
Combining Two Types of Boron in One Molecule (To the 60th Anniversary of the First Synthesis of Carborane)
by Igor B. Sivaev
Chemistry 2023, 5(2), 834-885; https://doi.org/10.3390/chemistry5020059 - 11 Apr 2023
Cited by 3 | Viewed by 3091
Abstract
This review is an attempt to bring together the data from the literature on the synthesis and properties of icosahedral carborane derivatives, in which exo-polyhedral three- and four-coordinated boron substituents are attached directly to the carborane cage through boron–carbon or boron–boron bonds. [...] Read more.
This review is an attempt to bring together the data from the literature on the synthesis and properties of icosahedral carborane derivatives, in which exo-polyhedral three- and four-coordinated boron substituents are attached directly to the carborane cage through boron–carbon or boron–boron bonds. Various classes of compounds are considered, including carboranyl aryl boranes, boronic acids and their derivatives, boroles, diazaboroles, etc. Particular attention is paid to carborane-fused heterocycles containing boron atoms. Full article
(This article belongs to the Special Issue Recent Advances in Modern Inorganic Chemistry: Featured Reviews)
Show Figures

Figure 1

Back to TopTop