Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Syntheses
3.2.1. Synthesis of Compounds 1 and 2
3.2.2. Synthesis of Compounds 3–7
3.2.3. Cobalt(II) Complexation Using Compound 2
3.3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivaev, I.B.; Bregadze, V.I.; Sjöberg, S. Chemistry of closo-Dodecaborate Anion [B12H12]2−: A Review. Collect. Czechoslov. Chem. Commun. 2002, 67, 679–727. [Google Scholar] [CrossRef]
- Mahfouz, N.; Abi Ghaida, F.; El Hajj, Z.; Diab, M.; Floquet, S.; Mehdi, A.; Naoufal, D. Recent Achievements on Functionali-zation within closo-Decahydrodecaborate [B10H10]2− Clusters. ChemistrySelect 2022, 7, e202200770. [Google Scholar] [CrossRef]
- Las’kova, Y.N.; Serdyukov, A.A.; Sivaev, I.B. Boron-Containing Coumarins (Review). Russ. J. Inorg. Chem. 2023. [Google Scholar] [CrossRef]
- Sivaev, I.B. Functional Group Directed B–H Activation of Polyhedral Boron Hydrides by Transition Metal Complexes (Review). Russ. J. Inorg. Chem. 2021, 66, 1289–1342. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Naoufal, D. Fifty years of the closo-decaborate anion chemistry. Collect. Czechoslov. Chem. Commun. 2010, 75, 1149–1199. [Google Scholar] [CrossRef]
- Kubasov, A.; Turishev, E.; Polyakova, I.; Matveev, E.; Zhizhin, K.; Kuznetsov, N. The method for synthesis of 2-sulfanyl closo-decaborate anion and its S-alkyl and S-acyl derivatives. J. Organomet. Chem. 2017, 828, 106–115. [Google Scholar] [CrossRef]
- Gabel, D.; Moller, D.; Harfst, S.; Roesler, J.; Ketz, H. Synthesis of S-alkyl and S-acyl derivatives of mercaptoundecahydrododecaborate, a possible boron carrier for neutron capture therapy. Inorg. Chem. 1993, 32, 2276–2278. [Google Scholar] [CrossRef]
- Kusaka, S.; Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of optically active dodecaborate-containing l-amino acids for BNCT. Appl. Radiat. Isot. 2011, 69, 1768–1770. [Google Scholar] [CrossRef]
- Kubasov, A.; Matveev, E.; Turyshev, E.; Polyakova, I.; Nichugovskiy, A.; Zhizhin, K.; Kuznetsov, N. Synthesis and stability studies of derivatives of the 2-sulfanyl-closo-decaborate anion [2-B10H9SH]2−. Inorg. Chim. Acta 2018, 477, 277–283. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic addition of amino acid esters to nitrilium derivatives of closo-decaborate anion. Mendeleev Commun. 2021, 31, 201–203. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Selivanov, N.A.; Bykov, A.Y.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Karpechenko, N.Y.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Primary Amine Nucleophilic Addition to Nitrilium Closo-Dodecaborate [B12H11NCCH3]−: A Simple and Effective Route to the New BNCT Drug Design. Int. J. Mol. Sci. 2021, 22, 13391. [Google Scholar] [CrossRef] [PubMed]
- Laskova, J.; Ananiev, I.; Kosenko, I.; Serdyukov, A.; Stogniy, M.; Sivaev, I.; Grin, M.; Semioshkin, A.; Bregadze, V.I. Nucleophilic addition reactions to nitrilium derivatives [B12H11NCCH3]− and [B12H11NCCH2CH3]−. Synthesis and structures of closo-dodecaborate-based iminols, amides and amidines. Dalton Trans. 2022, 51, 3051–3059. [Google Scholar] [CrossRef] [PubMed]
- Peymann, T.; Lork, E.; Gabel, D. Hydroxoundecahydro-closo-dodecaborate (2−) as a nucleophile. Preparation and structural characterization of O-alkyl and O-acyl derivatives of hydroxoundecahydro-closo-dodecaborate (2−). Inorg. Chem. 1996, 35, 1355. [Google Scholar] [CrossRef] [PubMed]
- Sivaev, I.B.; Sjo¨berg, S.; Bregadze, V.I.; Gabel, D. Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2−. Tetrahedron Lett. 1999, 40, 3451–3454. [Google Scholar] [CrossRef]
- Haeckel, O.; Preetz, W. Reaktionen von [B12H12–n(OH)n]2−, n = 1, 2 mit Säuredichloriden und Kristallstruktur von Cs2[1,2-B12H10(ox)]·CH3OH. Z. Anorg. Allg. Chem. 1998, 624, 1089–1094. [Google Scholar] [CrossRef]
- Sivaev, I.B. Nitrogen heterocyclic salts of polyhedral borane anions: From ionic liquids to energetic materials. Chem. Heterocycl. Compd. 2017, 53, 638–658. [Google Scholar] [CrossRef]
- Yan, Y.; Rentsch, D.; Battaglia, C.; Remhof, A. Synthesis, stability and Li-ion mobility of nanoconfined Li2B12H12. Dalton Trans. 2017, 46, 12434–12437. [Google Scholar] [CrossRef]
- Yan, J.; Yang, W.; Zhang, Q.; Yan, Y. Introducing borane clusters into polymeric frameworks: Architecture, synthesis, and applications. Chem. Commun. 2020, 56, 11720–11734. [Google Scholar] [CrossRef]
- Dash, B.P.; Satapathy, R.; Maguire, J.A.; Hosmane, N.S. Polyhedral boron clusters in materials science. New J. Chem. 2011, 35, 1955–1972. [Google Scholar] [CrossRef]
- Ould-Amara, S.; Petit, E.; Granier, D.; Yot, P.G.; Demirci, U.B. Alkaline aqueous solution of sodium decahydro-closo-decaborate Na2B10H10 as liquid anodic fuel. Renew. Energy 2019, 143, 551–557. [Google Scholar] [CrossRef]
- Goszczyński, T.M.; Fink, K.; Boratyński, J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin. Biol. Ther. 2018, 18, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Zharkov, D.O.; Yudkina, A.V.; Riesebeck, T.; Loshchenova, P.S.; Mostovich, E.A.; Dianov, G.L. Boron-containing nucleosides as tools for boron-neutron capture therapy. Am. J. Cancer Res. 2021, 11, 4668. [Google Scholar] [PubMed]
- Ali, F.; Hosmane, N.S.; Zhu, Y. Boron Chemistry for Medical Applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, J.; Zhang, Y.; Liu, J.; van der Veen, S.; Duttwyler, S. The closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity. Chem.—Eur. J. 2018, 24, 10364–10371. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.; Uchman, M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 213684. [Google Scholar] [CrossRef]
- Cebula, J.; Fink, K.; Boratyński, J.; Goszczyński, T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 214940. [Google Scholar] [CrossRef]
- Kaniowski, D.; Kulik, K.; Suwara, J.; Ebenryter-Olbińska, K.; Nawrot, B. Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int. J. Mol. Sci. 2022, 23, 12190. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Garaev, T.M.; Breslav, N.V.; Burtseva, E.I.; Grebennikova, T.V.; Zhdanov, A.P.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. JBIC J. Biol. Inorg. Chem. 2022, 27, 421–429. [Google Scholar] [CrossRef]
- Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 8, 977–992. [Google Scholar] [CrossRef]
- Orlova, A.V.; Kondakov, N.N.; Kimel, B.G.; Kononov, L.O.; Kononova, E.G.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel derivatives of closo-dodecaborate anion with azido group at the terminal position of the spacer. Appl. Organomet. Chem. 2006, 21, 98–100. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Limarev, I.P.; Nichugovskii, A.I.; Bykov, A.Y.; Zhizhin, K.Y.; Kuznetsov, N.T. Derivatives of closo-Decaborate Anion with Polyamines. Russ. J. Inorg. Chem. 2019, 64, 977–983. [Google Scholar] [CrossRef]
- Kikuchi, S.; Kanoh, D.; Sato, S.; Sakurai, Y.; Suzuki, M.; Nakamura, H. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J. Control. Release 2016, 237, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Laskova, J.; Kozlova, A.; Ananyev, I.; Bregadze, V.; Semioshkin, A. 2-Hydroxyethoxy-closo-undecahydrododecaborate(12)([B12H11CH2CH2OH]2−) as a new prospective reagent for the preparation of closo-dodecaborate building blocks and thymidine and 2-deoxyuridine conjugates linked via short spacer. J. Organomet. Chem. 2017, 834, 64–72. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Levitskaya, V.Y.; Novikov, S.S.; Nichugovskii, A.I.; Sokolov, I.E.; Lukashevich, S.V.; Kubasov, A.S.; Zhizin, K.Y.; Kuznetsov, N.T. Synthesis and Study of Derivatives of the [B10H10]2− Anion with Primary Amines. Russ. J. Inorg. Chem. 2022, 67, 1928–1938. [Google Scholar] [CrossRef]
- Serdyukov, A.; Kosenko, I.; Druzina, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021, 946–947, 121905. [Google Scholar] [CrossRef]
- Imperio, D.; Muz, B.; Azab, A.K.; Fallarini, S.; Lombardi, G.; Panza, L. A Short and Convenient Synthesis of closo-Dodecaborate Sugar Conjugates. Eur. J. Org. Chem. 2019, 2019, 7228–7232. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Novikov, S.S.; Levitskaya, V.Y.; Nichugovskiy, A.I.; Sokolov, I.E.; Zhizhin, K.Y.; Kuznetsov, N.T. Interaction of the anion [2-B10H9O(CH2)4O]− with secondary amines. Fine Chem. Technol. 2022, 17, 427–438. [Google Scholar] [CrossRef]
- Semioshkin, A.; Nizhnik, E.; Godovikov, I.; Starikova, Z.; Bregadze, V. Reactions of oxonium derivatives of [B12H12]2− with amines: Synthesis and structure of novel B12-based ammonium salts and amino acids. J. Organomet. Chem. 2007, 692, 4020–4028. [Google Scholar] [CrossRef]
- Nakamura, H.; Kikuchi, S.; Kawai, K.; Ishii, S.; Sato, S. closo-Dodecaborate-conjugated human serum albumins: Preparation and in vivo selective boron delivery to tumor. Pure Appl. Chem. 2018, 90, 745–753. [Google Scholar] [CrossRef]
- Novopashina, D.S.; Vorobyeva, M.A.; Lomzov, A.A.; Silnikov, V.N.; Venyaminova, A.G. Terminal Mono- and Bis-Conjugates of Oligonucleotides with Closo-Dodecaborate: Synthesis and Physico-Chemical Properties. Int. J. Mol. Sci. 2020, 22, 182. [Google Scholar] [CrossRef]
- Meschaninova, M.I.; Novopashina, D.S.; Semikolenova, O.A.; Silnikov, V.N.; Venyaminova, A.G. Novel Convenient Approach to the Solid-Phase Synthesis of Oligonucleotide Conjugates. Molecules 2019, 24, 4266. [Google Scholar] [CrossRef] [PubMed]
- Vorobyeva, M.A.; Dymova, M.A.; Novopashina, D.S.; Kuligina, E.V.; Timoshenko, V.V.; Kolesnikov, I.A.; Taskaev, S.Y.; Richter, V.A.; Venyaminova, A.G. Tumor Cell-Specific 2′-Fluoro RNA Aptamer Conjugated with Closo-Dodecaborate as A Potential Agent for Boron Neutron Capture Therapy. Int. J. Mol. Sci. 2021, 22, 7326. [Google Scholar] [CrossRef] [PubMed]
- Druzina, A.A.; Grammatikova, N.E.; Zhidkova, O.B.; Nekrasova, N.A.; Dudarova, N.V.; Kosenko, I.D.; Grin, M.A.; Bregadze, V.I. Synthesis and Antibacterial Activity Studies of the Conjugates of Curcumin with closo-Dodecaborate and Cobalt Bis(Dicarbollide) Boron Clusters. Molecules 2022, 27, 2920. [Google Scholar] [CrossRef] [PubMed]
- Avdeeva, V.V.; Polyakova, I.N.; Churakov, A.V.; Vologzhanina, A.V.; Malinina, E.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Complexation and exopolyhedral substitution of the terminal hydrogen atoms in the decahydro-closo-decaborate anion in the presence of cobalt(II). Polyhedron 2019, 162, 65–70. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Vologzhanina, A.V.; Malinina, E.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Boron Cluster Anions [B10X10]2− (X = H, Cl) in Manganese(II) Complexation with 2,2′-Bipyridyl. Russ. J. Coord. Chem. 2019, 45, 295–300. [Google Scholar] [CrossRef]
- Donaldson, D.L.; Jayaweera, D. Effective solar prosumer identification using net smart meter data. Int. J. Electr. Power Energy Syst. 2020, 118, 105823. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Malinina, E.A.; Sivaev, I.B.; Bregadze, V.I.; Kuznetsov, N.T. Silver and Copper Complexes with closo-Polyhedral Borane, Carborane and Metallacarborane Anions: Synthesis and X-ray Structure. Crystals 2016, 6, 60. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Avdeeva, V.V.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Effect of Nature of Substituents on Coordination Properties of Mono- and Disubstituted Derivatives of Boron Cluster Anions [BnHn]2− (n = 10, 12) and Carboranes with exo-Polyhedral B–X Bonds (X = N, O, S, Hal). Inorganics 2022, 10, 238. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Avdeeva, V.V.; Kubasov, A.S.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions. Inorganics 2023, 11, 144. [Google Scholar] [CrossRef]
- Malinina, E.A.; Goeva, L.V.; Buzanov, G.A.; Avdeeva, V.V.; Efimov, N.N.; Kozerozhets, I.V.; Kuznetsov, N.T. Synthesis and Physicochemical Properties of Binary Cobalt(II) Borides. Thermal Reduction of Precursor Complexes [CoLn][B10H10] (L = H2O, n = 6; N2H4, n = 3). Russ. J. Inorg. Chem. 2019, 64, 1325–1334. [Google Scholar] [CrossRef]
- Malinina, E.A.; Myshletsov, I.I.; Buzanov, G.A.; Kubasov, A.S.; Kozerozhets, I.V.; Goeva, L.V.; Nikiforova, S.E.; Avdeeva, V.V.; Zhizhin, K.Y.; Kuznetsov, N.T. A New Approach to the Synthesis of Nanocrystalline Cobalt Boride in the Course of the Thermal Decomposition of Cobalt Complexes [Co(DMF)6]2+ with Boron Cluster Anions. Molecules 2023, 28, 453. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, J.; Khaleghian, M.; Hanifehpour, Y.; Mirtamizdoust, B.; Joo, S.W. Lead (II)-Azido Metal–Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation. Nanomaterials 2022, 12, 2257. [Google Scholar] [CrossRef] [PubMed]
- Matveev, E.Y.; Retivov, V.M.; Razgonyaeva, G.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Cleavage of the cyclic substituent in the [B10H9O2C4H8]−, [B10H9OC4H8]−, and [B10H9OC5H10]− anions upon the interaction with negatively charged N-nucleophiles. Russ. J. Inorg. Chem. 2011, 56, 1549. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Polach, S.A.; Goh, S.-K.; Archibong, E.F.; Marynick, D.S. Copper and Silver Complexes Containing Organic Azide Ligands: Syntheses, Structures, and Theoretical Investigation of [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN (Where Pz = Pyrazolyl and 1-Ad = 1-Adamantyl). Inorg. Chem. 2000, 39, 3894–3901. [Google Scholar] [CrossRef] [PubMed]
- Barz, M.; Herdtweck, E.; Thiel, W.R. Transition Metal Complexes with Organoazide Ligands: Synthesis, Structural Chemistry, and Reactivity. Angew. Chem. Int. Ed. 1998, 37, 2262–2265. [Google Scholar] [CrossRef]
- Grant, L.N.; Carroll, M.E.; Carroll, P.J.; Mindiola, D.J. An Unusual Cobalt Azide Adduct That Produces a Nitrene Species for Carbon–Hydrogen Insertion Chemistry. Inorg. Chem. 2016, 55, 7997–8002. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.; Das, A.; Zheng, S.-L.; Reibenspies, J.H.; Powers, D.C.; Betley, T.A. C–H Amination Mediated by Cobalt Organoazide Adducts and the Corresponding Cobalt Nitrenoid Intermediates. J. Am. Chem. Soc. 2020, 142, 11232–11243. [Google Scholar] [CrossRef] [PubMed]
- Dash, C.; Wang, G.; Muñoz-Castro, A.; Ponduru, T.T.; Zacharias, A.O.; Yousufuddin, M.; Dias, H.V.R. Organic Azide and Auxiliary-Ligand-Free Complexes of Coinage Metals Supported by N-Heterocyclic Carbenes. Inorg. Chem. 2019, 59, 2188–2199. [Google Scholar] [CrossRef]
- Hanna, T.A.; Baranger, A.M.; Bergman, R.G. Addition of Organic 1,3-Dipolar Compounds across a Heterobinuclear Bond between Early and Late Transition Metals: Mechanism of Nitrogen Loss from an Organoazido Complex to Form a Bridging Imido Complex. Angew. Chem. Int. Ed. 1996, 35, 653–655. [Google Scholar] [CrossRef]
- Waterman, R.; Hillhouse, G.L. η2-Organoazide Complexes of Nickel and Their Conversion to Terminal Imido Complexes via Dinitrogen Extrusion. J. Am. Chem. Soc. 2008, 130, 12628–12629. [Google Scholar] [CrossRef]
- Proulx, G.; Bergman, R.G. Synthesis and Structure of a Terminal Metal Azide Complex: An Isolated Intermediate in the Formation of Imidometal Complexes from Organic Azides. J. Am. Chem. Soc. 1995, 117, 6382–6383. [Google Scholar] [CrossRef]
- Proulx, G.; Bergman, R.G. Synthesis, Structures, and Kinetics and Mechanism of Decomposition of Terminal Metal Azide Complexes: Isolated Intermediates in the Formation of Imidometal Complexes from Organic Azides. Organometallics 1996, 15, 684–692. [Google Scholar] [CrossRef]
- Fickes, M.G.; Davis, W.M.; Cummins, C.C. Isolation and Structural Characterization of the Terminal Mesityl Azide Complex V(N3Mes)(I)(NRArF)2 and Its Conversion to a Vanadium(V) Imido Complex. J. Am. Chem. Soc. 1995, 117, 6384–6385. [Google Scholar] [CrossRef]
- Giannini, L.; Guillemot, G.; Solari, E.; Floriani, C.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. Olefin Rearrangements Assisted by a Molecular Metal−Oxo Surface: The Chemistry of Calix[4]arene Tungsten(IV). J. Am. Chem. Soc. 1999, 121, 2797–2807. [Google Scholar] [CrossRef]
- Harman, W.H.; Lichterman, M.F.; Piro, N.A.; Chang, C.J. Well-Defined Vanadium Organoazide Complexes and Their Conversion to Terminal Vanadium Imides: Structural Snapshots and Evidence for a Nitrene Capture Mechanism. Inorg. Chem. 2012, 51, 10037–10042. [Google Scholar] [CrossRef] [PubMed]
- Reinholdt, A.; Kwon, S.; Jafari, M.G.; Gau, M.R.; Caroll, P.J.; Lawrence, C.; Gu, J.; Baik, M.-H.; Mindiola, D.J. An Isolable Azide Adduct of Titanium(II) Follows Bifurcated Deazotation Pathways to an Imide. J. Am. Chem. Soc. 2021, 144, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, L.; Harrowfield, J.; Miyamae, H.; Patrick, J.; Skelton, B.; Soudi, A.; White, A. Lewis-Base Adducts of Lead(II) Compounds. XIV. Synthetic and Structural Studies of Some 2:1 Adducts of 2,2′-Bipyridine With Lead(II) Oxoanion Salts. Aust. J. Chem. 1996, 49, 1111–1119. [Google Scholar] [CrossRef]
- Rubin-Preminger, J.M.; Kozlov, L.; Goldberg, I. Hydrogen-bonding and π–π stacking interactions in aquachloridobis (1, 10-phenanthroline) cobalt (II) chloride dichloridobis (1, 10-phenanthroline) cobalt (II) hexahydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2008, 64, m83. [Google Scholar] [CrossRef]
- Muley, A.; Karumban, K.S.; Kumbhakar, S.; Giri, B.; Maji, S. High phenoxazinone synthase activity of two mononuclear cis-dichloro cobalt(ii) complexes with a rigid pyridyl scaffold. New J. Chem. 2021, 46, 521–532. [Google Scholar] [CrossRef]
- Bruker, S. SAINT Program, v. 8.40A; Bruker AXS Inc.: Madison, WI, USA, 2019.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339. [Google Scholar] [CrossRef]
Bond | Length, Å | Bond | Length, Å |
---|---|---|---|
Pb–O1 | 2.443(7) | Pb2–O3 | 2.562(7) |
Pb–N4 | 2.636(8) | Pb2–N11 | 2.616(8) |
Pb–N5 | 2.571(9) | Pb2–N12 | 2.648(8) |
Pb–N6 | 2.637(8) | Pb2–N13 | 2.662(8) |
Pb–N7 | 2.572(8) | Pb2–N14 | 2.550(8) |
Pb–B6 | 3.593(11) | Pb2–B16 | 3.524(13) |
Pb–H6 | 3.7752(14) | Pb2–H16 | 3.6561(14) |
Pb–B9 | 3.359(10) | Pb2–B19 | 3.358(12) |
Pb–H9 | 3.2227(19) | Pb2–H19 | 3.2198(19) |
Pb–B19 | 3.437(12) | Pb2–B9 | 3.567(11) |
Pb–H19 | 2.9610(19) | Pb2–H9 | 3.044(2) |
Pb–B20 | 3.463(13) | Pb2–B10 | 3.566(11) |
Pb–H20 | 3.4576(14) | Pb2–H10 | 3.5091(14) |
Bond | Length, Å | Bond | Length, Å |
---|---|---|---|
Pb1-O2 | 2.631(6) | Pb2-O5 | 2.683(6) |
Pb1-O4 | 2.791(6) | Pb2-O6 | 2.695(6) |
Pb1-N5 | 2.590(7) | Pb2-N10 | 2.608(7) |
Pb1-N6 | 2.549(7) | Pb2-N11 | 2.624(7) |
Pb1-N7 | 2.598(7) | Pb2-N12 | 2.520(7) |
Pb1-N8 | 2.624(7) | Pb2-N13 | 2.610(7) |
Pb1-B5 | 3.280(11) | Pb2-B3 | 3.338(11) |
Pb1-H5 | 2.8317(11) | Pb2-H3 | 2.9056(8) |
Pb1-B8 | 3.197(10) | Pb2-B6 | 3.192(10) |
Pb1-H8 | 2.8195(10) | Pb2-H6 | 2.7792(10) |
Pb1-B9 | 3.224(10) | Pb2-B7 | 3.268(10) |
Pb1-H9 | 2.8843(12) | Pb2-H7 | 2.9327(12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, E.Y.; Dontsova, O.S.; Avdeeva, V.V.; Kubasov, A.S.; Zhdanov, A.P.; Nikiforova, S.E.; Goeva, L.V.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group. Molecules 2023, 28, 8073. https://doi.org/10.3390/molecules28248073
Matveev EY, Dontsova OS, Avdeeva VV, Kubasov AS, Zhdanov AP, Nikiforova SE, Goeva LV, Zhizhin KY, Malinina EA, Kuznetsov NT. Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group. Molecules. 2023; 28(24):8073. https://doi.org/10.3390/molecules28248073
Chicago/Turabian StyleMatveev, Evgenii Yu., Olga S. Dontsova, Varvara V. Avdeeva, Alexey S. Kubasov, Andrey P. Zhdanov, Svetlana E. Nikiforova, Lyudmila V. Goeva, Konstantin Yu. Zhizhin, Elena A. Malinina, and Nikolay T. Kuznetsov. 2023. "Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group" Molecules 28, no. 24: 8073. https://doi.org/10.3390/molecules28248073
APA StyleMatveev, E. Y., Dontsova, O. S., Avdeeva, V. V., Kubasov, A. S., Zhdanov, A. P., Nikiforova, S. E., Goeva, L. V., Zhizhin, K. Y., Malinina, E. A., & Kuznetsov, N. T. (2023). Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group. Molecules, 28(24), 8073. https://doi.org/10.3390/molecules28248073