Biequivalent Planar Graphs
Abstract
:1. Introduction
2. Characteristics of Potential Graphs
[4 5; | 5 4 0, 10 2 1; | 2 0, 2 1; | 5 1; | 10 2] |
valencies | faces 0 & 1 | node 1 | node 2 | # nodes |
3. Construction of the Graphs
3.1. The Faces of the Graph
3.2. The Nodes of the Graph
- (1,2,2), (1,1,2,2,2,2), (1,1,2,2,2,2)
- (1,2,2), (1,2,2,2,2,1), (1,1,2,2,2,2)
- (1,2,2), (1,2,2,2,2,1), (1,2,2,2,2,1)
- (1,2,2), (1,1,2,2,2,2), (1,2,2,2,2,1)
4. Results
4.1. Special Graphs
4.2. Polygonal Dressing Graphs
- Replacing every second edge of a 2P-gone by a 2D diamond yields the following: 33_F2P+2_2-P-2P_2P-2-1_VP_P, , (see Figure 6a,b)
- Replacing every second edge of a 2P-gon by a 2D bubble diamond yields the following: 35_F{4P+2}_2-0-{2P}_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, (see Figure 6c).
- P joined up 2D diamonds yield the following: 34_F{2P+2}_2-{P}-{P}_{2P}-2-1_V4_2, , (see Figure 6d)
- Inverted P-fans on both sides of a P-gon: 44_F{4P+2}_2-0-P_{2P}-2-1_{2P}-2-2_V{2P}_{2P}, . (see Figure 6e).
- Two back-to-back P-stars on a polygon: 46_F{4P+2}_2-0-P_{2P}-1-2_{2P}-2-1_V{2P}_{P}, . (see Figure 6f).
- Two back-to-back P-stars: 44_F{3P+2}_2-P-0_P-2-2_2P}-2-1_V{2P}_{P}, . (see Figure 6g).
- Two P-mosaics back to back: 55_F{6P+2}_2-0-P_{2P}-1-2_{4P}-2-1_V{2P}_{2P}, . When , this is an icosahedron. (see Figure 6h).
4.3. Pyramid Derived Graphs
- P-pyramids with graphs of the following type: 3P_F{P+1}_1-P-0_0-P-2-1_VP_1, . (see Figure 7a).
- Two P-pyramids joined at the base: 4P_F{2P}_{2P}-1-2_V2_P, . is the octahedron. (see Figure 7b).
- P squares joined at a vertex, with two of them joined together: 3P_F{2P}_2P-1-3_V{2P}_2. (see Figure 7c).
- Two truncated P-pyramids joined at the base: 34_F{2P+2}_2-P-0_{2P}-2-2_V{2P}_P, , (see Figure 7d).
4.4. Prism Derived Graphs
- The nodes of the prisms can be split in two symmetric subsets in two different ways: top base and bottom base nodes, F{P+2}_1-0-P_1-P-0_P-2-2_VP_P (see Figure 8a), or, for even P values, alternating nodes on top and bottom base F{2P}_{2P}-2-{P/2}-{P/2}_P-2-2_V6_6_a * (see Figure 8b), as well as F{2P}_{2P}-2-{P/2}-{P/2}_P-2-2_V6_6_b (see Figure 8c).
- P-prisms with a P-pyramid on each base: 3P_F{3P}_P-0-4_{2P}-1-2_V2_{2P} (see Figure 8d).
- P-risms with 4-pyramids on the square faces: 44_F{4P+2}_2-0-P_{4P}-1-2_V{P}_{2P} , (see Figure 8e).
- P-prism with a truncated 4-pyramid on each side face: 35_F{5P+2}_2-0-P_P-4-0_{4P}_2-2_V{2P}_{2P} *, (see Figure 8f).
- P-prisms with a truncated P-pyramid on each base: 34_F{3P+2}_2-P-0_P-0-4_{2P}-2-2_V{2P}_{2P}, (see Figure 8g).
- P-prisms where the base is replaced by a linked P-gon: 33_F14_2-0-P_{2P}-3-2_V{2P}_{2P}, (see Figure 8h).
- A P-prism where every other side is split in two triangles: 34_F{3P+2}_2-P-P_P-2-2_{2P}-1-2_V{2P}_{2P} *, (see Figure 9a–c).
- P-prisms where every side edge becomes a 2D diamond: 34_F{3P+2}_2-0-P_P-2-4_{2P}-2-1_V{2P}_{2P}, , (see Figure 9d)
- P-prisms where the links between the two bases become a 2D bubble diamond: 36_F{5P+2}_2-0-P_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, , (see Figure 9e)
- P-prisms where the edges joining the bases are split into a square, and the two new nodes are merged with the adjacent one, hence tiling the sides of the prism with squares: 34_F{3P+2}_2-0-P_{3P}-2-2_V{2P}_{2P}, , (see Figure 9f).
- P-prims with P-star bases, where : 34_F{3P+2}_2-0-P_P-4-2_{2P}-1-2_V{2P}_{2P} (see Figure 9g).
- A 2P-prism where the squares are split asymmetrically into two triangles: 35_F{4P+2}_2-P-P_{4P}-1-2_V{2P}_{2P}, (see Figure 9h).
- P-prisms where the squares are split into four triangles and one square: 36_F{5P+2}_2-0-P_P-2-2_{4P}-1-2_V{2P}_{2P} *, , (see Figure 9i).
- P-prisms where every other vertex between the two bases becomes a 2D diamond: 35_F{4P+2}_2-0-P_{2P}-1-3_{2P}_2-1_V{2P}_{2P} *, , (see Figure 9j).
- P-prisms where the faces are split into two squares and two triangles: 35_F{4P+2}_2-0-P_{2P}-1-2_{2P}_2-2_V{2P}_{2P}, . This can be done in three different ways (see Figure 10a–c).
- P-prism with a P-star on each base: 45_F{5P+2}_2-P-0_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, , (see Figure 10d).
- P-prisms where the squares are split into three triangles and a square: 45_F{5P+2}_2-0-P_P-2-2_{2P}-1-2_{2P}-2-1_V{2P}_{2P} *, , (see Figure 10e).
- P-prisms where the squares are split into six triangles: 46_F{6P+2}_2-0-P_{2P}-2-1_{4P}-1-2_V{2P}_{2P} *, , (see Figure 10f).
4.5. Antiprism-Derived Graphs
- P-antiprisms where the two types of nodes are on each of the bases: 44_F{2P+2}_1-0-P_1-P-0_P-1-2_P-2-1_VP_P, (see Figure 11a).
- P-antiprisms where the two types of nodes alternate between the bases: 44_F{2P+2}_2-{P/2}-{P/2}_P-1-2_P-2-1_VP_P *, even, (see Figure 11b).
- P-antiprisms with a P-pyramid on each base: P5_F{4P}_{2P}-0-3_{2P}-1-2_V{2P}_{2P}, , (see Figure 11c).
- P-antiprisms with two truncated P-gonal base pyramids: 35_F{4P+2}_2-P-0_{2P}-0-3_{2P}_2-2_V{2P}_{2P}, , (see Figure 11d).
- P-antiprism with a P-star base: 44_F{4P+2}_2-P-0_{2P}-1-3_{2P}-2-1_V{2P}_{2P}, , (see Figure 11e).
- P-antiprisms with P-fans added to the two bases: 46_F{6P+2}_2-P-0_{2P}-0-3_{2P}-1-2_{2P}-2-1_V{2P}_{2P} *, , (see Figure 11f).
4.6. Platonic Solids-Derived Graphs
- Tetrahedron: 33_F4_2-1-2_2-2-1_V2_2.
- Cube: 33_F6_6-3-1_V6_2.
- Octahedron: 44_F8_8-2-1_V4_2.
- Dodecahedron: 33_F12_2-5-0_10-2-3_V10_10.
- Icosahedron: selecting two nodes on the poles of the solid 55_F20_10-2-1_10-3-0_V10_2.
- Icosahedron: selecting six nodes on the equator: 55_F20_2-3-0_6-2-1_12-1-2_V6_6.
- Platonic solids where the vertices become polygons, and the edges become two squares so that the faces of the solids end up with twice as many edges:
- –
- Tetrahedron: 34_F20_4-0-3_4-3-3_12-2-2_V12_12.
- –
- Cube: 34_F38_6-4-4_8-0-3_24-2-2_V24_24.
- –
- Octahedron: 34_F38_6-0-4_8-3-3_24-2-2_V24_24 (see Figure 12a).
- –
- Dodecahedron: 34_F92_12-5-5_20-0-3_60-2-2_V60_60.
- –
- Icosahedron: 34_F92_12-0-5_20-3-3_60-2-2_V60_60.
- Platonic solids where a pyramid is placed on four faces:
- –
- Octhedron: 36_F16_4-0-3_12-1-2_V4_6 (see Figure 12b).
- –
- Icosahedron: 36_F28_12-1-2_16-0-3_V4_12.
- Platonic solids where some faces become truncated pyramids:
- –
- Tetrahedron: 36_F16_4-3-0_12-2-2_V12_4.
- –
- Octahedron: 36_F20_4-0-3_4-3-0_12-2-2_V12_6 (see Figure 12c).
- –
- Icosahedron: 36_F32_4-3-0_12-2-2_16-0-3_V12_12.
- Platonic solids where some P-gonal faces become P-stars. Doing this, the tetrahedron becomes an octahedron, the cube becomes an the octahedron, and both become a cuboctahedron, while the dodecahedron and icosahedron both become an icosidodecahedron.
- Platonic solid where a face becomes a linked P-gon:
- –
- Tetrahedron: 33_F10_4-3-0_6-4-2_V12_4.
- –
- Cube: 33_F18_6-4-0_12-4-2_V24_8 (see Figure 12d).
- –
- Octahedron: 34_F20_8-3-0_12-4-2_V24_6.
- –
- Dodecahedron: 33_F42_12-5-0_30-4-2_V60_20.
- –
- Icosahedron: 35_F50_20-3-0_30-4-2_V60_12.
- Platonic solids where every edge becomes a 2D diamond. The octahedron and icosahedron lead to graphs with valency exceeding 6:
- –
- Tetrahedron: 36_F16_4-3-3_12-2-1_V12_4,
- –
- Cube: 36_F30_6-4-4_24-2-1_V24_8 (see Figure 12e),
- –
- Dodecahedron: 36_F72_12-5-5_60-2-1_V60_20.
- Platonic solids where some edges become a 2D bubble diamond:
- –
- Tetrahedron: 36_F12_4-0-3_4-1-2_4-2-1_V4_4.
- –
- Dodecahedron: 36_F52_12-0-5_20-1-2_20-2-1_V20_20 (see Figure 12f).
- Octahedrom where every other face is a P-star: 44_F20_4-3-0_4-3-3_12-2-1_V12_6 (see Figure 12g).
- Platonic solids with inverted P-fans replacing the faces. The octahedron and the icosahedron have, respectively, valency 4 and 5 nodes, and this leads to graphs with a valency exceeding six:
- –
- Tetrahedron: 46_F22_4-3-0_6-2-2_12-2-1_V12_4.
- –
- Cube: 46_F42_6-4-0_12-2-2_24-2-1_V24_8.
- –
- Dodecahedron: 46_F102_12-5-0_30-2-2_60-2-1_V60_20.
4.7. Archimedean Solids-Derived Graphs
- Truncated Platonic solids (the nodes of the other Archimedean solids cannot be split into two equivalent families):
- –
- Truncated octahedron: 33_F14_6-2-2_8-3-3_V12_12.
- –
- Truncated cube: 33_F14_4-0-3_4-3-0_6-4-4_V12_12.
- –
- Truncated cuboctahedron: 33_F26_6-4-4_8-3-3_12-2-2_V24_24 (see Figure 13a).
- –
- Truncated icosidodecahedron: 33_F62_12-5-5_20-3-3_30-2-2_V60_60.
- Solids where a pyramid is placed on some of the faces of the truncated Platonic solids. Only the face that does not touch similar faces can be tiled like this, as otherwise, the equivalence is broken:
- –
- Truncated tetrahedron (triangles): 34_F16_4-0-6_12-1-2_V4_12 (see Figure 13b).
- –
- Truncated tetrahedron (hexagons): 56_F28_4-3-0_24-2-1_V12_4.
- –
- Truncated cube (triangles): 34_F30_6-0-8_24-1-2_V8_24.
- –
- Truncated octahedron (squares): 44_F32_8-6-0_24-2-1_V24_6.
- –
- Truncated octahedron (hexagons): 56_F54_6-4-0_48-2-1_V24_8.
- –
- Truncated dodecahedron (triangles): 34_F72_12-0-10_60-1-2_V20_60.
- –
- Truncated icosahedron (pentagons): 45_F80_20-6-0_60-2-1_V60_12.
- –
- Truncated icosahedron (hexagons): 56_F132_12-5-0_120-2-1_V60_20.
- Solids where a pyramid is placed on some faces of the Archimedean solids:
- –
- Cuboctahedron (every other triangle): 35_F22_4-0-3_6-0-4_12-1-2_V4_12.
- –
- Cuboctahedron (triangles): 36_F30_6-0-4_24-1-2_V8_12.
- –
- Cuboctahedron (squares): 46_F32_8-0-3_24-1-2_V6_12.
- –
- Rhombicuboctahedron (triangles): 35_F42_18-0-4_24-1-2_V8_24 (see Figure 13c).
- –
- Rhombicuboctahedron (6 squares): 45_F44_8-0-3_12-0-4_24-1-2_V6_24.
- –
- Rhombicuboctahedron (8 squares): 46_F62_6-0-4_8-0-3_48-1-2_V12_24.
- –
- Icosidodecahedron (triangles): 36_F72_12-0-5_60-1-2_V20_30.
- –
- Icosidodecahedron (pentagons): 56_F80_20-0-3_60-1-2_V12_30.
- –
- Snub dodecahedron (pentagons): 56_F140_60-1-2_80-0-3_V12_60 *.
- –
- Snub dodecahedron (20 triangles): 36_F132_12-0-5_60-0-3_60-1-2_V20_60 *.
- –
- Rhombicosididecahedron (triangles): 35_F102_12-0-5_30-0-4_60-1-2_V20_60.
- –
- Rhombicosididecahedron (squares): 46_F152_12-0-5_20-0-3_120-1-2_V30_60.
- –
- Rhombicosididecahedron (pentagons): 55_F110_20-3-0_30-4-0_60-2-1_V60_12.
- Truncated pyramid on truncated Platonic solids:
- –
- Truncated tetrahedron (triangles): 34_F20_4-0-6_4-3-0_12-2-2_V12_12 (see Figure 13d).
- –
- Truncated tetrahedron (hexagons): 35_F32_4-0-3_4-6-0_24-2-2_V24_12.
- –
- Truncated cube (triangles): 34_F38_6-0-8_8-3-0_24-2-2_V24_24.
- –
- Truncated cube (octagons): 35_F62_6-8-0_8-0-3_48-2-2_V48_24.
- –
- Truncated dodecahedron (decagons): 35_F152_12-10-0_20-0-3_120-2-2_V120_60.
- –
- Truncated icosahedron (pentagon): 34_F92_12-5-0_20-0-6_60-2-2_V60_60.
- –
- Truncated icosahedron (hexagon): 35_F152_12-0-5_20-6-0_120-2-2_V120_60.
- –
- Truncated octahedron (squares): 34_F38_6-4-0_8-0-6_24-2-2_V24_24.
- –
- Truncated octahedron (hexagons): 35_F62_6-0-4_8-6-0_48-2-2_V48_24.
- –
- Truncated dodecahedron (triangles): 34_F82_12-0-10_20-3-0_60-2-2_V60_60.
- Truncated pyramid on other Archimedean solids:
- –
- Snub cube (squares): 36_F62_6-4-0_24-2-2_32-0-3_V24_24 *.
- –
- Snub cube (8 triangles): 36_F62_6-0-4_8-3-0_24-0-3_24-2-2_V24_24 *.
- –
- Rhombicuboctahedron (triangles): 35_F50_8-3-0_18-0-4_24-2-2_V24_24.
- –
- Snub dodecahedron (pentagons): 36_F152_12-5-0_60-2-2_80-0-3_V60_60 *.
- –
- Snub dodecahedron (triangles): 36_F152_12-0-5_20-3-0_60-0-3_60-2-2_V60_60 *.
- –
- Cuboctahedron (squares): 36_F38_6-4-0_8-0-3_24-2-2_V24_12.
- –
- Cuboctahedron(triangles): 36_F38_6-0-4_8-3-0_24-2-2_V24_12.
- –
- Cuboctahedron (every other triangles): 35_F26_4-0-3_4-3-0_6-0-4_12-2-2_V12_12.
- –
- Rhombicuboctahedron (6 squares): 35_F50_6-4-0_8-0-3_12-0-4_24-2-2_V24_24.
- –
- Rhombicuboctahedron (8 squares): 36_F74_6-0-4_8-0-3_12-4-0_48-2-2_V48_24.
- –
- Icosidodecahedron (pentagons): 36_F92_12-5-0_20-0-3_60-2-2_V60_30.
- –
- Icosidodecahedron (triangles): 36_F92_12-0-5_20-3-0_60-2-2_V60_30.
- –
- Rhombicosidodecahedron (triangles): 35_F122_12-0-5_20-3-0_30-0-4_60-2-2_V60_60.
- –
- Rhombicosidodecahedron (pentagons): 35_F122_12-5-0_20-0-3_30-0-4_60-2-2_V60_60.
- Archimedean solids where some P-gonal faces become P-stars. This is only possible when there is a P-fold rotation symmetry around the center of the P-gonal face:
- –
- Truncated tetrahedron (triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
- –
- Truncated octahedron (squares): 34_F38_6-0-4_8-6-3_24-1-2_V24_24.
- –
- Truncated icosahedron (pentagons): 34_F92_12-0-5_20-6-3_60-1-2_V60_60.
- –
- Cuboctahedron (triangles): 44_F38_6-4-4_8-3-0_24-2-1_V24_12.
- –
- Cuboctahedron (every other triangle): 44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12.
- –
- Cuboctahedron (squares): 44_F38_6-4-0_8-3-3_24-2-1_V24_12.
- –
- Rhombicuboctahedron (triangles): 44_F50_6-0-4_8-3-0_12-2-4_24-2-1_V24_24.
- –
- Rhombicuboctahedron (squares): 44_F50_6-0-4_8-3-0_12-4-2_24-1-2_V24_24.
- –
- Icosidodecahedron(triangles): 44_F92_12-5-5_20-3-0_60-2-1_V60_30.
- –
- Icosidodecahedron (pentagons): 44_F92_12-0-5_20-3-3_60-2-1_V60_30.
- –
- Snub cube (squares): 45_F62_6-4-0_8-0-3_24-1-3_24-2-1_V24_24 *.
- –
- Snub cube (eight triangles): 45_F62_6-0-4_8-3-0_24-1-3_24-2-1_V24_24 *.
- –
- Snub dodecahedron (pentagons): 45_F152_12-5-0_20-0-3_60-1-3_60-2-1_V60_60 *.
- –
- Snub dodecahedron (20 triangles): 45_F152_12-0-5_20-3-0_60-1-3_60-2-1_V60_60 *.
- –
- Rhombicosidodecahedron (triangles): 44_F122_12-0-5_20-3-0_30-2-4_60-2-1_V60_60.
- –
- Rhombicosidodecahedron (pentagons): 44_F122_12-0-5_20-3-0_30-4-2_60-1-2_V60_60.
- Archimedean solids with some P-faces filled with a P-stars.
- A P-star-filled cuboactahedron and icosidodecahedron have valency 8 nodes. The following solids have nodes with valencies that are too large: truncated cubes (octagons), truncated octagons (hexagons), snub cubes, snub dodecahedrons, truncated dodecahedrons (decagons), and truncated icosahedron (hexagons).
- –
- Truncated tetrahedron (triangles): 45_F32_4-0-6_4-3-0_12-1-2_12-2-1_V12_12 (see Figure 13f).
- –
- Truncated tetrahedron (hexagons): 45_F32_4-0-3_4-3-0_12-1-3_12-2-1_V12_12 *.
- –
- Truncated cube (triangles): 45_F62_6-0-8_8-3-0_24-1-2_24-2-1_V24_24.
- –
- Truncated octahedron (squares): 45_F62_6-4-0_8-0-6_24-1-2_24-2-1_V24_24.
- –
- Truncated dodecahedron (triangles): 45_F152_12-0-10_20-3-0_60-1-2_60-2-1_V60_60.
- –
- Truncated icosahedron (pentagons): 45_F152_12-5-0_20-0-6_60-1-2_60-2-1_V60_60.
- –
- Cuboctahedron (four triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
- –
- Rhomicuboctahedron (six squares): 46_F74_6-4-0_8-0-3_12-0-4_24-1-2_24-2-1_V24_24.
- –
- Rhomicuboctahedron (triangles): 46_F74_8-3-0_18-0-4_24-1-2_24-2-1_V24_24.
- –
- Rhomicosidodecahedron (pentagon): 46_F182_12-5-0_20-0-3_30-0-4_60-1-2_60-2-1.
- –
- Rhomicosidodecahedron (triangles): 46_F182_12-0-5_20-3-0_30-0-4_60-1-2_60-2-1.
- Linked P-gon-filled truncated Platonic solids:
- –
- Truncated tetrahedron: 34_F20_4-0-3_4-3-0_12-2-3_V12_12 *.
- –
- Truncated cube: 34_F38_6-4-0_8-0-3_24-2-3_V24_24 * (see Figure 13g).
- –
- Truncated octahedron: 34_F38_6-0-4_8-3-0_24-2-3_V24_24 *.
- –
- Truncated dodecahedron: 34_F92_12-5-0_20-0-3_60-2-3_V60_60 *.
- –
- Truncated icosahedron: 34_F92_12-0-5_20-3-0_60-2-3_V60_60 *.
- Archimedean solids where a face becomes a linked P-gon. When applying this to the cuboctahedron, one obtains the truncated cube and the truncated octahedron. When applying this to the icosidodecahedron, one obtains the truncated dodecahedron and the truncated icosahedron. This cannot be applied to the truncated Platonic solids, as this gives the same solid (truncation face) of an nonequivalent graph (adjacent faces):
- –
- The snub cube (eight triangles) gives 34_F38_6-0-4_8-3-0_24-2-3_V24_24 (a linked P-gon-filled truncated octahedron).
- –
- The snub cube (squares) gives 34_F38_6-4-0_8-0-3_24-2-3_V24_24 (a linked P-gon-filled truncated cube).
- –
- The snub dodecahedron (20 triangles) gives 34_F92_12-0-5_20-3-0_60-2-3_V60_60 (a linked P-gon-filled truncated icosahedron).
- –
- The snub dodecahedron (pentagons) gives 34_F92_12-5-0_20-0-3_60-2-3_V60_60 (a linked P-gon-filled truncated dodecahedron).
- –
- Rhombicuboctahedron: 35_F26_6-0-4_8-3-0_12-4-4_V24_24 (see Figure 13h),.
- –
- Rhombicosidodecahedron: 33_F62_12-0-5_20-3-0_30-4-4_V60_60.
- Truncated Platonic solids where some the 2P faces are filled with P-fans (). This can be done in two different ways:
- –
- Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_a.
- –
- Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_b.
- –
- Truncated cube 1: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14a).
- –
- Truncated cube 2: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14b).
- –
- Truncated cctahedron 1: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_a.
- –
- Truncated octahedron 2: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_b.
- –
- Truncated dodecahedron 1: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_a.
- –
- Truncated dodecahedron 2: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_b.
- –
- Truncated icosahedron 1: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_a.
- –
- Truncated icosahedron 2: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_b.
- Archimedean solids where squares are split into two squares and two triangles. This can be done in two different ways:
- –
- Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14c).
- –
- Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14d).
- –
- Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_a.
- –
- Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_b.
- Truncated Platonic solids with 2P-gon faces split into P squares:
- –
- Truncated tetrahedron: 34_F16_4-0-3_12-1-3_V4_12 *.
- –
- Truncated cube: 44_F32_8-3-0_24-3-1_V24_6 *.
- –
- Truncated octahedron: 34_F30_6-0-4_24-1-3_V8_24 * (see Figure 14e).
- –
- Truncated icosahedron: 34_F72_12-0-5_60-1-3_V20_60 *.
- –
- Truncated dodecahedron: 45_F80_20-3-0_60-3-1_V60_12 *.
- As truncated Platonic solids have a 2-fold symmetry around the centre of the edges shared by two identical faces, one can replace the edge with a 2D diamond. For the truncated cube and truncated dodecahedron, this leads to faces with more than 10 edges:
- –
- Truncated tetrahedron: 34_F20_4-0-3_4-3-6_12-2-1_V12_12.
- –
- Truncated octahedron: 34_F38_6-0-4_8-3-6_24-2-1_V24_24 (see Figure 14f).
- –
- Truncated icosahedron: 34_F92_12-0-5_20-3-6_60-2-1_V48_60.
- Archimedean solids with squares linking triangles are split into two triangles and a square. This requires a 2-fold rotation symmetry of the solid around the split square:
- –
- Split cuboctahedron: 35_F26_4-0-3_4-3-3_6-2-2_12-1-2_V12_12 * (see Figure 14g).
- –
- Rhombicuboctahedron: 35_F50_6-4-4_8-0-3_12-2-2_24-1-2_V24_24 *.
- –
- Rhombicuboctahedron: 35_F50_6-0-4_8-3-3_12-2-2_24-1-2_V24_24 *.
- –
- Rhombicosidodecahedron: 35_F122_12-0-5_20-3-3_30-2-2_60-1-2_V60_60 *.
- –
- Rhombicosidodecahedron: 35_F122_12-5-5_20-0-3_30-2-2_60-1-2_V60_60 *.
- Archimedean solids where some edges become a 2D bubble diamonds:
- –
- Truncated tetrahedron: 36_F32_4-0-3_4-0-6_12-1-2_12-2-1_V12_12 (see Figure 14h).
- –
- Truncated cube: 36_F62_6-0-8_8-0-3_24-1-2_24-2-1_V24_24.
- –
- Truncated octahedron: 36_F62_6-0-4_8-0-6_24-1-2_24-2-1_V24_24.
- –
- Truncated dodecahedron: 36_F152_12-0-10_20-0-3_60-1-2_60-2-1_V60_60.
- –
- Truncated icosahedron: 36_F152_12-0-5_20-0-6_60-1-2_60-2-1.
- Archimedean solids where some squares are split intro four triangles:
- –
- Cuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 * (see Figure 15a).
- –
- Rhombicuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 *.
- –
- Rhombicuboctahedron: 36_F62_6-4-4_8-0-3_48-1-2_V24_24 *.
- –
- Rhombicosidodecahedron: 36_F152_12-0-5_20-3-3_120-1-2_V60_60 *.
- –
- Rhombicosidodecahedron: 36_F152_12-5-5_20-0-3_120-1-2_V60_60 *.
- Truncated Platonic solids where the faces are replaced by P-fans. This can only be done with valency 3 graphs without exceeding the maximum valency, which we consider as follows:
- –
- Truncated tetrahedron: 44_F26_4-0-3_4-3-0_18-2-2_V12_12.
- –
- Truncated cube and truncated octahedron:44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12 (see Figure 14b).
- –
- Truncated dodecahedron and truncated icosahedron:44_F122_12-0-5_20-3-0_90-2-2_V60_60.
- Archimedean solids where the squares are split into four triangles to form braided links:
- –
- Cuboctahedron: 45_F32_4-0-3_4-3-3_12-1-2_12-2-1_V12_12 *.
- –
- Rhombicuboctahedron that is parallel braided: 45_F62_6-0-4_8-3-3_24-1-2_24-2-1_V24_24 *.
- –
- Rhombicuboctahedron that is perpendicular braided: 45_F62_6-4-4_8-0-3_24-1-2_24-2-1_V24_24 * (see Figure 14c).
- –
- Rhombicosidodecahedron that is parallel braided: 45_F152_12-5-0_20-0-3_60-1-3_60-2-1_V60_6 *.
- –
- Rhombicosidodecahedron that is perpendicular braided: 45_F152_12-5-5_20-0-3_60-1-2_60-2-1_V60_60 *.
- Truncated Platonic solids with 2P-gonal faces replaced by split P-fans. For the truncated cube and truncated icosahedron, this leads to nodes with valencies exceeding six:
- –
- Truncated tetrahedron: 55_F38_4-0-3_4-3-0_6-2-2_12-1-2_12-2-1_V12_12 *.
- –
- Truncated octahedron: 55_F74_6-0-4_8-3-0_12-2-2_24-1-2_24-2-1_V24_24 * (see Figure 14d).
- –
- Truncated dodecahedron: 55_F182_12-0-5_20-3-0_30-2-2_60-1-2_60-2-1_V60_60 *.
- Truncated Platonic solids where the faces are P-mosaics:
- –
- Truncated tetrahedron: 56_F44_4-0-3_4-3-0_12-2-1_24-1-2_V12_12 *.
- –
- Truncated cube: 56_F86_6-4-0_8-0-3_24-2-1_48-1-2_V24_24 *.
- –
- Truncated octahedron: 56_F86_6-0-4_8-3-0_24-2-1_48-1-2_V24_24 *.
- –
- Truncated icosahedron: 56_F212_12-0-5_20-3-0_60-2-1_120-1-2_V60_60 *.
- –
- Truncated dodecahedron: 56_F212_12-5-0_20-0-3_60-2-1_120-1-2_V60_60 *.
4.8. Other Solids-Derived Graphs
- For solids with valency 4 nodes and a 2-fold rotational symmetry around each node, one can replace the node with a 2D diamond:
4.9. Dual of Archimedean Solids Graphs
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
p-cage | Polyhedral cages |
PGC | Potential graph characteristics |
TRAP | trp RNA-binding attenuation protein |
Appendix A
References
- Piette, B.M.A.G.; Kowalczyk, A.; Heddle, J.G. Characterization of near-miss connectivity-invariant homogeneous convex polyhedral cages. Proc. R. Soc. A 2022, 478, 20210679. [Google Scholar] [CrossRef] [PubMed]
- Malay, A.D.; Heddle, J.G.; Tomita, S.; Iwasaki, K.; Miyazaki, N.; Sumitomo, K.; Yanagi, H.; Yamashita, I.; Uraoka, Y. Gold nanoparticle-induced formation of artificial protein capsids. Nano Lett. 2012, 12, 2056–2059. [Google Scholar] [CrossRef] [PubMed]
- Piette, B.M.A.G.; Lukács, A. Near-Miss Symmetric Polyhedral Cages. Symmetry 2023, 15, 717. [Google Scholar] [CrossRef]
- Piette, B.M.A.G.; Lukács, A. Near-Miss Bi-Homogenous Symmetric Polyhedral Cages. Symmetry 2023, 15, 1804. [Google Scholar] [CrossRef]
- Coxeter, H.S.M. Regular Polytopes; Dover Publications: Mineola, NY, USA, 1973. [Google Scholar]
- Malay, A.D.; Miyazaki, N.; Biela, A.; Chakraborti, S.; Majsterkiewicz, K.; Stupka, I.; Kaplan, C.S.; Kowalczyk, A.; Piette, B.M.; Hochberg, G.K.; et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 2019, 569, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Stupka, I.; Biela, A.P.; Piette, B.; Kowalczyk, A.; Majsterkiewicz, K.; Borzęcka-Solarz, K.; Naskalska, A.; Heddle, J.G. An artificial protein cage made from a 12-membered ring. J. Mater. Chem. B 2024, 12, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Lin, T.Y.; Glatt, S.; Heddle, J.G. Enzyme encapsulation by protein cages. RSC Adv. 2020, 10, 13293–13301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, R.; Tan, H.; Li, S.; Ma, S.; Tang, Y.; Zhang, K.; Zhang, Z.; Fan, Q.; Yang, J.; Zhang, X.E.; et al. A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc. Natl. Acad. Sci. USA 2022, 119, e2104964119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Avakyan, N.; Kakkis, A.; Hoffnagle, A.M.; Han, K.; Li, Y.; Zhang, Z.; Choi, T.S.; Na, Y.; Yu, C.J.; et al. Protein Assembly by Design. Chem. Rev. 2021, 121, 13701–13796. [Google Scholar] [CrossRef]
- Percastegui, E.G.; Ronson, T.K.; Nitschke, J.R. Design and Applications of Water-Soluble Coordination Cages. Chem. Rev. 2020, 120, 13480–13544. [Google Scholar] [CrossRef]
- Cristie-David, A.S.; Marsh, E.N.G. Metal-dependent assembly of a protein nano-cage. Protein Sci. 2019, 28, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Furukawa, H.; Sakamoto, K.; Inaba, H.; Matsuura, K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. ChemBioChem 2022, 23, e202200220. [Google Scholar] [CrossRef] [PubMed]
- Olshefsky, A.; Richardson, C.; Pun, S.H.; King, N.P. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem. 2022, 33, 2018–2034. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Adv. Sci. 2022, 9, e2103971. [Google Scholar] [CrossRef] [PubMed]
- Naskalska, A.; Borzęcka-Solarz, K.; Różycki, J.; Stupka, I.; Bochenek, M.; Pyza, E.; Heddle, J.G. Artificial Protein Cage Delivers Active Protein Cargos to the Cell Interior. Biomacromolecules 2021, 22, 4146–4154. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, T.G.W.; Tetter, S.; Hilvert, D. Two-tier supramolecular encapsulation of small molecules in a protein cage. Nat. Commun. 2020, 11, 5410. [Google Scholar] [CrossRef] [PubMed]
- Stupka, I.; Azuma, Y.; Biela, A.P.; Imamura, M.; Scheuring, S.; Pyza, E.; Woźnicka, O.; Maskell, D.P.; Heddle, J.G. Chemically induced protein cage assembly with programmable opening and cargo release. Sci. Adv. 2022, 8, eabj9424. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Castells-Graells, R.; Arbing, M.A.; Munoz, A.; Jiang, Y.X.; Espinoza, C.T.; Nguyen, B.; Moroz, P.; Yeates, T.O. Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles Biomolecules. Biomolecules 2023, 13, 1122. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Böhringer, D.; Van De Waterbeemd, M.; Leibundgut, M.; Zschoche, R.; Heck, A.J.; Ban, N.; Hilvert, D. Structure and assembly of scalable porous protein cages. Nat. Commun. 2017, 8, 14663. [Google Scholar] [CrossRef]
- Mashaghi, A.R.; Ramezanpour, A.; Karimipour, V. Investigation of a protein complex network. Eur. Phys. J. B 2004, 41, 113–121. [Google Scholar] [CrossRef]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Fields; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Vecchio, F. Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 2013, 81, 134–143. [Google Scholar] [CrossRef]
- Biggs, N.; Lloyd, E.; Wilson, R. Graph Theory; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Biggs, N. Algebraic Graph Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 118–140. ISBN 0-521-45897-8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piette, B. Biequivalent Planar Graphs. Axioms 2024, 13, 437. https://doi.org/10.3390/axioms13070437
Piette B. Biequivalent Planar Graphs. Axioms. 2024; 13(7):437. https://doi.org/10.3390/axioms13070437
Chicago/Turabian StylePiette, Bernard. 2024. "Biequivalent Planar Graphs" Axioms 13, no. 7: 437. https://doi.org/10.3390/axioms13070437
APA StylePiette, B. (2024). Biequivalent Planar Graphs. Axioms, 13(7), 437. https://doi.org/10.3390/axioms13070437