Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (427)

Search Parameters:
Keywords = polygenic risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 811 KiB  
Article
Implementation of Polygenic Risk Stratification and Genomic Counseling in Colombia: An Embedded Mixed-Methods Study
by Cesar Augusto Buitrago, Melisa Naranjo Vanegas, Harvy Mauricio Velasco, Danny Styvens Cardona, Juan Pablo Valencia-Arango, Sofia Lorena Franco, Lina María Torres, Johana Cañaveral, Diana Patricia Silgado and Andrea López Cáceres
J. Pers. Med. 2025, 15(8), 335; https://doi.org/10.3390/jpm15080335 (registering DOI) - 1 Aug 2025
Abstract
Background: Breast cancer remains a major public health challenge in Latin America, where access to personalized risk assessment tools is still limited. This study aimed to evaluate the implementation of a polygenic risk score (PRS)-based stratification model combined with remote genomic counseling [...] Read more.
Background: Breast cancer remains a major public health challenge in Latin America, where access to personalized risk assessment tools is still limited. This study aimed to evaluate the implementation of a polygenic risk score (PRS)-based stratification model combined with remote genomic counseling in Colombian women with sporadic breast cancer and healthy women. Methods: In 2023, an embedded mixed-methods observational study was conducted in Medellín involving 1997 women aged 40–75 years who underwent clinical PRS testing. The intervention integrated PRS-based risk categorization with individualized risk factor assessment and lifestyle recommendations delivered through a remote counseling platform. Results: PRS analysis classified 9.7% of women as high risk and 46% as low risk. Healthier lifestyle patterns were significantly associated with lower PRS categories (p = 0.034). Physical activity showed a protective effect (OR = 0.60, 95% CI: 0.5–0.8), while prior smoking, elevated BMI, and sedentary behavior were associated with higher risk. The counseling model achieved high delivery (93%) and satisfaction (85%) rates. Qualitative insights revealed improved understanding of genomic risk and greater engagement in preventive behaviors. Only one new case of breast cancer was detected among intermediate-risk participants, with a diagnostic lead time of 12 months. Conclusions: These findings support the feasibility, acceptability, and potential impact of integrating PRS and genomic counseling in cancer prevention strategies in middle-income settings. Full article
(This article belongs to the Special Issue Cancer Risk Assessment in Precision Medicine)
Show Figures

Figure 1

12 pages, 328 KiB  
Article
Polygenic Embryo Risk Scores: A Survey of Public Perception
by Alexandra Peyser, Cailey Brogan, Lilli Zimmerman and Randi H. Goldman
Reprod. Med. 2025, 6(3), 19; https://doi.org/10.3390/reprodmed6030019 - 31 Jul 2025
Abstract
Background: Preimplantation genetic testing for polygenic diseases (PGT-P) is a reproductive technology that has made it possible to assign risk scores to embryos for various complex polygenic conditions such as diabetes, hypertension, breast cancer, and schizophrenia. Whether there is public interest in utilizing [...] Read more.
Background: Preimplantation genetic testing for polygenic diseases (PGT-P) is a reproductive technology that has made it possible to assign risk scores to embryos for various complex polygenic conditions such as diabetes, hypertension, breast cancer, and schizophrenia. Whether there is public interest in utilizing PGT-P and what public opinions are regarding this technology is unknown. Therefore, the objective of our study was to evaluate the opinion of the general United States (US) public regarding PGT-P. Methods: A web-based questionnaire consisting of 25 questions was administered to a nationally representative sample of adult US residents according to age and sex. The survey contained a description of PGT-P, followed by questions with Likert-scale responses ranging from strongly agree to strongly disagree. Results: Of the 715 respondents recruited, 673 (94%) completed the survey. Most respondents agreed that use of PGT-P is ethical (54%), and another 37% were neutral; however, approximately 9% of respondents disagreed and were opposed to the use of PGT-P. Those that opposed PGT-P cited that it was “unethical” (46%) or “not natural” (39%), believed children could be negatively affected (31%), or stated that it went against their religion (15%). The majority of respondents did not know whether PGT-P was safe for embryos (68%) or children (67%) and felt that anyone should be able to utilize it (53%). Conclusions: Participants who were younger, were Atheist, or were Democrats were more likely to agree that “PGT-P is ethical”. This study identified that more than half of respondents supported the use of PGT-P. However, concerns regarding its safety and ethical implications persist. Full article
Show Figures

Figure 1

14 pages, 958 KiB  
Article
Adverse Childhood Experiences, Genetic Susceptibility, and the Risk of Osteoporosis: A Cohort Study
by Yanling Shu, Chao Tu, Yunyun Liu, Lulu Song, Youjie Wang and Mingyang Wu
Medicina 2025, 61(8), 1387; https://doi.org/10.3390/medicina61081387 - 30 Jul 2025
Abstract
Background and Objectives: Emerging evidence indicates that individuals exposed to adverse childhood experiences (ACEs) face elevated risks for various chronic illnesses. However, the association between ACEs and osteoporosis risk remains underexplored, particularly regarding potential modifications by genetic susceptibility. This prospective cohort study aims [...] Read more.
Background and Objectives: Emerging evidence indicates that individuals exposed to adverse childhood experiences (ACEs) face elevated risks for various chronic illnesses. However, the association between ACEs and osteoporosis risk remains underexplored, particularly regarding potential modifications by genetic susceptibility. This prospective cohort study aims to examine the relationship of ACEs with incident osteoporosis and investigate interactions with polygenic risk score (PRS). Materials and Methods: This study analyzed 124,789 UK Biobank participants initially free of osteoporosis. Cumulative ACE burden (emotional neglect, emotional abuse, physical neglect, physical abuse, sexual abuse) was ascertained through validated questionnaires. Multivariable-adjusted Cox proportional hazards models assessed osteoporosis risk during a median follow-up of 12.8 years. Moderation analysis examined genetic susceptibility interactions using a standardized PRS incorporating osteoporosis-related SNPs. Results: Among 2474 incident osteoporosis cases, cumulative ACEs showed dose–response associations with osteoporosis risk (adjusted hazard ratio [HR]per one-unit increase = 1.07, 95% confidence interval [CI] 1.04–1.11; high ACEs [≥3 types] vs. none: HR = 1.26, 1.10–1.43). Specifically, emotional neglect (HR = 1.14, 1.04–1.25), emotional abuse (HR = 1.14, 1.03–1.27), physical abuse (HR = 1.17, 1.05–1.30), and sexual abuse (HR = 1.15, 1.01–1.31) demonstrated comparable effect sizes. Sex-stratified analysis revealed stronger associations in women. Joint exposure to high ACEs/high PRS tripled osteoporosis risk (HR = 3.04, 2.46–3.76 vs. low ACEs/low PRS) although G × E interaction was nonsignificant (P-interaction = 0.10). Conclusions: These results suggest that ACEs conferred incremental osteoporosis risk independent of genetic predisposition. These findings support the inclusion of ACE screening in osteoporosis prevention strategies and highlight the need for targeted bone health interventions for youth exposed to ACEs. Full article
Show Figures

Figure 1

21 pages, 1997 KiB  
Article
Genetic and Metabolic Factors of Familial Dysbetalipoproteinemia Phenotype: Insights from a Cross-Sectional Study
by Anastasia V. Blokhina, Alexandra I. Ershova, Anna V. Kiseleva, Evgeniia A. Sotnikova, Marija Zaicenoka, Anastasia A. Zharikova, Yuri V. Vyatkin, Vasily E. Ramensky, Elizaveta A. Novokhatskaya, Anna L. Borisova, Svetlana A. Shalnova, Alexey N. Meshkov and Oxana M. Drapkina
Int. J. Mol. Sci. 2025, 26(15), 7376; https://doi.org/10.3390/ijms26157376 (registering DOI) - 30 Jul 2025
Abstract
Familial dysbetalipoproteinemia (FD) is a prevalent and highly atherogenic hyperlipoproteinemia associated with the ε2/ε2 APOE genotype or rare APOE variants. The contributions of additional genetic and clinical factors to the FD phenotype remain unclear. We investigated these factors in both autosomal recessive and [...] Read more.
Familial dysbetalipoproteinemia (FD) is a prevalent and highly atherogenic hyperlipoproteinemia associated with the ε2/ε2 APOE genotype or rare APOE variants. The contributions of additional genetic and clinical factors to the FD phenotype remain unclear. We investigated these factors in both autosomal recessive and autosomal dominant forms of FD. Targeted (n = 4666) and exome (n = 194) sequencing were used to identify the ε2/ε2 APOE genotype or rare FD-causative APOE variants. Twenty-four lipid-related genes and forty variants included in a polygenic risk score for hypertriglyceridemia (HTG) were analyzed. FD was defined by the presence of FD variants and triglycerides (TG) ≥ 1.5 mmol/L (main study group). The comparison group consisted of patients with FD variants but TG < 1.5 mmol/L. Univariable and multivariable regression analyses were performed. A total of 71 unrelated subjects were identified (45.1% male, median age 50 years). FD was diagnosed in 52 patients, while 19 had FD variants only. Age (p = 0.019), elevated polygenic risk for HTG (p = 0.001), and the presence of metabolic syndrome components (p = 0.014) were independently associated with the FD phenotype. TG levels were significantly associated with polygenic burden (0.05 mmol/L per percentile), the presence of additional rare lipid-related variants (7.0 mmol/L), and glucose metabolism disorders (3.62 mmol/L), together explaining 30% of TG variance in cross-validated model. These results highlight the interplay of genetic and metabolic factors in FD development and support the integration of HTG genetic risk scores and metabolic control into personalized FD management. Full article
(This article belongs to the Special Issue Genes and Human Diseases: 3rd Edition)
Show Figures

Figure 1

12 pages, 611 KiB  
Article
Cross-Population Analysis of Sjögren’s Syndrome Polygenic Risk Scores and Disease Prevalence: A Pilot Study
by Elisabetta Ferrara, Alessandro D’Albenzio, Biagio Rapone, Giuseppe Balice and Giovanna Murmura
Genes 2025, 16(8), 901; https://doi.org/10.3390/genes16080901 - 28 Jul 2025
Viewed by 147
Abstract
Background: Polygenic risk scores (PRS) have emerged as promising tools for disease risk stratification. However, their validity across different populations remains unclear, particularly for autoimmune diseases, where environmental factors may play crucial roles. Methods: We calculated the population-level PRS for Sjögren’s syndrome using [...] Read more.
Background: Polygenic risk scores (PRS) have emerged as promising tools for disease risk stratification. However, their validity across different populations remains unclear, particularly for autoimmune diseases, where environmental factors may play crucial roles. Methods: We calculated the population-level PRS for Sjögren’s syndrome using seven validated genetic variants (PGS001308) and allele frequency data from the 1000 Genomes Project Phase 3 for five European populations (CEU, TSI, FIN, GBR, and IBS). PRS values were correlated with published prevalence estimates from a systematic literature review. Statistical analyses included Pearson’s correlation and sensitivity analyses. Results: PRS values varied across European populations, ranging from 0.317 in the Spanish population to 0.370 in the Northern European population. A non-significant negative trend was observed between population PRS and Sjögren’s syndrome prevalence (r = −0.407, R2 = 0.166). Italy showed the lowest genetic risk score (TSI: 0.349) but the highest disease prevalence (58.2 per 100,000), while Northern European populations demonstrated a higher PRS but lower prevalence. Conclusions: No significant correlation was found between genetic risk scores and disease prevalence in this limited sample of five European populations. Larger studies are needed to clarify the relationship between polygenic risk and disease prevalence. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 335
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

13 pages, 866 KiB  
Article
Integrating Polygenic Scores into Multifactorial Breast Cancer Risk Assessment: Insights from the First Year of Clinical Implementation in Western Austria
by Lukas Forer, Gunda Schwaninger, Kathrin Taxer, Florian Schnitzer, Daniel Egle, Johannes Zschocke and Simon Schnaiter
Cancers 2025, 17(15), 2472; https://doi.org/10.3390/cancers17152472 - 26 Jul 2025
Viewed by 263
Abstract
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. [...] Read more.
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. Methods: To enhance breast cancer risk stratification, we included the BCAC313 polygenic score, together with MFRA, for carriers of moderate-penetrance pathogenic variants (PVs) during routine diagnostics and assessed its effect on the classification of patients’ risk categories in a real-world cohort at our center in its first year of implementation. Seventeen carriers with PVs in moderate-risk breast cancer genes were included in this study. Thirteen of them qualified for analysis for a full MFRA, including PGS, according to ancestry estimation and clinical criteria. The MFRA was performed using the CanRisk tool, which incorporates clinical, lifestyle, familial, and genetic data, including the BCAC313 score. Results: PGS z-scores were significantly higher in breast cancer patients compared to the unaffected control cohort (p = 0.016). The MFRA, including PGS, increased risk estimates for contralateral breast cancer in seven of eight patients with breast cancer and for primary breast cancer in three of five healthy carriers, compared to the risk conferred by the MFRA and moderate-penetrance pathogenic variant alone. Risk estimates varied widely, demonstrating the value of MFRA in personalized care. In five cases, one with a CHEK2-PV and four with an ATM-PV, the modified risk assessment contributed to the surgical decision for a prophylactic mastectomy. Conclusions: The MFRA, including PGS, provides the clinically meaningful refinement of breast cancer risk estimates in individuals with moderate-risk PVs. Personalized risk predictions can inform clinical management and support decision-making, which highlights the utility of this approach in clinical practice. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Austria)
Show Figures

Figure 1

30 pages, 981 KiB  
Review
Genetic Architecture of Ischemic Stroke: Insights from Genome-Wide Association Studies and Beyond
by Ana Jagodic, Dorotea Zivalj, Antea Krsek and Lara Baticic
J. Cardiovasc. Dev. Dis. 2025, 12(8), 281; https://doi.org/10.3390/jcdd12080281 - 23 Jul 2025
Viewed by 170
Abstract
Ischemic stroke is a complex, multifactorial disorder with a significant heritable component. Recent developments in genome-wide association studies (GWASs) have identified several common variants associated with clinical outcomes, stroke subtypes, and overall risk. Key loci implicated in biological pathways related to vascular integrity, [...] Read more.
Ischemic stroke is a complex, multifactorial disorder with a significant heritable component. Recent developments in genome-wide association studies (GWASs) have identified several common variants associated with clinical outcomes, stroke subtypes, and overall risk. Key loci implicated in biological pathways related to vascular integrity, lipid metabolism, inflammation, and atherogenesis include 9p21 (ANRIL), HDAC9, SORT1, and PITX2. Although polygenic risk scores (PRSs) hold promise for early risk prediction and stratification, their clinical utility remains limited by Eurocentric bias and missing heritability. Integrating multiomics approaches, such as functional genomics, transcriptomics, and epigenomics, enhances our understanding of stroke pathophysiology and paves the way for precision medicine. This review summarizes the current genetic landscape of ischemic stroke, emphasizing how evolving methodologies are shaping its prevention, diagnosis, and treatment. Full article
(This article belongs to the Special Issue Feature Review Papers in the ‘Genetics’ Section)
Show Figures

Figure 1

14 pages, 704 KiB  
Review
From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies
by Ana Belen Garcia-Ruano, Elena Sola-Garcia, Maria Martin-Istillarty and Jose Angel Urbano-Moral
J. Cardiovasc. Dev. Dis. 2025, 12(7), 274; https://doi.org/10.3390/jcdd12070274 - 17 Jul 2025
Viewed by 1379
Abstract
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests [...] Read more.
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests that this model does not fully capture the full spectrum and complexity of disease expression. Many patients do not harbor identifiable pathogenic variants, while others carrying well-known disease-causing variants remain unaffected. This highlights the role of incomplete penetrance, likely modulated by additional genetic modifiers. Recent advances in genomics have revealed a broader view of the genetic basis of cardiomyopathies, introducing new players such as common genetic variants identified as risk alleles, as well as intermediate-effect variants. This continuum of genetic risk, reflecting an overall genetic influence, interacts further with environmental and lifestyle factors, likely contributing together to the observed variability in clinical presentation. This model offers a more realistic framework for understanding genetic inheritance and helps provide a clearer picture of disease expression and penetrance. This review explores the evolving genetic architecture of cardiomyopathies, spanning from a monogenic foundation to intermediate-risk variants and complex polygenic contribution. Recognizing this continuum is essential for enhancing diagnostic accuracy, guiding family screening strategies, and enabling personalized patient management. Full article
(This article belongs to the Section Genetics)
Show Figures

Figure 1

15 pages, 5441 KiB  
Article
Task-Related EEG as a Biomarker for Preclinical Alzheimer’s Disease: An Explainable Deep Learning Approach
by Ziyang Li, Hong Wang and Lei Li
Biomimetics 2025, 10(7), 468; https://doi.org/10.3390/biomimetics10070468 - 16 Jul 2025
Viewed by 416
Abstract
The early detection of Alzheimer’s disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer’s disease research, as most studies have [...] Read more.
The early detection of Alzheimer’s disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer’s disease research, as most studies have focused on resting-state EEG. An interpretable deep learning framework—Interpretable Convolutional Neural Network (InterpretableCNN)—was utilized to identify AD-related EEG features. EEG data were recorded during three cognitive task conditions, and samples were labeled based on APOE genotype and polygenic risk scores. A 100-fold leave-p%-subjects-out cross-validation (LPSO-CV) was used to evaluate model performance and generalizability. The model achieved an ROC AUC of 60.84% across the tasks and subjects, with a Kappa value of 0.22, indicating fair agreement. Interpretation revealed a consistent focus on theta and alpha activity in the parietal and temporal regions—areas commonly associated with AD pathology. Task-related EEG combined with interpretable deep learning can reveal early AD risk signatures in healthy individuals. InterpretableCNN enhances transparency in feature identification, offering a valuable tool for preclinical screening. Full article
Show Figures

Graphical abstract

26 pages, 1239 KiB  
Review
Genomic and Precision Medicine Approaches in Atherosclerotic Cardiovascular Disease: From Risk Prediction to Therapy—A Review
by Andreas Mitsis, Elina Khattab, Michaella Kyriakou, Stefanos Sokratous, Stefanos G. Sakellaropoulos, Stergios Tzikas, Nikolaos P. E. Kadogou and George Kassimis
Biomedicines 2025, 13(7), 1723; https://doi.org/10.3390/biomedicines13071723 - 14 Jul 2025
Viewed by 500
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of global morbidity and mortality, prompting significant interest in individualized prevention and treatment strategies. This review synthesizes recent advances in genomic and precision medicine approaches relevant to ASCVD, with a focus on genetic risk scores, [...] Read more.
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of global morbidity and mortality, prompting significant interest in individualized prevention and treatment strategies. This review synthesizes recent advances in genomic and precision medicine approaches relevant to ASCVD, with a focus on genetic risk scores, lipid metabolism genes, and emerging gene editing techniques. A structured literature search was conducted across PubMed, Scopus, and Web of Science databases to identify key publications from the last decade addressing genomic mechanisms, therapeutic targets, and computational tools in ASCVD. Notable findings include the identification of causal genetic variants such as PCSK9 and LDLR, the development of polygenic risk scores for early prediction, and the use of deep learning algorithms for integrative multi-omics analysis. In addition, we highlight current and future therapeutic applications including PCSK9 inhibitors, RNA-based therapies, and CRISPR-based genome editing. Collectively, these advances underscore the promise of precision medicine in tailoring ASCVD prevention and treatment to individual genetic and molecular profiles. Full article
(This article belongs to the Special Issue Cardiovascular Diseases in the Era of Precision Medicine)
Show Figures

Figure 1

15 pages, 505 KiB  
Review
The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review
by Alessandro Viti, Leonardo Quarta, Paolo Zaurito, Alfonso Santangelo, Andrea Cosenza, Francesco Barletta, Simone Scuderi, Armando Stabile, Vito Cucchiara, Francesco Montorsi, Giorgio Gandaglia and Alberto Briganti
Cancers 2025, 17(14), 2334; https://doi.org/10.3390/cancers17142334 - 14 Jul 2025
Viewed by 272
Abstract
Genomic score testing is increasingly being integrated into the management of prostate cancer (PCa) to overcome the limitations of traditional clinical and pathological parameters. Genomic tools will represent essential components of precision medicine, supporting risk stratification, therapeutic decision-making, and personalized screening strategies. Genomic [...] Read more.
Genomic score testing is increasingly being integrated into the management of prostate cancer (PCa) to overcome the limitations of traditional clinical and pathological parameters. Genomic tools will represent essential components of precision medicine, supporting risk stratification, therapeutic decision-making, and personalized screening strategies. Genomic score tests can be broadly classified into two main categories: polygenic risk scores (PRSs) and tumor-derived genomic classifiers (GCs). While not yet standard in routine practice, several international guidelines recommend their selective use when results are likely to impact clinical management. PRSs estimate an individual’s susceptibility to PCa based on the cumulative effect of multiple low-penetrance germline genetic variants. These scores show promise in enhancing early detection strategies and identifying men at higher genetic risk who may benefit from tailored screening protocols. Tumor-based GCs assays provide prognostic information that complements conventional clinical and pathological parameters, and are used to guide treatment decisions, including eligibility for active surveillance (AS) or adjuvant therapy after treatment of the primary tumor. This review summarizes and analyzes the current evidence on genomic testing in PCa, with a focus on the available assays, their clinical applications, and their predictive and prognostic value across the disease spectrum. When integrated with clinical and pathological parameters, these tools have the potential to significantly enhance personalized care and should be increasingly considered in routine clinical practice. Full article
(This article belongs to the Special Issue Advances in the Clinical Management of Genitourinary Tumors)
15 pages, 382 KiB  
Article
Polygenic Risk, Modifiable Lifestyle Behaviors, and Metabolic Factors: Associations with HDL-C, Triglyceride Levels, and Cardiovascular Risk
by Danyel Chermon and Ruth Birk
Nutrients 2025, 17(13), 2244; https://doi.org/10.3390/nu17132244 - 7 Jul 2025
Viewed by 404
Abstract
Background/Objective: Dyslipidemia significantly contributes to cardiovascular disease (CVD), with triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) as key components. While genetics play a key role in lipid levels, the interplay between genetic predisposition and modifiable lifestyle factors remains unexplored in population-based studies. [...] Read more.
Background/Objective: Dyslipidemia significantly contributes to cardiovascular disease (CVD), with triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) as key components. While genetics play a key role in lipid levels, the interplay between genetic predisposition and modifiable lifestyle factors remains unexplored in population-based studies. We aimed to study the associations between weighted polygenic risk scores (wPRS) for TG and HDL-C, lifestyle, and metabolic factors with lipid traits and CVD. Methods: In this cross-sectional study, genotype, metabolic and lifestyle data from an Israeli cohort (n = 5584 adults) were analyzed. Individual wPRSs were constructed for TG and HDL-C based on SNPs associated with each trait. Gene-environment (lifestyle and metabolic factors) associations were evaluated by stratifying participants into high wPRS (≥90th percentile) vs. lower wPRS (<90th percentile). Results: High wPRSs were significantly associated with unfavorable lipid profiles (higher TG and lower HDL-C) and elevated TG/HDL-C ratios. Males and females in the high wPRSHDL had 97- and 10-fold higher odds of CVD, respectively (p < 0.0001). Individuals with a combined high wPRSHDL and wPRSTG showed a 44-fold increase in CVD odds (p < 0.0001). Obesity (BMI > 30) and HbA1c ≥5.7% were significantly associated with elevated TG and reduced HDL-C levels, particularly in high wPRSHDL and WPRSTG individuals, while moderate wine (1–3 drinks/week) consumption and coffee intake (≥1 cup/day) mitigated these effects, particularly among individuals with high wPRS. Conclusions: Risk stratification based on genetic, lifestyle and metabolic profiles may inform personalized prevention strategies for dyslipidemia. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Graphical abstract

18 pages, 2118 KiB  
Article
Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla
by Svetlana Nikolaevna Nekoval, Zhanneta Zaurovna Tukhuzheva, Arina Konstantinovna Churikova, Valentin Valentinovich Ivanov and Oksana Aleksandrovna Maskalenko
Horticulturae 2025, 11(7), 798; https://doi.org/10.3390/horticulturae11070798 - 5 Jul 2025
Viewed by 392
Abstract
Root-knot nematodes, Meloidogyne spp., are widespread phytoparasites that cause a significant reduction in the yield of tomato Solanum lycopersicum. In the Russian Federation, where the use of chemical nematicides is limited due to environmental and toxicological risks, the cultivation of resistant varieties [...] Read more.
Root-knot nematodes, Meloidogyne spp., are widespread phytoparasites that cause a significant reduction in the yield of tomato Solanum lycopersicum. In the Russian Federation, where the use of chemical nematicides is limited due to environmental and toxicological risks, the cultivation of resistant varieties and hybrids remains the most effective and environmentally safe method to control Meloidogyne. In the course of this study, the resistance screening of 20 tomato varieties/hybrids and 21 mutant lines from the collection of the FSBSI FRCBPP to M. hapla was carried out using a comprehensive approach that included morphological and biochemical analysis methods. Resistance was assessed by calculating the gall formation index, the degree of root system damage, and biochemical parameters of fruits—vitamin C content and titratable acidity. In addition, molecular screening was carried out using the SCAR marker Mi23 to identify the Mi-1.2 gene, known as a key factor in resistance to a number of Meloidogyne spp. Although Mi-1.2 is not typically associated with resistance to M. hapla, all genotypes carrying this gene showed phenotypic resistance. This unexpected correlation suggests the possible involvement of Mi-associated or parallel mechanisms and highlights the need for further investigation into noncanonical resistance pathways. It was found that when susceptible genotypes were infected with M. hapla, there was a tendency for the vitamin C content to decrease, while resistant lines retained values close to the control. The presence of the Mi-1.2 gene was confirmed in 9.5% of samples. However, the phenotypic resistance of some lines, such as Volgogradets, which do not contain a marker for the Mi-1.2 gene, indicates a polygenic nature of resistance, alternative genetic mechanisms, or the possible influence of epigenetic mechanisms. The obtained data highlight the potential of using the identified resistant genotypes in breeding programs and the need for further studies of the molecular mechanisms of resistance, including the search for new markers specific to M. hapla, to develop effective strategies for tomato protection in sustainable agriculture. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

18 pages, 24095 KiB  
Article
Genome-Wide Association Study of COVID-19 Breakthrough Infections and Genetic Overlap with Other Diseases: A Study of the UK Biobank
by Yaning Feng, Kenneth Chi-Yin Wong, Wai Kai Tsui, Ruoyu Zhang, Yong Xiang and Hon-Cheong So
Int. J. Mol. Sci. 2025, 26(13), 6441; https://doi.org/10.3390/ijms26136441 - 4 Jul 2025
Viewed by 430
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to substantial health and financial burdens worldwide, and vaccines provide hope for reducing the burden of this pandemic. However, vaccinated people remain at risk for SARS-CoV-2 infection. Genome-wide association studies (GWASs) may identify potential genetic [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has led to substantial health and financial burdens worldwide, and vaccines provide hope for reducing the burden of this pandemic. However, vaccinated people remain at risk for SARS-CoV-2 infection. Genome-wide association studies (GWASs) may identify potential genetic factors involved in the development of COVID-19 breakthrough infections (BIs); however, very few or no GWASs have been conducted for COVID-19 BI thus far. We conducted a GWAS and detailed bioinformatics analysis on COVID-19 BIs in a European population via the UK Biobank (UKBB). We conducted a series of analyses at different levels, including SNP-based, gene-based, pathway, and transcriptome-wide association analyses, to investigate genetic factors associated with COVID-19 BIs and hospitalized infections. The polygenic risk score (PRS) and Hoeffding’s test were performed to reveal the genetic relationships between BIs and other medical conditions. Two independent loci (LD-clumped at r2 = 0.01) reached genome-wide significance (p < 5 × 10−8), including rs36170929, which mapped to LOC102725191/VWDE, and rs28645263, which mapped to RETREG1. A pathway enrichment analysis highlighted pathways such as viral myocarditis, Rho-selective guanine exchange factor AKAP13 signaling, and lipid metabolism. The PRS analyses revealed significant genetic overlap between COVID-19 BIs and heart failure and between HbA1c and type 1 diabetes. Genetic dependence was also observed between COVID-19 BIs and asthma, lung abnormalities, schizophrenia, and type 1 diabetes on the basis of Hoeffding’s test. This GWAS revealed two significant loci that may be associated with COVID-19 BIs and a number of genes and pathways that may be involved in BIs. Genetic overlap with other diseases was identified. Further studies are warranted to replicate these findings and elucidate the mechanisms involved. Full article
Show Figures

Figure 1

Back to TopTop