Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Plant Material
2.3. Artificial Infestation of Tomato Plants with Northern Root-Knot Nematode
2.4. Assessment of the Plant Damage Based on Physiological Indicators
2.5. Assessment of the Impact of M. hapla Infection on Fruit Quality and Tomato Crop Structure Based on Biochemical Parameters
2.6. Statistical Data Processing
2.7. Molecular Screening
3. Results
3.1. Assessment of the Degree of Plant Damage Based on Physiological Indicators
3.2. Changes in Vitamin C and Titratable Acid Content Depending on the Resistance Degree of Tomatoes to Meloidogyne hapla
3.3. Molecular Screening with the Resistance Gene Marker Mi-1.2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RKN | Root-knot nematode |
SCAR | Sequence Characterized Amplified Region |
FSBSI FRCBPP | Federal Research Center of Biological Plant Protection |
Mo | Mutant tomato line from the FSBSI FRCBPP collection (e.g., Mo 147, Mo 500, etc.) |
CAPS | Cleaved Amplified Polymorphic Sequences |
PCR | Polymerase Chain Reaction |
MS | Murashige and Skoog medium |
ANOVA | Analysis of Variance |
HSD | Honestly Significant Difference (Tukey’s test) |
PTI | Pattern-Triggered Immunity |
ETI | Effector-Triggered Immunity |
ROS | Reactive Oxygen Species |
HR | hypersensitive response |
References
- Nekoval, S.N.; Churikova, A.K.; Chernyakovich, M.N.; Pridannikov, M.V. Primary Screening of Microorganisms against Meloidogyne hapla (Chitwood, 1949) under the Conditions of Laboratory and Vegetative Tests on Tomato. Plants 2023, 12, 3323. [Google Scholar] [CrossRef]
- Trudgill, D.L.; Blok, V.C. Apomictic, Polyphagous Root-Knot Nematodes: Exceptionally Successful and Damaging Biotrophic Root Pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77. [Google Scholar] [CrossRef] [PubMed]
- Bellafiore, S.; Shen, Z.; Rosso, M.-N.; Abad, P.; Shih, P.; Briggs, S.P. Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential. PLoS Pathog. 2008, 4, e1000192. [Google Scholar] [CrossRef] [PubMed]
- Stucky, T.; Sy, E.T.; Egger, J.; Mathlouthi, E.; Krauss, J.; De Gianni, L.; Ruthes, A.C.; Dahlin, P. Control of the Plant-Parasitic Nematode Meloidogyne incognita in Soil and on Tomato Roots by Clonostachys Rosea. J. Appl. Microbiol. 2024, 135, lxae111. [Google Scholar] [CrossRef] [PubMed]
- Palomares-Rius, J.E.; Hasegawa, K.; Siddique, S.; Vicente, C.S.L. Editorial: Protecting Our Crops—Approaches for Plant Parasitic Nematode Control. Front. Plant Sci. 2021, 12, 726057. [Google Scholar] [CrossRef]
- Patel, V.S.; Pitambara; Shukla, Y.M. Biochemical characterization of root knot nematode (Meloidogyne incognita) infected tomato cultivar (Solanum lycopersicum L.). J. Pharmacogn. Phytochem. 2018, 7, 1621–1629. [Google Scholar]
- Banora, M.; Almaghrabi, O.A.A. Differential Response of Some Nematode-Resistant and Susceptible Tomato Genotypes to Meloidogyne javanica Infection. J. Plant Prot. Res. 2019, 59, 113–123. [Google Scholar] [CrossRef]
- Nurlaili Afifah, E.; Murti, R.; Nuringtyas, T. Comparison of Metabolomics Expression in The Root and Leaf of Resistance and Susceptible Tomato against Root-Knot Nematode. AGRIVITA J. Agric. Sci. 2020, 42, 563–571. [Google Scholar] [CrossRef]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome Analysis of Root-knot Nematode (Meloidogyne incognita)-infected Tomato (Solanum lycopersicum) Roots Reveals Complex Gene Expression Profiles and Metabolic Networks of Both Host and Nematode during Susceptible and Resistance Responses. Mol. Plant Pathol. 2017, 19, 615–633. [Google Scholar] [CrossRef]
- Tian, H.; Wu, Z.; Chen, S.; Ao, K.; Huang, W.; Yaghmaiean, H.; Sun, T.; Xu, F.; Zhang, Y.; Wang, S.; et al. Activation of TIR Signalling Boosts Pattern-Triggered Immunity. Nature 2021, 598, 500–503. [Google Scholar] [CrossRef]
- Husain, A.; Khan, M.R.; Biswas, S.K.; Ahmad, G. Nematode-Fungi Interaction on Growth Parameter and Biochemical Changes on Tomato. Int. J. Chem. Stud. 2019, 7, 33–39. [Google Scholar]
- Bailey, D.M. The Seedling Test Method for Root-Knot-Nematode Resistance. Proc. Am. Soc. Hortic. Sci. 1941, 38, 573–575. [Google Scholar]
- Smith, P.G. Embryo Culture of a Tomato Species Hybrid. Proc. Am. Soc. Hortic. Sci. 1944, 44, 413–416. [Google Scholar]
- Ho, J.Y.; Weide, R.; Ma, H.M.; van Wordragen, M.F.; Lambert, K.N.; Koornneef, M.; Zabel, P.; Williamson, V.M. The Root-Knot Nematode Resistance Gene (Mi) in Tomato: Construction of a Molecular Linkage Map and Identification of Dominant cDNA Markers in Resistant Genotypes. Plant J. 1992, 2, 971–982. [Google Scholar] [CrossRef]
- Milligan, S.B.; Bodeau, J.; Yaghoobi, J.; Kaloshian, I.; Zabel, P.; Williamson, V.M. The Root Knot Nematode Resistance Gene Mi from Tomato Is a Member of the Leucine Zipper, Nucleotide Binding, Leucine-Rich Repeat Family of Plant Genes. Plant Cell 1998, 10, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Kulczynski, S.M.; Muniz, M.F.B.; Boiteux, L.S.; Carneiro, R.M.D.G. Reaction of a heterozygous tomato hybrid bearing the Mi-1.2 gene to 15 Meloidogyne species. Plant Pathol. 2020, 69, 944–952. [Google Scholar] [CrossRef]
- Gabriel, M.; Santos, M.F.A.; Mattos, V.S.; Gomes, A.C.M.M.; de Almeida, S.F.; Castagnone-Sereno, P.; Boiteux, L.S.; Cares, J.E.; Carneiro, R.M.D.G. Comparative Histopathology of Virulent and Avirulent Meloidogyne javanica Populations on Susceptible and Resistant Tomato Plants. Front. Plant Sci. 2024, 15, 1425336. [Google Scholar] [CrossRef]
- Williamson, V.M.; Kumar, A. Nematode Resistance in Plants: The Battle Underground. Trends Genet. 2006, 22, 396–403. [Google Scholar] [CrossRef]
- Bhattarai, K.K.; Xie, Q.-G.; Mantelin, S.; Bishnoi, U.; Girke, T.; Navarre, D.A.; Kaloshian, I. Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway. Mol. Plant-Microbe Interact. 2008, 21, 1205–1214. [Google Scholar] [CrossRef]
- Ammiraju, J.; Veremis, J.; Huang, X.; Roberts, P.; Kaloshian, I. The Heat-Stable Root-Knot Nematode Resistance Gene Mi-9 from Lycopersicon Peruvianum Is Localized on the Short Arm of Chromosome 6. Theor. Appl. Genet. 2003, 106, 478–484. [Google Scholar] [CrossRef]
- Jiang, L.; Ling, J.; Zhao, J.; Yang, Y.; Yang, Y.; Li, Y.; Jiao, Y.; Mao, Z.; Wang, Y.; Xie, B. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognita. Plant Biotechnol. J. 2023, 21, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Elling, A.A. Major Emerging Problems with Minor Meloidogyne Species. Available online: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-01-13-0019-RVW (accessed on 17 June 2025).
- Maleita, C.M.; dos Santos, M.C.V.; Curtis, R.H.C.; Powers, S.J.; Abrantes, I.M.d.O. Effect of the Mi gene on reproduction of Meloidogyne hispanica on tomato genotypes. Nematology 2011, 13, 939–949. [Google Scholar] [CrossRef]
- Kochetov, A.V.; Gavrilenko, T.A.; Afanasenko, O.S. New genetic technologies for plant protection against parasitic nematodes. Vavilovskii Zhurnal Genet. Sel. 2021, 25, 337–343. [Google Scholar] [CrossRef]
- Nekoval, S.N.; Chernyakovich, M.N.; Churikova, A.K.; Maskalenko, O.A.; Muravyov, V.S. Efficiency of the Fungi Isolated from the Tomato Rhizosphere to Control the North Root-Knot Nematode Meloidogyne hapla Chitwood 1949. Egypt. J. Biol. Pest Control 2024, 34, 61. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Zhang, Y. Plant Immunity: Danger Perception and Signaling. Cell 2020, 181, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Moloi, M.J.; van der Westhuizen, A.J. The Reactive Oxygen Species Are Involved in Resistance Responses of Wheat to the Russian Wheat Aphid. J. Plant Physiol. 2006, 163, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Yu, H.; Sun, E.; Zuo, C. Receptor-like Proteins: Decision-Makers of Plant Immunity. Phytopathol. Res. 2024, 6, 58. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Amari, K.; Niehl, A. Nucleic Acid-Mediated PAMP-Triggered Immunity in Plants. Curr. Opin. Virol. 2020, 42, 32–39. [Google Scholar] [CrossRef]
- Vidhyasekaran, P. (Ed.) PAMP Signaling in Plant Innate Immunity. In PAMP Signals in Plant Innate Immunity: Signal Perception and Transduction; Springer: Dordrecht, The Netherlands, 2014; pp. 17–161. ISBN 978-94-007-7426-1. [Google Scholar]
- Chinnapandi, B.; Bucki, P.; Fitoussi, N.; Kolomiets, M.; Borrego, E.; Miyara, S.B. Tomato SlWRKY3 Acts as a Positive Regulator for Resistance against the Root-Knot Nematode Meloidogyne javanica by Activating Lipids and Hormone-Mediated Defense-Signaling Pathways. Plant Signal. Behav. 2019, 14, 1601951. [Google Scholar] [CrossRef]
- Kumar, A.; Sichov, N.; Bucki, P.; Miyara, S.B. SlWRKY16 and SlWRKY31 of Tomato, Negative Regulators of Plant Defense, Involved in Susceptibility Activation Following Root-Knot Nematode Meloidogyne javanica Infection. Sci. Rep. 2023, 13, 14592. [Google Scholar] [CrossRef]
- Frolova, T.S.; Cherenko, V.A.; Sinitsyna, O.I.; Kochetov, A.V. Genetic Aspects of Potato Resistance to Late Blight. Vavilovskii Zhurnal Genet. Sel. 2021, 25, 164–170. [Google Scholar] [CrossRef]
- German, L.; Yeshvekar, R.; Benitez-Alfonso, Y. Callose Metabolism and the Regulation of Cell Walls and Plasmodesmata during Plant Mutualistic and Pathogenic Interactions. Plant Cell Environ. 2023, 46, 391–404. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Fan, B.; Zhu, C.; Chen, Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int. J. Mol. Sci. 2021, 22, 2393. [Google Scholar] [CrossRef] [PubMed]
- Flor, H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Vos, P.; Simons, G.; Jesse, T.; Wijbrandi, J.; Heinen, L.; Hogers, R.; Frijters, A.; Diergaarde, P.; Reijans, M.; Fierens-Onstenk, J.; et al. The Tomato Mi-1 Gene Confers Resistance to Both Root-Knot Nematodes and Potato Aphids. Nat. Biotechnol. 1999, 16, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Gleason, C.A.; Liu, Q.L.; Williamson, V.M. Silencing a Candidate Nematode Effector Gene Corresponding to the Tomato Resistance Gene Mi-1 Leads to Acquisition of Virulence. Available online: https://apsjournals.apsnet.org/doi/10.1094/MPMI-21-5-0576 (accessed on 13 May 2025).
- Mantelin, S.; Bhattarai, K.K.; Jhaveri, T.Z.; Kaloshian, I. Mi-1-Mediated Resistance to Meloidogyne incognita in Tomato May Not Rely on Ethylene but Hormone Perception through ETR3 Participates in Limiting Nematode Infection in a Susceptible Host. PLoS ONE 2013, 8, e63281. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D. Plant Pathogens and Integrated Defence Responses to Infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- Bhattarai, K.K.; Li, Q.; Liu, Y.; Dinesh-Kumar, S.P.; Kaloshian, I. The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1. Plant Physiol. 2007, 144, 312–323. [Google Scholar] [CrossRef]
- Shirasu, K. The HSP90-SGT1 Chaperone Complex for NLR Immune Sensors. Annu. Rev. Plant Biol. 2009, 60, 139–164. [Google Scholar] [CrossRef]
- Handbook of Pesticides and Agrochemicals—AgroXXI. Available online: https://www.agroxxi.ru/goshandbook (accessed on 31 March 2025).
- World Health Organization. WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000566-2. [Google Scholar]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Churikova, A.; Nekoval, S. Biological Agents and Their Metabolites to Control Meloidogyne spp. When Growing Vegetables (Review). S. Russ. Ecol. Dev. 2022, 17, 175–186. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; M. M., I.; H. El-awady, H.; Yan, S.; Qi, S.; Liu, J.; Cheng, G.-t.; Liang, Y. Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes 2019, 10, 925. [Google Scholar] [CrossRef] [PubMed]
- Database “Characteristics of Tomato Marker Forms by Morphological Features and Organic Acid Content”. Available online: https://www.elibrary.ru/item.asp?edn=ecbhnd (accessed on 13 May 2025).
- Konrat, A.N.; Lychagina, S.V.; Shesteperov, A.A. Methodological instructions “methodology for in vitro screening of strains, isolates of bacteria with parasitic and nonmaticidal properties”. Theory Pract. Parasit. Dis. Control 2021, 22, 575–590. [Google Scholar] [CrossRef]
- Guskova, L.A.; Metlitskiy, O.Z.; Danilov, L.G.; Belonozhko, G.A.; Bolotniy, A.V.; Zorieva, T.D.; Khryanina, R.A. Methodological Guidelines for State Testing of Nematicides. Available online: https://standartgost.ru/g/pkey-14293733774 (accessed on 13 May 2025).
- Sasanelli, N.; Toderas, I.; Ciccarese, F.; Iurcu-Straistaru, E.; Rusu, S.; Toderas, L.; Renčo, M.; Franchi, M.; Gallo, M.; Bivol, A.; et al. sustainable management of corky root and root-knot nematodes by the biocontrol agent Aphanocladium album isolate MX-95. In Actual Problems of Zoology and Parasitology: Achievements and Prospects; Institute of Zoology, Academy of Sciences of Moldova: Chisinau, Republic of Moldova, 2017. [Google Scholar]
- Kumar, D. Nematophagous Fungi Associated with Root Galls of Rice Caused by Meloidogyne graminicola and its Control by Arthrobotrys dactyloides and Dactylaria brochopaga. J. Phytopathol. 2007, 155, 193–197. [Google Scholar]
- Taylor, A.L.; Sasser, J. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne spp.); Department of Plant Pathology, North Carolina State University and United States Agency for International Development: Raleigh, NC, USA, 1978; p. 111. [Google Scholar]
- GOST 24556-89; Processed Fruits and Vegetables. Methods for the Determination of Vitamin C. Available online: https://internet-law.ru/gosts/gost/11266/ (accessed on 20 March 2025).
- GOST ISO 750-2013; Processed Fruits and Vegetables. Determination of Titratable Acidity. Available online: https://internet-law.ru/gosts/gost/55653/ (accessed on 13 May 2025).
- GOST 25555.0-82; Processed Fruits and Vegetables. Methods for Determination of Titratable Acidity. Available online: https://ohranatruda.ru/ot_biblio/standart/175895/ (accessed on 16 October 2024).
- How to Perform Tukey HSD Test in R. R-bloggers. Available online: https://www.r-bloggers.com/2021/08/how-to-perform-tukey-hsd-test-in-r/ (accessed on 13 May 2025).
- ANOVA and Tukey Test in R Software in Just Few Steps! Available online: https://avikarn.com/2019-07-09-ANOVA/ (accessed on 13 May 2025).
- Padilla Hurtado, B.; Morillo Coronado, Y.; Tarapues, S.; Burbano, S.; Soto-Suárez, M.; Urrea, R.; Ceballos, N. Evaluation of Root-Knot Nematodes (Meloidogyne spp.) Population Density for Disease Resistance Screening of Tomato Germplasm Carrying the Gene Mi-1. Chil. J. Agric. Res. 2022, 82, 157. [Google Scholar] [CrossRef]
- Pugacheva, I.G.; Frantsuzenok, A.V.; Baeva, I.E.; Leschina, N.Y.; Dobrodkin, M.M.; Nekrashevich, N.A.; Babak, O.G.; Kilchevskiy, A.V. Application of Molecular Marker Methods for Disease Resistance Traits and Fruit Pigment Composition in Tomato (Solanum lycopersicum L.) Breeding for Open Field Cultivation. Veg. Grow. 2023, 30, 117–131. [Google Scholar]
- One-Way ANOVA Test in R—Easy Guides—Wiki—STHDA. Available online: https://www.sthda.com/english/wiki/one-way-anova-test-in-r (accessed on 13 May 2025).
- Rai, N.; Singh, S.; Rai, A.; Singh, R. Resistance Response of Tomato Genotypes Against Root-Knot Nematode, Meloidogyne incognita. Indian J. Nematol. 2010, 40, 237–239. [Google Scholar]
- Foyer, C.H.; Noctor, G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
Phytopathogen | Gene | Marker | Primer Sequence 5′-3′ | Temperature | Size of Diagnostic Fragment |
---|---|---|---|---|---|
Meloidogyne spp. | Mi-1.2 | Mi23SCAR | F: tggaaaatgttgaatttcttttg R: gcatactatatggcttgttttaccc | 54 °C | 380 bp |
Resistance Level | Mutant Line | Variety/Hybrid |
---|---|---|
Immune (no galls) | Mo 147, Mo 500, Mo 748, Mo 566 | Volgogradets, Evpator |
Highly resistant (1–2 galls) | Mo 74, Mo 393 | Beliy naliv 241, Titan rozoviy, Malinka, Chelnok |
Resistant (3–10 galls) | Mo 600 | Rio Grande, Hyperbola, Torbay, Zolotoy grebeshok |
Moderately resistant (11–30 galls) | Mo 353, Mo 572, Mo 588, Mo 117, Mo 311, Mo 342, Mo 556, Mo 623, Mo 741, Mo 406, Mo 726 | Lyubimets Podmoskoviya, Oranzhevoe solnyshko, Polosatiy reis, Prima Donna F1, Rumyaniy shar F1, Ranniy-83, Klubnichniy dessert, Medoviy Naliv, Oranzzheviy slon |
Susceptible (31–100 galls) | Mo 304, Mo 463, Mo 871 | Persey |
Highly susceptible (100 and more galls) | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekoval, S.N.; Tukhuzheva, Z.Z.; Churikova, A.K.; Ivanov, V.V.; Maskalenko, O.A. Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla. Horticulturae 2025, 11, 798. https://doi.org/10.3390/horticulturae11070798
Nekoval SN, Tukhuzheva ZZ, Churikova AK, Ivanov VV, Maskalenko OA. Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla. Horticulturae. 2025; 11(7):798. https://doi.org/10.3390/horticulturae11070798
Chicago/Turabian StyleNekoval, Svetlana Nikolaevna, Zhanneta Zaurovna Tukhuzheva, Arina Konstantinovna Churikova, Valentin Valentinovich Ivanov, and Oksana Aleksandrovna Maskalenko. 2025. "Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla" Horticulturae 11, no. 7: 798. https://doi.org/10.3390/horticulturae11070798
APA StyleNekoval, S. N., Tukhuzheva, Z. Z., Churikova, A. K., Ivanov, V. V., & Maskalenko, O. A. (2025). Screening of Mutant Lines and Varieties/Hybrids of Tomato (Solanum lycopersicum) for Resistance to the Northern Root-Knot Nematode Meloidogyne hapla. Horticulturae, 11(7), 798. https://doi.org/10.3390/horticulturae11070798