Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = polyethylene terephthalate glycol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4013 KiB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

28 pages, 6128 KiB  
Article
Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples
by Leons Stankevics, Olga Bulderberga, Jevgenijs Sevcenko, Roberts Joffe and Andrey Aniskevich
Polymers 2025, 17(15), 2075; https://doi.org/10.3390/polym17152075 - 29 Jul 2025
Viewed by 162
Abstract
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was [...] Read more.
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was loaded with constant stress for 5 h, and a recovery phase with no applied stress was observed. Another group of samples was loaded for 20 h without an additional deformation recovery phase. The continuous constant stress application results on the sample were analysed, and an overall effect of anisotropy on the samples was observed. Several models describing viscoelastic deformation were considered to adhere to experimental data, with the Prony series and general cubic theory models used in the final analysis. The models could describe experimental results up to 50% and 70% of sample strength, respectively. The analysis confirmed the nonlinear behaviour of printed samples under constant stress and the significant effect of anisotropy introduced by the 3D printing process on the material’s elastic properties. The viscoelastic properties in both directions were described using the same parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 437
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

23 pages, 4048 KiB  
Article
Experimental Study on Hybrid Additive and Subtractive Manufacturing Processes for Improving Surface Quality
by Monika Jabłońska
Materials 2025, 18(13), 3136; https://doi.org/10.3390/ma18133136 - 2 Jul 2025
Viewed by 520
Abstract
Hybrid machining has considerable potential for industrial applications. The process allows the limitations of additive manufacturing to be reduced and high-precision components to be produced. This article discusses tests determining the impact of 3D printing parameters, machining parameters, and selected milling tools on [...] Read more.
Hybrid machining has considerable potential for industrial applications. The process allows the limitations of additive manufacturing to be reduced and high-precision components to be produced. This article discusses tests determining the impact of 3D printing parameters, machining parameters, and selected milling tools on achieving defined surface roughness values in parts made of PETG (polyethylene terephthalate glycol). Perpendicular-shaped samples were printed by fused deposition modelling (FDM) using variable layer heights of 0.1 mm and 0.2 mm and variable feed rates of 90, 100, 110, and 120 mm/s. Surface roughness values, topography, and Abbott–Firestone curves were determined using a Keyence VR-6000 profilometer. Straight grooves were machined in the test samples using a DMG MORI CMX 600V milling machine with a rotary burr, single-edge spiral burr cutter and spiral endmill. The microstructure was examined using a Motic inverted microscope. The surface roughness parameters of the grooves were investigated. The results confirmed that the use of hybrid machining (with a printed layer height Lh = 0.1 mm, Vfeed = 120 mm/s, and a cutter–rotary burr) allows for lower surface roughness parameters, i.e., Ra = 1.54 μm. The relationships developed between printing, cutting, and milling tool parameters can be employed to predict the roughness parameters of filaments with similar characteristics. Full article
Show Figures

Figure 1

15 pages, 5034 KiB  
Article
Tribological Analysis of PETG Fire-Retardant Samples Manufactured by FFF
by Moises Batista, Francisco de Paula Rodriguez-Gonzalez, Gabriela Rodriguez-Garcia, Javier Garcia-Fernandez and Juan Manuel Vazquez-Martinez
Appl. Sci. 2025, 15(12), 6705; https://doi.org/10.3390/app15126705 - 15 Jun 2025
Viewed by 496
Abstract
Additive manufacturing via Fused Filament Fabrication (FFF) has enabled the development of functional components with customized mechanical properties. In this context, the use of polymers with flame-retardant additives offers an ideal solution for sectors such as aerospace, where fire resistance is a top [...] Read more.
Additive manufacturing via Fused Filament Fabrication (FFF) has enabled the development of functional components with customized mechanical properties. In this context, the use of polymers with flame-retardant additives offers an ideal solution for sectors such as aerospace, where fire resistance is a top priority. However, the tribological properties of these materials have not yet been sufficiently studied, despite their relevance in applications subjected to friction or wear. This study analyzes the tribological behavior of parts manufactured using PETG (Polyethylene Terephthalate Glycol) and flame-retardant PETG (PETG FP) through dry condition Ball-on-Disk tests. The influence of manufacturing parameters such as extrusion temperature and layer height on the coefficient of friction (CoF), surface wear, and roughness is investigated. The results show that PETG FP exhibits an increased CoF compared to conventional PETG, although it demonstrates more stable behavior at elevated temperatures. Statistical analysis via ANOVA reveals that material type and layer height significantly affect tribological properties, while temperature plays a secondary role. This study provides key insights for the selection of polymeric materials in environments with critical functional demands. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

12 pages, 3107 KiB  
Article
A Comparative In Vitro Analysis of Attachment and Enhanced Structural Features for Molar Distalization in Clear Aligner Therapy
by Youn-Kyung Choi, Min-Jeong Jee, Sung-Hun Kim, Seong-Sik Kim, Soo-Byung Park and Yong-Il Kim
Appl. Sci. 2025, 15(12), 6655; https://doi.org/10.3390/app15126655 - 13 Jun 2025
Viewed by 363
Abstract
This study evaluated the effects of different clear aligner (CA) designs on forces and moments during maxillary second molar distalization. Four designs were tested: attachment only (group 1), neither attachment nor enhanced structure (group 2), a combination of attachment and enhanced structure (group [...] Read more.
This study evaluated the effects of different clear aligner (CA) designs on forces and moments during maxillary second molar distalization. Four designs were tested: attachment only (group 1), neither attachment nor enhanced structure (group 2), a combination of attachment and enhanced structure (group 3), and enhanced structure only (group 4). CAs were fabricated from thermoformed polyethylene terephthalate glycol with 30 CAs per group. Forces and moments were measured using a multi-axis transducer as the molars were distally displaced by 0.25 mm. All groups experienced buccodistal and intrusive forces. Group 3 showed the highest distalizing force (Fy = 2.51 ± 0.37 N) and intrusive force (Fz = −2.04 ± 0.48 N) and also the largest rotational moment (Mz = 3.89 ± 0.71 Nmm). Groups 3 and 4 (with enhanced structures) demonstrated significant intrusive forces (p < 0.05). Most groups exhibited mesiodistal angulation, lingual inclination, and distal rotational moments. Group 2 had the lowest moment-to-force ratio (Mx/Fy = 3.27 ± 0.44 mm), indicating inefficient bodily movement. Group 3 demonstrated significantly greater moments across all axes compared to other groups. The results indicate that designs incorporating enhanced structures with attachments increase CA stiffness and applied forces/moments, enhancing distalization efficiency while minimizing vertical side effects. This suggests that, clinically, reinforced CAs can serve as a simple yet effective modification to existing protocols in Class II orthodontic cases, enabling more efficient molar distalization without requiring complete appliance redesign or additional fabrication and allowing easy adaptation to individual treatment needs. Full article
(This article belongs to the Special Issue Advances in Orthodontics and Dentofacial Orthopedics)
Show Figures

Figure 1

28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1138
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

17 pages, 5845 KiB  
Article
Mechanical Characterization and Interface Evaluation of Multi-Material Composites Manufactured by Hybrid Fused Deposition Modeling (HFDM)
by Salih Dağlı
Polymers 2025, 17(12), 1631; https://doi.org/10.3390/polym17121631 - 12 Jun 2025
Viewed by 490
Abstract
In this study, the mechanical behavior and interfacial bonding characteristics of multi-material composites produced using the Hybrid Fused Deposition Modeling (HFDM) technique were systematically investigated. Polylactic Acid (PLA), Polyethylene Terephthalate Glycol (PETG), and Acrylonitrile Butadiene Styrene (ABS) filaments were utilized within a single [...] Read more.
In this study, the mechanical behavior and interfacial bonding characteristics of multi-material composites produced using the Hybrid Fused Deposition Modeling (HFDM) technique were systematically investigated. Polylactic Acid (PLA), Polyethylene Terephthalate Glycol (PETG), and Acrylonitrile Butadiene Styrene (ABS) filaments were utilized within a single structure to explore the effects of material combinations on mechanical performance. Specimens were fabricated using two distinct levels of infill density (50–100%) and raster angle (45–90°) to evaluate the influence of these parameters on tensile strength, flexural resistance, and impact toughness. Experimental tests were conducted following ASTM standards, and microstructural examinations were performed using Scanning Electron Microscopy (SEM) to assess interfacial adhesion between different polymers. The results revealed that PETG demonstrated the highest tensile strength among single-material samples, while the PLA-PETG-ABS configuration exhibited notable mechanical stability among hybrid structures. Increasing infill density and raster angle significantly enhanced mechanical performance across all configurations. SEM analyses confirmed that interfacial bonding quality critically affected structural integrity, with better adhesion observed in PLA–PETG interfaces compared to PLA–ABS transitions. The potential of HFDM in developing tailored multi-material components with optimized mechanical properties offers valuable insights for the advancement of functional additive manufacturing applications in engineering fields. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

14 pages, 4889 KiB  
Article
Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film
by Zibin Weng, Yahong Li, Youqian Su, Zechen Li, Jingnan Guo, Ziming Lv and Chen Liang
Micromachines 2025, 16(6), 653; https://doi.org/10.3390/mi16060653 - 29 May 2025
Viewed by 453
Abstract
In this paper, we design an ultra-thin broadband transparent absorber based on indium tin oxide (ITO) film, and we choose polymethyl methacrylate (PMMA) high-transmittance dielectric sheet instead of the traditional dielectric sheet and polyethylene glycol terephthalate (PET) as the ITO film substrate. Simulation [...] Read more.
In this paper, we design an ultra-thin broadband transparent absorber based on indium tin oxide (ITO) film, and we choose polymethyl methacrylate (PMMA) high-transmittance dielectric sheet instead of the traditional dielectric sheet and polyethylene glycol terephthalate (PET) as the ITO film substrate. Simulation results indicate that the absorber achieves more than 90% absorption for positively incident electromagnetic waves in the broadband range of 5–21.15 GHz with a fractional bandwidth (FBW) of 123.5% and a thickness of 6.3 mm (0.105 λL, where λL is the wavelength at the lowest frequency). Meanwhile, this paper introduces the interference theory to explain the broadband absorption mechanism of the absorber, which makes up for the defect that the equivalent circuit model (ECM) method cannot analyze the oblique incidence electromagnetic wave. This paper also compares the HFSS simulation results, ECM theoretical values, and interference theoretical values under positively incident electromagnetic waves to clarify the advantages of interference theory in the design of wave absorbers. Full article
Show Figures

Figure 1

16 pages, 8676 KiB  
Article
The Application of Montmorillonite (MMT), Halloysite (HNT), and Carbon Nanotubes (CNT) in Toughened Polyethylene Terephthalate Glycol/Polycarbonate (PETG/PC) Blends: The Critical View on the Use of Nanosized Fillers as Phase Structure Modifiers
by Mateusz Markowski, Adam Piasecki and Jacek Andrzejewski
Polymers 2025, 17(11), 1463; https://doi.org/10.3390/polym17111463 - 25 May 2025
Viewed by 542
Abstract
The subject of the conducted study was primarily focused on the development of a new type of polymer blend modified with the use of nanosized fillers. The research concept involved the use of polycarbonate/polyethylene terephthalate glycol (PETG/PC) blends modified with the EBA-GMA impact [...] Read more.
The subject of the conducted study was primarily focused on the development of a new type of polymer blend modified with the use of nanosized fillers. The research concept involved the use of polycarbonate/polyethylene terephthalate glycol (PETG/PC) blends modified with the EBA-GMA impact modifier (ethylene–butylene–acrylonitrile copolymer) and three different types of nanofillers: montmorillonite (MMT), halloysite (HNT), and carbon nanotubes (CNT) of two types. The combination of PC, PETG, and EBA phases was used in order to achieve enhanced mechanical performance and stable processing properties. The results of the conducted study revealed that for the toughened PETG/PC/EBA blends, the impact resistance was strongly improved from the reference by 1.5 kJ/m2 to 15 kJ/m2. However, the results for the nanocomposites revealed that the MMT and HNT additions were limiting the impact strength. In contrast, the Charpy test results for CNT were again close to 15 kJ/m2. The results of the thermal resistance measurements again revealed more favorable properties for CNT-modified PETG/PC/EBA blends. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3434 KiB  
Article
Experimental Study of Comprehensive Performance Analysis Regarding the Dynamical/Mechanical Aspects of 3D-Printed UAV Propellers and Sound Footprint
by Florin Popișter
Polymers 2025, 17(11), 1466; https://doi.org/10.3390/polym17111466 - 25 May 2025
Viewed by 832
Abstract
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets [...] Read more.
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets accessibility for individual and small-scale users, the results have broader implications for scalable UAV propulsion systems. The research was conducted within an experimental UAV development framework aimed at optimizing propeller performance through strategic material selection, geometrical design optimization, and additive manufacturing processes. Six propeller variants were manufactured using widely available thermoplastic polymers, including polyethylene terephthalate glycol-modified (PETG) and thermoplastic polyurethane (TPU), as well as photopolymer-based propellers fabricated using vat photopolymerization, also known as digital light processing (DLP). Mechanical and aerodynamic characterizations were performed to assess the structural integrity, flexibility, and performance of each material under dynamic conditions. Two blade configurations, a toroidal propeller with anticipated aerodynamic advantages and a conventional tri-blade propeller (Gemfan 51466-3)—were comparatively analyzed. The primary contribution of this work is the systematic evaluation of performance metrics such as thrust generation, acoustic signature, mechanical strength, and thermal stress imposed on the electrical motor, thereby establishing a benchmark for polymer-based propeller fabrication via additive manufacturing. The findings underscore the potential of polymeric materials and layer-based manufacturing techniques in advancing the design and production of UAV propulsion components. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

21 pages, 20123 KiB  
Article
Stress-Responsive Spatial Voronoi Optimization for Lightweight Architectural Shell Structures
by Haining Zhou, Xinyu Shi, Da Wan, Weijiu Cui, Kang Bi, Wenxuan Zhao, Rong Jiao and Hiroatsu Fukuda
Buildings 2025, 15(9), 1547; https://doi.org/10.3390/buildings15091547 - 3 May 2025
Viewed by 692
Abstract
Gradient porous structures (GPS) offer significant mechanical and functional advantages over homogeneous counterparts. This paper proposes a computational design framework utilizing spatial Voronoi diagrams to create lightweight, stress-responsive spatial frames optimized for architectural double-curvature arched shell roofing components. The method integrates Solid Isotropic [...] Read more.
Gradient porous structures (GPS) offer significant mechanical and functional advantages over homogeneous counterparts. This paper proposes a computational design framework utilizing spatial Voronoi diagrams to create lightweight, stress-responsive spatial frames optimized for architectural double-curvature arched shell roofing components. The method integrates Solid Isotropic Material with Penalization (SIMP)-based topology optimization (TO) to establish initial stress-informed material distributions, adaptive Voronoi control point (CP) placement guided by localized stress data, and a bi-objective genetic algorithm (GA) optimizing maximum and average displacement. Following optimization, a weighted Lloyd relaxation (LR) refines Voronoi cells into spatial frameworks with varying densities corresponding to stress gradients. Finite Element Analysis (FEA) demonstrates that the optimized Voronoi-driven GPS achieves notable improvements, revealing up to 79.7% material volume reduction and significant improvement in structural efficiency, achieving a stiffness-to-weight ratio (SWR) exceeding 2200 in optimized configurations. Furthermore, optimized structures consistently maintain maximum von Mises (MVM) stresses below 20 MPa, well within the allowable yield strength of the Polyethylene Terephthalate Glycol (PETG) material (53 MPa). The developed framework effectively bridges structural performance, material efficiency, and aesthetic considerations, offering substantial potential for application in advanced, high-performance architectural systems. Full article
Show Figures

Figure 1

15 pages, 7197 KiB  
Article
Chemical Recycling of Catalytic Glycolysis of Polyethylene Terephthalate with Potassium-Rich Biomass
by Zhe Bai, Zhixian Bao and Haoquan Hu
Recycling 2025, 10(3), 85; https://doi.org/10.3390/recycling10030085 - 2 May 2025
Viewed by 1568
Abstract
Polyethylene terephthalate (PET) products are ubiquitous in daily life, offering convenience but posing significant environmental challenges due to their persistence and the difficulty of recycling them. Improper disposal of waste PET contributes to severe pollution and resource loss. Chemical degradation has emerged as [...] Read more.
Polyethylene terephthalate (PET) products are ubiquitous in daily life, offering convenience but posing significant environmental challenges due to their persistence and the difficulty of recycling them. Improper disposal of waste PET contributes to severe pollution and resource loss. Chemical degradation has emerged as one of the most effective methods for recovering and reusing waste PET. This article introduces a catalytic glycolysis strategy for efficient and environmentally sustainable PET recycling using potassium-rich biomass, specifically banana peels. The study demonstrated that K2O and K2CO3, derived from calcined banana peels, significantly catalyze the glycolysis of PET. Under optimal conditions, complete degradation of PET was achieved within 1.5 h at 180 °C, without additional chemical reagents. Product distribution confirmed that high-purity bis(2-hydroxyethyl) terephthalate could be obtained. The interaction between K2CO3 and ethylene glycol plays a critical role in determining the competition between glycolysis and alkaline hydrolysis. Furthermore, Density Functional Theory calculations provided valuable insights into the transesterification process during glycolysis. The reaction system also demonstrated excellent compatibility with colored PET products. This study successfully realized the simultaneous recycling of post-consumer PET and banana peels, offering a novel and sustainable approach to waste valorization. Full article
Show Figures

Graphical abstract

12 pages, 3238 KiB  
Article
Influence of Polymers Surface Roughness on Noise Emissions in 3D-Printed UAV Propellers
by Florin Popișter, Horea Ștefan Goia and Paul Ciudin
Polymers 2025, 17(8), 1015; https://doi.org/10.3390/polym17081015 - 9 Apr 2025
Viewed by 596
Abstract
Following the rising popularity of Unmanned Aerial Vehicles (UAVs) among large-scale users, in the form of domestic as well as professional drones, with applications in domains such as safety (e.g., surveillance drones), terrain mapping (using geo-scanning UAVs), videography drones, and high performance drones [...] Read more.
Following the rising popularity of Unmanned Aerial Vehicles (UAVs) among large-scale users, in the form of domestic as well as professional drones, with applications in domains such as safety (e.g., surveillance drones), terrain mapping (using geo-scanning UAVs), videography drones, and high performance drones used in FPV (First Person View) drone competitions—as well as the rising wide accessibility of Fused Filament Fabrication (FFF)—especially considering the recent apparition and popularization of 3D printers capable of displaying exponential increases in performance metrics, the present work takes into consideration the practice of fabricating UAV propellers by means of FFF, focusing on the theoretical, as well as on the practical aspects of the roughness and quality observed at the level of the resulting surfaces. The paper proposes a set of propeller configurations obtained by combining popular propeller geometries, such as the Gemfan 51466-3 three-bladed propeller and the novel Toroidal propeller model, with a range of different fabrication materials, such as the Polyethylene Terephthalate Glycol (PETG) filament and the Polylactic Acid (PLA) filament. The main aim of the study is to reveal observations on the influence that the surface quality has on the performance metrics of a propeller. Based on the practical work, which aims to develop a comparative study between two drone propeller geometries manufactured by a nonconventional process, 3D printing, the practical applications in the study were carried out using low-cost equipment in order to evaluate the results obtained in a domestic setting. The study involves the identification of the noise values produced by the two geometries due to the roughness of the propeller surfaces. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

22 pages, 2381 KiB  
Article
Modeling the Kinetics of Polyethylene Terephthalate and Polyesters with Terminal Hydroxyl Groups Transesterification Reactions
by Kirill A. Kirshanov, Roman V. Toms, Gadir Sh. Aliev, Daniil A. Ismaylov, Natalya Yu. Shagina, Pavel V. Sokolovskiy, Guliya R. Nizameeva and Alexander Yu. Gervald
Polymers 2025, 17(7), 992; https://doi.org/10.3390/polym17070992 - 6 Apr 2025
Cited by 1 | Viewed by 738
Abstract
Interchain exchange, proceeded by the transesterification mechanism, allows one to obtain polyethylene terephthalate-based polyester products, bypassing the stage of molecular weight reduction and polycondensation used in classical methods of chemical recycling. A kinetic model is presented, which describes the change in the concentrations [...] Read more.
Interchain exchange, proceeded by the transesterification mechanism, allows one to obtain polyethylene terephthalate-based polyester products, bypassing the stage of molecular weight reduction and polycondensation used in classical methods of chemical recycling. A kinetic model is presented, which describes the change in the concentrations of bound and terminal units of ethylene glycol from PET and glycol from another polyester, as well as free molecules of ethylene glycol and another glycol, during transesterification reactions for the first time. Experimental data on the dependence of the degree of randomness and conversion on timeduring the interaction of polyethylene terephthalate and oligodiethylene terephthalate with terminal hydroxyl groups with a number-average molecular weight of 860 g/mol in different ratios were obtained. Molecular weight characteristics of the products of PET and oligoesters with hydroxyl end group interchain exchange, with number-average molecular weights from 610 to 860 g/mol, were also investigated. The simulation results were also compared with published data on the dependence of the degree of randomness and conversion on time during ether exchange in PET/PEN blends. The developed kinetic model was found to be in agreement with the experimental data. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Back to TopTop