Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film
Abstract
:1. Introduction
2. Design and Analysis
2.1. Modular Design
2.2. Interference Theory Analysis
3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fionov, A.; Kraev, I.; Yurkov, G.; Solodilov, V.; Zhukov, A.; Surgay, A.; Kuznetsova, I.; Kolesov, V. Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility. Polymers 2022, 14, 3026. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Faruque, M.R.I.; Abdullah, S.; Islam, M.T.; Al-mugren, K.S. A Coding Based Metasurface Absorber with Triple Circular Ring Resonator for Broadband RCS Reduction and High EMI Shielding Effectiveness. Results Eng. 2024, 21, 101791. [Google Scholar] [CrossRef]
- Zheng, L.; Zuo, Y.; Song, D.; Li, X.; Lou, Z.; Wu, Y. Green Strategy for a Large-Format, Superhard, and Insulated Electromagnetic Wave Absorber Inspired by a Natural Feature of a Conch Shell. ACS Nano 2024, 18, 29457–29468. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Huang, L.; Song, L.; Liu, J.; Zhang, T.; Yang, X.; Liu, J.; Ma, X.; Di, J.; et al. Research Advances in Composition, Structure and Mechanisms of Microwave Absorbing Materials. Compos. Part B Eng. 2021, 224, 109173. [Google Scholar] [CrossRef]
- Si, T.; Xie, S.; Ji, Z.; Ma, C.; Wu, Z.; Wu, J.; Wang, J. Modification of Basalt Fiber with Ni and Carbon Black Formed Synergistic Microstructure for Enhanced Electromagnetic Wave Absorption. J. Mater. Sci. Mater. Electron. 2023, 34, 1035. [Google Scholar] [CrossRef]
- Xie, A.; Ma, Z.; Xiong, Z.; Li, W.; Jiang, L.; Zhuang, Q.; Cheng, S.; Lu, W. Conjugate Ferrocene Polymer Derived Magnetic Fe/C Nanocomposites for Electromagnetic Absorption Application. J. Mater. Sci. Technol. 2024, 175, 125–131. [Google Scholar] [CrossRef]
- Javed, Z.; Rasool, R.T.; Alhummiany, H.; Majeed, A.; Gulbadan, S.; Ashraf, G.A.; Al-Anazy, M.M.; Irfan, M.; Yousef, E.S.; Akhtar, M.N.; et al. Structural, Morphological, Dielectric, and Spectral Properties of Sr-Mg-Ho X-Type Magnetic Nanomaterials Suitable for Microwave Absorption Application. Vacuum 2024, 222, 112965. [Google Scholar] [CrossRef]
- Feng, J.; Wu, L.-S.; Mao, J.-F. Switchable Broadband/Narrowband Absorber Based on a Hybrid Metasurface of Graphene and Metal Structures. Opt. Express 2023, 31, 12220–12231. [Google Scholar] [CrossRef]
- Tao, G.; Zhao, Q.; Song, Q.; Yi, Z.; Yi, Y.; Zeng, Q. A Polarization-Insensitive and Highly Sensitive THz Metamaterial Multi-Band Perfect Absorber. Micromachines 2024, 15, 1388. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Yang, S.; Li, Z.; Wang, X.; Zhang, J. Modeling of a Broadband Microwave Composite Thin Film Absorber. Micromachines 2023, 14, 2119. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, A.K.; Karlsson, A. Capacitive Circuit Method for Fast and Efficient Design of Wideband Radar Absorbers. IEEE Trans. Antennas Propag. 2009, 57, 2307–2314. [Google Scholar] [CrossRef]
- Xie, J.; Quader, S.; Xiao, F.; He, C.; Liang, X.; Geng, J.; Jin, R.; Zhu, W.; Rukhlenko, I.D. Truly All-Dielectric Ultrabroadband Metamaterial Absorber: Water-Based and Ground-Free. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 536–540. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Zheng, C.-L.; Ni, P.-N.; Xie, Y.-Y.; Genevet, P. On-Chip Light Control of Semiconductor Optoelectronic Devices Using Integrated Metasurfaces. Opto-Electron. Adv. 2025, 8, 240159. [Google Scholar] [CrossRef]
- Zang, H.; Zhou, X.; Yang, Z.; Yu, Q.; Zheng, C.; Yao, J. Polarization Multiplexed Multifunctional Metasurface for Generating Longitudinally Evolving Vector Vortex Beams. Phys. Lett. A 2024, 497, 129336. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Y.; Ma, Y. Optically Transparent Frequency-Tunable Microwave Absorber Based on Patterned Graphene-ITO Structure. IEEE Trans. Antennas Propag. 2022, 70, 9959–9964. [Google Scholar] [CrossRef]
- Xi, Y.; Jiang, W.; Wei, K.; Hong, T.; Gong, S. An Optically Transparent Hybrid Mechanism Metasurface for Wideband, Wide-Angle and Omnidirectional Scattering Suppression. IEEE Trans. Antennas Propag. 2023, 71, 422–432. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Wan, Z.; Li, Y.; Li, R.; Li, H.; Cao, Q. Design and Analysis of an Optically Transparent Ultra-Wideband Absorber Covering C-, X-, Ku-, K-, Ka- Bands. Opt. Mater. Express 2022, 12, 1512–1521. [Google Scholar] [CrossRef]
- Dai, H.; Li, S.; Dong, P.; Ma, Y. Design of an Ultra-Wideband Transparent Wave Absorber. Materials 2023, 16, 5962. [Google Scholar] [CrossRef]
- Hayat, B.; Zhang, J.; Khan, A.; Abbas, S.M.; Majeed, A.; Al-Bawri, S.S. A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics. Nanomaterials 2024, 14, 1507. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, F.; Cheng, Y.; Luo, H. Ultra-Thin Optically Transparent Broadband Microwave Metamaterial Absorber Based on Indium Tin Oxide. Opt. Mater. 2022, 132, 112745. [Google Scholar] [CrossRef]
- Dong, L.; Si, L.; Xu, H.; Shen, Q.; Lv, X.; Zhuang, Y.; Zhang, Q. Rapid Customized Design of a Conformal Optical Transparent Metamaterial Absorber Based on the Circuit Analog Optimization Method. Opt. Express 2022, 30, 8303–8316. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Liu, Y.; Luo, J. Flexible and Transparent Broadband Absorber Based on Gridded ITO Ground. IEEE Photon. Technol. Lett. 2024, 36, 223–226. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Z.; Wang, G.; Huang, X.; Wang, S.; Hu, X.; Liu, M. High-Impedance Surface-Based Broadband Absorbers with Interference Theory. IEEE Trans. Antennas Propag. 2015, 63, 4367–4374. [Google Scholar] [CrossRef]
- Wanghuang, T.; Chen, W.; Huang, Y.; Wen, G. Analysis of Metamaterial Absorber in Normal and Oblique Incidence by Using Interference Theory. AIP Adv. 2013, 3, 102118. [Google Scholar] [CrossRef]
- Chen, H.-T. Interference Theory of Metamaterial Perfect Absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
- Zeng, X.; Gao, M.; Zhang, L.; Wan, G.; Hu, B. Design of a Triple-Band Metamaterial Absorber Using Equivalent Circuit Model and Interference Theory. Microw. Opt. Technol. Lett. 2018, 60, 1676–1681. [Google Scholar] [CrossRef]
- Zhiying, C.; Yueming, G.; Min, D. Electromagnetic Wave Transmission Characteristics on Different Tissue Boundaries for Implantable Human Body Communication. Chin. J. Radio Sci. 2017, 32, 134–143. [Google Scholar]
- Han, Y.; Zhu, L.; Chang, Y.; Li, B. Dual-Polarized Bandpass and Band-Notched Frequency-Selective Absorbers Under Multimode Resonance. IEEE Trans. Antennas Propag. 2018, 66, 7449–7454. [Google Scholar] [CrossRef]
- Ji, Z.; Song, Y.; Gao, M.; Zhang, Q.; Liu, Y. Multimode Miniature Polarization-Sensitive Metamaterial Absorber with Ultra-Wide Bandwidth in the K Band. Micromachines 2024, 15, 1446. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Ren, H.; Zhang, C.; Zhao, J.; Wu, H.; Dai, H. Optically Transparent Conformal Ultra-Broadband Metamaterial Absorber Based on ITO Conductive Film. J. Phys. D Appl. Phys. 2023, 56, 425101. [Google Scholar] [CrossRef]
- Li, T.; Chen, K.; Ding, G.; Zhao, J.; Jiang, T.; Feng, Y. Optically Transparent Metasurface Salisbury Screen with Wideband Microwave Absorption. Opt. Express 2018, 26, 34384–34395. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Tang, Z.; Fan, X.; Cheng, L.; Zhang, L. Optically Transparent and Flexible Broadband Microwave Metamaterial Absorber with Sandwich Structure. Appl. Phys. A 2019, 125, 131. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, G.; Srivastava, K.V.; Ramkumar, J.; Ramakrishna, S.A. Polarization-Insensitive Optically Transparent Microwave Metamaterial Absorber Using a Complementary Layer. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 163–167. [Google Scholar] [CrossRef]
Symbol | Explanation |
---|---|
S(n−1)(n−1) | The partial reflection coefficient of the wave from the (n − 1)-th layer when it is incident on the surface of the nth layer of the medium data |
Snn | The partial reflection coefficient of the wave from the nth layer when it is incident on the surface of the (n − 1)-th layer of the medium |
Sn(n−1) | The partial transmission coefficient of a wave from the (n − 1)-th layer incident on the nth layer of the medium |
S(n−1)n | The partial transmission coefficient of a wave from the nth layer incident on the (n − 1)-th layer of the medium |
Document | Bandwidth (GHz) | FBW (%) | Structure Thickness | Angle Absorption | Transparency | |
---|---|---|---|---|---|---|
TM | TE | |||||
[30] | 2.03–6.98 | 109.9 | 0.08λL (12 mm) | ~45° | ~45° | No |
[31] | 20.76–24.2 | 15.3 | 0.109λL (1.575 mm) | ~30° | ~15° | No |
[32] | 6.54–18.66 | 96.2 | 0.117λL (5.35 mm) | ~50° | ~50° | Yes |
[33] | 4.1–17.5 | 124 | 0.095λL (7 mm) | ~40° | ~40° | Yes |
[34] | 8–18 | 76.9 | 0.12λL (4.5 mm) | ~30° | ~30° | Yes |
[35] | 2–4.5 | 76.9 | 0.0847λL (12.7 mm) | ~30° | ~40° | Yes |
This work | 5–21.15 | 123.5 | 0.105λL (6.3 mm) | ~45° | ~45° | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Z.; Li, Y.; Su, Y.; Li, Z.; Guo, J.; Lv, Z.; Liang, C. Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film. Micromachines 2025, 16, 653. https://doi.org/10.3390/mi16060653
Weng Z, Li Y, Su Y, Li Z, Guo J, Lv Z, Liang C. Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film. Micromachines. 2025; 16(6):653. https://doi.org/10.3390/mi16060653
Chicago/Turabian StyleWeng, Zibin, Yahong Li, Youqian Su, Zechen Li, Jingnan Guo, Ziming Lv, and Chen Liang. 2025. "Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film" Micromachines 16, no. 6: 653. https://doi.org/10.3390/mi16060653
APA StyleWeng, Z., Li, Y., Su, Y., Li, Z., Guo, J., Lv, Z., & Liang, C. (2025). Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film. Micromachines, 16(6), 653. https://doi.org/10.3390/mi16060653