Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples
Abstract
1. Introduction
2. Review and Selection of Modelling Approach
2.1. Boltzmann–Volterra Theory
2.2. Linear Viscoelastic Kernels
2.2.1. Power Law Kernels
2.2.2. Exponential Kernels
2.2.3. Fractional Exponential Kernels
2.2.4. Linear Kernel Comparison
2.3. Loading Rate Effect on Creep Process
2.4. Stepwise Loading
2.5. Nonlinear Models
2.5.1. Power Law Model
Curve Number | σ, Pa | σ0, Pa | σ1, Pa | m | n | |
---|---|---|---|---|---|---|
1 | 1 | 10 | 10 | 0.1 | 0.1 | 0.1 |
2 | 2 | 10 | 10 | 0.1 | 0.1 | 0.1 |
3 | 1 | 20 | 10 | 0.1 | 0.1 | 0.1 |
4 | 1 | 10 | 20 | 0.1 | 0.1 | 0.1 |
5 | 1 | 10 | 10 | 0.2 | 0.1 | 0.1 |
6 | 1 | 10 | 10 | 0.1 | 0.2 | 0.1 |
7 | 1 | 10 | 10 | 0.1 | 0.1 | 0.2 |
2.5.2. Relaxation Function Models
2.5.3. Main Cubic Theory Model
2.5.4. Nonlinear Model Comparison
3. Materials and Methods
3.1. Samples
3.2. Creep Test
4. Results and Discussion
4.1. Elastic Response of Stress Loading and Unloading
4.2. Residual Strain
4.3. Viscoelastic Creep Modelling
4.3.1. Linear Model
4.3.2. Nonlinear Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Moilanen, J.; Vadén, T. 3D Printing Community and Emerging Practices of Peer Production; First Monday: Bridgman, MI, USA, 2013; Volume 18. [Google Scholar]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S. Comparative Investigation of Mechanical, Tribological and Thermo-Mechanical Properties of Commonly Used 3D Printing Materials. Avrupa Bilim Ve Teknol. Derg. 2021, 32, 827–831. [Google Scholar] [CrossRef]
- Romeijn, T.; Behrens, M.; Paul, G.; Wei, D. Instantaneous and long-term mechanical properties of Polyethylene Terephthalate Glycol (PETG) additively manufactured by pellet-based material extrusion. Addit. Manuf. 2022, 59, 103145. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Malmeister, A.K.; Tamuzs, V.P.; Teters, G.A. Resistivity of Polymer and Composite Materials; Zinatne: Riga, Latvia, 1980. [Google Scholar]
- Doğan, O. Short-term Creep Behaviour of Different Polymers Used in Additive Manufacturing under Different Thermal and Loading Conditions. Stroj. Vestn. J. Mech. Eng. 2022, 68, 451–460. [Google Scholar] [CrossRef]
- Khokhlov, A.V. Fracture criteria under creep with strain history taken into account, and long-term strength modelling. Mech. Solids 2009, 44, 596–607. [Google Scholar] [CrossRef]
- Thumsorn, S.; Prasong, W.; Ishigami, A.; Kurose, T.; Kobayashi, Y.; Ito, H. Influence of Ambient Temperature and Crystalline Structure on Fracture Toughness and Production of Thermoplastic by Enclosure FDM 3D Printer. J. Manuf. Mater. Process. 2023, 7, 44. [Google Scholar] [CrossRef]
- Bulderberga, O.; Zīle, E.; Joffe, R.; Sevcenko, J.; Aniskevich, A. Mechanical Characteristics of Thermoplastic Polymers for 3d Printed Hybrid Structures. Mech. Compos. Mater. 2024, 60, 17–32. [Google Scholar] [CrossRef]
- Gebrehiwot, S.Z.; Espinosa-Leal, L.; Andersson, M.; Remes, H. On the Short-Term Creep and Recovery Behaviors of Injection Molded and Additive-Manufactured Tough Polylactic Acid Polymer. J. Mater. Eng. Perform. 2023, 32, 10412–10430. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Compressive Behaviour of 3D-Printed PETG Composites. Aerospace 2022, 9, 124. [Google Scholar] [CrossRef]
- Amza, C.G.; Zapciu, A.; Baciu, F.; Vasile, M.I.; Nicoara, A.I. Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers. Polymers 2021, 13, 4132. [Google Scholar] [CrossRef]
- Colón Quintana, J.L.; Tomlinson, S.; Lopez-Anido, R.A. Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications. J. Compos. Sci. 2024, 8, 392. [Google Scholar] [CrossRef]
- Guedes, R.M. Creep and Fatigue in Polymer Matrix Composites; Woodhead Publishing: Cambridge, UK, 2011; pp. i–iii. [Google Scholar]
- Kim, B.G.; Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Sencer, B.H. In-Situ Creep Testing Capability Development for Advanced Test Reactor; Idaho National Lab.(INL): Idaho Falls, ID, USA, 2010. [Google Scholar]
- Kulichikhin, V.G.; Malkin, A.Y. The Role of Structure in Polymer Rheology: Review. Polymers 2022, 14, 1262. [Google Scholar] [CrossRef] [PubMed]
- Iskakbayev, A.; Teltayev, B.; Alexandrov, S. Determination of the creep parameters of linear viscoelastic materials. J. Appl. Math. 2016, 2016, 6568347. [Google Scholar] [CrossRef]
- Rabotnov, Y.N. Creep of Elements of Construction; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Brinson, H.; Brinson, L. Polymer Engineering Science and Viscoelasticity: An Introduction, Second Edition; Springer: New York, NY, USA, 2015; pp. 1–482. [Google Scholar]
- Lavoratti, A.; Bianchi, O.; Cruz, J.A.; Al-Maqdasi, Z.; Varna, J.; Amico, S.C.; Joffe, R. Impact of water absorption on the creep performance of epoxy/microcrystalline cellulose composites. J. Appl. Polym. Sci. 2024, 141, e55365. [Google Scholar] [CrossRef]
- Jian, W.; Lau, D. Creep performance of CNT-based nanocomposites: A parametric study. Carbon 2019, 153, 745–756. [Google Scholar] [CrossRef]
- Aboudi, J. Creep and Fatigue in Polymer Matrix Composites, 2nd ed.; Guedes, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 249–250. [Google Scholar]
- Maxwell, J.C., IV. On the Dynamical Theory of Gases. Philos. Trans. R. Soc. Lond. 1997, 157, 49–88. [Google Scholar]
- Voigt, W. Ueber innere Reibung fester Körper, insbesondere der Metalle. Ann. Phys. 1892, 283, 671–693. [Google Scholar] [CrossRef]
- Aniskevich, K.; Starkova, O.; Jansons, J.; Aņiskevičs, A. Long-Term Deformability and Aging of Polymer Matrix Composites; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 1–190. [Google Scholar]
- Guedes, R.M. Preface. In Creep and Fatigue in Polymer Matrix Composites, 2nd ed.; Guedes, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. xiii–xiv. [Google Scholar]
- Papanicolaou, G.C.; Zaoutsos, S.P. 1-Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites A2-Guedes, Rui Miranda. In Creep and Fatigue in Polymer Matrix Composites; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–57. [Google Scholar]
- Hamel, G.D. Ingenieur, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 1921, 1, 72–73. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, K.A.I.; Zhao, H.U.I. Finite element simulation of biofilm viscoelastic behavior under various loadings. J. Mech. Med. Biol. 2018, 18, 1850056. [Google Scholar] [CrossRef]
- Koltunov, A.M. Creep and Relaxation. Visshaja Shkola: Moscow, Russia, 1976. [Google Scholar]
- Jansons, J.; Aniskevich, A.; Pazhe, L. Analysis of reversible and irreversible strains in the creep of a nonlinear viscoelastic polymer. Mech. Compos. Mater. 2012, 48, 209–216. [Google Scholar] [CrossRef]
- Janith, I.; Herath, H.S.; Amarasinghe, D.A.S.; Attygalle, D.; Weragoda, V.S.C.; Samarasekara, A.M.P.B. In Proceedings of the A Novel Method on Fitting A Short Prony Series Using Creep or Stress Relaxation Data. Moratuwa, Sri Lanka, 27–29 July 2022; pp. 1–6. [Google Scholar]
- Chidouh, A.; Atmania, R.; Torres, D.F.M. Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle. Fractal Fract. 2022, 6, 434. [Google Scholar] [CrossRef]
- Di Lorenzo, S.; Di Paola, M.; La Mantia, F.P.; Pirrotta, A. Non-linear viscoelastic behavior of polymer melts interpreted by fractional viscoelastic model. Meccanica 2017, 52, 1843–1850. [Google Scholar] [CrossRef]
- Rzhanitzin, A. Theory of Creep; Sroyizdat: Moscow, Russia, 1968. [Google Scholar]
- Rabotnov, Y. Equilibrium of an elastic medium with after-effect. Fract. Calc. Appl. Anal. 2014, 17, 684–696. [Google Scholar] [CrossRef]
- Freire, R.T.S.; Nunes, S.G.; Amico, S.C.; Al-Ramahi, N.J.; Joffe, R.; Varna, J. On Determination of the Linear Viscoelastic Compliance and Relaxation Functions for Polymers in One Tensile Test. Mech. Compos. Mater. 2023, 58, 765–786. [Google Scholar] [CrossRef]
- Khokhlov, A.V.; Shaporev, A.V.; Stolyarov, O.N. Loading-Unloading-Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model. Mech. Compos. Mater. 2023, 59, 129–146. [Google Scholar] [CrossRef]
- Khokhlov, A.V. General Properties and Peculiarities of Creep and Relaxationfunctions Product in Linear Viscoelasticity. Probl. Strength Plast. 2014, 76, 343–356. [Google Scholar] [CrossRef]
- Hadid, M.; Guerira, B.; Bahri, M.; Zouani, K. The creep master curve construction for the polyamide 6 by the stepped isostress method. Mater. Res. Innov. 2014, 18, S6-336–S6-339. [Google Scholar] [CrossRef]
- Amjadi, M.; Fatemi, A. Creep behavior and modeling of high-density polyethylene (HDPE). Polym. Test. 2021, 94, 107031. [Google Scholar] [CrossRef]
- Findley, W.; Lai, J.; Onaran, K. Creep and Relaxation of Non-Linear Viscoelastic Materials; North-Holland Publishing Company: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Leaderman, H. Nonlinear viscoelastic behavior of rubber in shear. J. Polym. Sci. 1955, 16, 261–271. [Google Scholar] [CrossRef]
- Starkova, O.; Buschhorn, S.T.; Mannov, E.; Schulte, K.; Aniskevich, A. Creep and recovery of epoxy/MWCNT nanocomposites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1212–1218. [Google Scholar] [CrossRef]
- Varna, J.; Pupure, L. Effect of Material State and Temperature on Nonlinear Viscoelastic Response: 3D Constitutive Model and Incremental Formulation for Numerical Analysis. Mech. Compos. Mater. 2023, 59, 193–218. [Google Scholar] [CrossRef]
- Saseendran, S.; Berglund, D.; Varna, J. Stress relaxation and strain recovery phenomena during curing and thermomechanical loading: Thermorheologically simple viscoelastic analysis. J. Compos. Mater. 2019, 53, 3841–3859. [Google Scholar] [CrossRef]
- Malmeister, A.A.; Yanson, Y.O. Nonisothermal deformation of a physically nonlinear material (polycarbonate) in a complex state of stress. Mech. Compos. Mater. 1980, 15, 659–663. [Google Scholar] [CrossRef]
- Malmeister, A.A.; Yanson, Y.O. Prediction of the deformability of physically nonlinear materials in a complex stressed state. Mech. Compos. Mater. 1981, 17, 226–231. [Google Scholar] [CrossRef]
- Malmeister, A.A. Predicting the nonlinear thermoviscoelasticity of the “Diflon” polycarbonate in a complex stressed state during stress relaxation. Mech. Compos. Mater. 1983, 18, 499–502. [Google Scholar] [CrossRef]
- Malmeister, A.A.; Yanson, Y.O. Predicting the relaxation properties of ÉDT-10 epoxy binder in the complex stressed state. Mech. Compos. Mater. 1984, 19, 663–667. [Google Scholar] [CrossRef]
- Malmeister, A.A. Predicting the thermoviscoelastic strength of polymer materials in a complex stressed state. Mech. Compos. Mater. 1986, 21, 768–774. [Google Scholar] [CrossRef]
- Devil Design Sp. J. PET-G Product Card. 2024. Available online: https://devildesign.com/download/PET-G_-_product_card.pdf (accessed on 1 October 2024).
- ASTM D6992-16; Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D2990-01; Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics. ASTM International: West Conshohocken, PA, USA, 2010.
- Khokhlov, A. Comparative analysis of properties of stress relaxation curves and creep curves under multi-step loadings generated by the Rabotnov quasi-linear relation and the Boltzmann-Volterra linear viscoelasticity relation. Compos. Nanostructures 2024, 16, 20–55. [Google Scholar] [CrossRef]
- Nunes, S.G.; Joffe, R.; Emami, N.; Fernberg, P.; Saseendran, S.; Esposito, A.; Amico, S.C.; Varna, J. Physical aging effect on viscoelastic behavior of polymers. Compos. Part C Open Access 2022, 7, 100223. [Google Scholar] [CrossRef]
- Dandrea, J.C.; Lakes, R. Creep and creep recovery of cast aluminum alloys. Mech. Time-Depend. Mater. 2009, 13, 303–315. [Google Scholar] [CrossRef]
Kernel Model | Defined Elastic Modulus | Deformation at Infinite Time | Number of Parameters | Computing Complexity | Adherence to Exponent |
---|---|---|---|---|---|
Duffing | at t = t0 | non-convergent | 4 | easy | low |
Exponential | both | convergent | 3 | easy | high |
Prony | at t = t0 | convergent | 3+ | medium | high |
Rzhanitsin | at t = inf | convergent | 6 | medium | medium |
Rabotnov | at t = t0 | non-convergent | 5 | hard | low |
Abel | at t = t0 | non-convergent | 4 | hard | low |
Model | Relation to Linear Models | Nonlinear Elastic Response | Number of Nonlinear Parameters | Computational Complexity |
---|---|---|---|---|
Findley | None | Built-in | 4 | Low |
Schapery | Medium | Can be modified | 4 | High |
Stress-time analogy | High | Can be modified | 2+ | Low |
Main cubic theory | High | Can be modified | 2 | Medium |
X Samples | Y Samples | ||||
---|---|---|---|---|---|
Stress, MPa | Stress Relative to Strength, % | Long- (L) or Short-Term (S) | Stress, MPa | Stress Relative to Strength, % | Long- (L) or Short-Term (S) |
5 | 10 | S | 5 | 22 | S |
10 | 20 | S | 6 | 27 | S |
15 | 30 | S | 10 | 44 | S |
20 | 40 | S | 12 | 53 | S |
25 | 50 | S | 15 | 67 | L, S |
27 | 54 | L | 17 | 76 | L, S |
30 | 59 | L, S | 19 | 85 | L, S |
33 | 65 | L | 20 | 89 | S |
35 | 69 | L, S | 21 | 93 | S |
37 | 73 | L, S | |||
39 | 77 | S | |||
40 | 79 | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankevics, L.; Bulderberga, O.; Sevcenko, J.; Joffe, R.; Aniskevich, A. Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples. Polymers 2025, 17, 2075. https://doi.org/10.3390/polym17152075
Stankevics L, Bulderberga O, Sevcenko J, Joffe R, Aniskevich A. Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples. Polymers. 2025; 17(15):2075. https://doi.org/10.3390/polym17152075
Chicago/Turabian StyleStankevics, Leons, Olga Bulderberga, Jevgenijs Sevcenko, Roberts Joffe, and Andrey Aniskevich. 2025. "Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples" Polymers 17, no. 15: 2075. https://doi.org/10.3390/polym17152075
APA StyleStankevics, L., Bulderberga, O., Sevcenko, J., Joffe, R., & Aniskevich, A. (2025). Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples. Polymers, 17(15), 2075. https://doi.org/10.3390/polym17152075