Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = polyethylene nanoplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3506 KiB  
Article
Biological Impact of True-to-Life PET and Titanium-Doped PET Nanoplastics on Human-Derived Monocyte (THP-1) Cells
by Aliro Villacorta, Michelle Morataya-Reyes, Lourdes Vela, Jéssica Arribas Arranz, Joan Martín-Perez, Irene Barguilla, Ricard Marcos and Alba Hernández
Nanomaterials 2025, 15(13), 1040; https://doi.org/10.3390/nano15131040 - 4 Jul 2025
Viewed by 391
Abstract
In the environment, plastic waste degrades into small particles known as microplastics and nanoplastics (MNPLs), depending on their size. Given the potential harmful effects associated with MNPL exposure, it is crucial to develop environmentally representative particles for hazard assessment. These so-called true-to-life MNPLs [...] Read more.
In the environment, plastic waste degrades into small particles known as microplastics and nanoplastics (MNPLs), depending on their size. Given the potential harmful effects associated with MNPL exposure, it is crucial to develop environmentally representative particles for hazard assessment. These so-called true-to-life MNPLs are generated through in-house degradation of real-world plastic products. In this study, we produced titanium-doped nanoplastics (NPLs) from opaque polyethylene terephthalate (PET) milk bottles, which contain titanium dioxide as a filler. The resulting PET(Ti)-NPLs were thoroughly characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), mass spectrometry (MS), dynamic light scattering (DLS), ζ-potential measurements, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Human-derived THP-1 monocytes were employed to investigate particle uptake kinetics, dosimetry, and genotoxicity. A combination of flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS) enabled the quantification of internalized particles, while the comet assay assessed DNA damage. The results revealed dose- and time-dependent effects of PET(Ti)-NPLs on THP-1 cells, particularly in terms of internalization. Titanium doping facilitated detection and influenced genotoxic outcomes. This study demonstrates the relevance of using environmentally representative nanoplastic models for evaluating human health risks and underscores the importance of further mechanistic research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

35 pages, 1062 KiB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Viewed by 2086
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

14 pages, 792 KiB  
Article
Sublethal Toxicity and Gene Expression Changes in Hydra vulgaris Exposed to Polyethylene and Polypropylene Nanoparticles
by Joelle Auclair, Chantale André and François Gagné
Nanomaterials 2025, 15(13), 954; https://doi.org/10.3390/nano15130954 - 20 Jun 2025
Viewed by 304
Abstract
Plastic nanoparticles (NPs) released from plastic breakdown pervade aquatic ecosystems, raising concerns about their long-term toxic effects in aquatic organisms. The purpose of this study was to examine the sublethal toxicity of polyethylene (PeNPs) and polypropylene (PpNPs) nanoparticles of the same size (50 [...] Read more.
Plastic nanoparticles (NPs) released from plastic breakdown pervade aquatic ecosystems, raising concerns about their long-term toxic effects in aquatic organisms. The purpose of this study was to examine the sublethal toxicity of polyethylene (PeNPs) and polypropylene (PpNPs) nanoparticles of the same size (50 nm diameter) in Hydra vulgaris. Hydras were exposed to increasing concentrations of PeNPs and PpNPs (0.3–10 mg/L) for 96 h at 20 °C. Toxicity was determined based on the characteristic morphological changes and gene expression analysis of genes involved in oxidative stress, DNA repair, protein salvaging and autophagy, neural activity and regeneration. The data revealed that PpNPs produced morphological changes (50% effects concentration EC50 = 7 mg/L), while PeNPs did not. Exposure to both nanoplastics produced changes in gene expression in all gene targets and at concentrations less than 0.3 mg/L in some cases. PpNPs generally produced stronger effects than PeNPs. The mode of action of these plastic polymers differed based on the intensity of responses in oxidative stress (superoxide dismutase, catalase), DNA repair of oxidized DNA, regeneration and circadian rhythms. In conclusion, both plastics’ nanoparticles produced effects at concentrations well below the appearance of morphological changes and at concentrations found in highly contaminated environments. Full article
(This article belongs to the Special Issue Environmental Fate, Transport and Effects of Nanoplastics)
Show Figures

Graphical abstract

24 pages, 6399 KiB  
Article
lncRNA-mRNA-miRNA Networks in Arabidopsis thaliana Exposed to Micro-Nanoplastics
by Roberta Galbo, Domenico Giosa, Gaetano Gargiulo, Andrea Bonomo, Marcos Fernando Basso, Miriam Negussu, Antonio Giovino, Chiara Vergata, Ilaria Colzi, Cristina Gonnelli, Marco Dainelli, Federico Martinelli and Letterio Giuffrè
Int. J. Plant Biol. 2025, 16(2), 70; https://doi.org/10.3390/ijpb16020070 - 18 Jun 2025
Viewed by 521
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of genetic networks in numerous biological processes. Micro-nanoplastics represent a novel abiotic stress, having a direct xenobiotic impact on plant cells, while the regulation of lncRNAs in Arabidopsis thaliana under this kind of abiotic stress remains [...] Read more.
Long non-coding RNAs (lncRNAs) are key regulators of genetic networks in numerous biological processes. Micro-nanoplastics represent a novel abiotic stress, having a direct xenobiotic impact on plant cells, while the regulation of lncRNAs in Arabidopsis thaliana under this kind of abiotic stress remains largely unclear. We explored RNA-seq data sets of A. thaliana roots treated with two types of micro-nanoplastics: transparent polyethylene terephthalate (Tr-PET) and blue polyethylene terephthalate (Bl-PET) to reveal known and new unannotated lncRNAs. Our findings showed that the Tr-PET changed the expression of 104 lncRNAs, while the Bl-PET changed the expression of just 19. We speculate on the possible significance of the differential expressions for plant tolerance and resistance to micro-nanoplastic stress. A key finding of this work is that the studied lncRNAs tend to regulate their neighboring protein-coding genes. Consistent with this regulatory role, their promoters were found to contain cis-acting regulatory elements responsive to abscisic acid, light, MeJA, MYC/MYB, and other stress-related signals. Furthermore, some of the miRNAs that participate in plant development and defense were also predicted to be sponged by the differentially expressed lncRNAs. In summary, this study adds to our knowledge of A. thaliana lncRNAs through the discovery of new transcripts, describing their expression under micro-nanoplastic stress, and revealing their possible roles in post-transcriptional gene regulation. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

19 pages, 10543 KiB  
Article
Protective Effect of Biobran/MGN-3, an Arabinoxylan from Rice Bran, Against the Cytotoxic Effects of Polyethylene Nanoplastics in Normal Mouse Hepatocytes: An In Vitro and In Silico Study
by Heba Allah M. Elbaghdady, Rasha M. Allam, Mahmoud I. M. Darwish, Maha O. Hammad, Hewida H. Fadel and Mamdooh H. Ghoneum
Nutrients 2025, 17(12), 1993; https://doi.org/10.3390/nu17121993 - 13 Jun 2025
Viewed by 1367
Abstract
Background: Plastic is one of the most versatile and widely used materials, but the environmental accumulation of nanoplastics (NPs) poses a risk to human health. Preclinical studies have verified that the liver is one of the main organs susceptible to NPs. Biobran/MGN-3, an [...] Read more.
Background: Plastic is one of the most versatile and widely used materials, but the environmental accumulation of nanoplastics (NPs) poses a risk to human health. Preclinical studies have verified that the liver is one of the main organs susceptible to NPs. Biobran/MGN-3, an arabinoxylan from rice bran, has been shown to have hepatoprotective effects; here, we show Biobran’s ability to alleviate polyethylene nanoplastics (PE-NPs)-induced liver cell toxicity by reversing apoptosis and restoring G2/M cell arrest in mouse liver cells (BNL CL.2). Methods: Toxicological effects were measured using the sulforhodamine B (SRB) assay for cell viability and flow cytometry for cell cycle analysis and apoptosis. An in silico study was also used to demonstrate the docking of PE-NPs to pro-inflammatory mediator proteins (IL-6R, IL-17R, CD41/CD61, CD47/SIRP), cell cycle regulators (BCL-2, c-Myc), as well as serine carboxypeptidase, which is an active ingredient of Biobran. Results: Exposing liver cells to PE-NPs caused a significant decrease in cell viability, with an IC50 value of 334.9 ± 2.7 µg/mL. Co-treatment with Biobran restored cell viability to normal levels, preserving 85% viability at the highest concentration of PE-NPs. Additionally, total cell death observed after exposure to PE-NPs was reduced by 2.4-fold with Biobran co-treatment. The G2/M arrest and subsequent cell death (pre-G0 phase) induced by PE-NPs were normalized after combined treatment. The in silico study revealed that Biobran blocks the nucleophilic centers of PE-NPs, preventing their interaction with pro-inflammatory mediators and cell cycle regulators. Conclusions: These findings highlight the potential use of Biobran as a hepatoprotector against NP toxicity. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

17 pages, 744 KiB  
Article
Quantitative Detection of Micro- and Nanoplastics (≥300 nm) in Human Urine Using Double-Shot Py-GC/MS with Internal Standard Calibration
by Shanshan Ji, Wei Wang, Yong Wang, Hexiang Bai, Zhuo Li, Zongli Huo and Kai Luo
Toxics 2025, 13(6), 452; https://doi.org/10.3390/toxics13060452 - 29 May 2025
Viewed by 1000
Abstract
The rapid increase in plastic production and consumption has intensified research into human exposure to micro- and nanoplastics (MNPs) and their health effects. This study quantitatively assessed MNP internal exposure levels in non-invasive human samples, focusing on the four most common types of [...] Read more.
The rapid increase in plastic production and consumption has intensified research into human exposure to micro- and nanoplastics (MNPs) and their health effects. This study quantitatively assessed MNP internal exposure levels in non-invasive human samples, focusing on the four most common types of MNPs (≥300 nm): polyethylene terephthalate (PET), polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS). Urine samples from 18 volunteers (4 males, 14 females) were analyzed using pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) with P(E-13C2) as an internal standard. The study developed a straightforward yet effective analytical approach for quantifying MNPs in biological fluids. MNPs were detected in all urine samples, with concentrations ranging from 0.098 to 0.986 μg/mL and an average concentration of 0.268 ± 0.235 μg/mL. LDPE, 0.074 μg/mL (interquartile range: 0.030–0.243 μg/mL), was the most abundant polymer, accounting for 67.72% of the total MNPs, followed by PS at 21.17%, while PP and PET accounted for 7.06% and 4.05%, respectively. The results also suggest that drinking water type may serve as a distinct source of MNPs in urine. This study provides novel evidence on MNP (≥300 nm) internal exposure in humans and the influence of drinking habits, highlighting the application prospects of this method in assessing the potential health risks of MNPs. Full article
(This article belongs to the Special Issue Biomonitoring of Toxic Elements and Emerging Pollutants)
Show Figures

Graphical abstract

15 pages, 2265 KiB  
Article
Shock Wave-Induced Degradation of Polyethylene and Polystyrene: A Reactive Molecular Dynamics Study on Nanoplastic Transformation in Aqueous Environments
by Tomasz Panczyk, Marcin Cichy and Monika Panczyk
Molecules 2025, 30(10), 2164; https://doi.org/10.3390/molecules30102164 - 14 May 2025
Viewed by 464
Abstract
Degradation of polyethylene and polystyrene was studied theoretically using reactive molecular dynamics based on the ReaxFF force field. The degradation reactions were carried out on nanoparticles (approximately 2 nm in diameter) composed of ideal low-density polyethylene and polystyrene in the presence of water. [...] Read more.
Degradation of polyethylene and polystyrene was studied theoretically using reactive molecular dynamics based on the ReaxFF force field. The degradation reactions were carried out on nanoparticles (approximately 2 nm in diameter) composed of ideal low-density polyethylene and polystyrene in the presence of water. The reactions leading to degradation were triggered by applying a shock wave through the simulation box. This approach allowed the energy to be transferred to the sample in a controllable manner and initiated the reactions. The state of the nanoparticles after the shock wave passage was investigated in detail, focusing on the type and quantities of new surface functional groups and new chemical connections in the bulk samples. It was found that polyethylene predominantly reveals surface hydroxyl groups (some of which can be protonated) and has the ability to release linear polyhydroxy alcohols. Other surface functional groups with significant presence are ether groups. The degradation of polystyrene proceeds through the addition of hydroxyl groups primarily to the benzene rings, causing their dearomatization. The number of hydroxyl groups in a single ring increases with the degree of degradation, and some hydroxyl groups are also protonated. Polystyrene is also susceptible to crosslink formation, mainly between aromatic rings, leading to branched and dearomatized forms that are chemically distinct from styrene. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

14 pages, 4791 KiB  
Article
Effect of PET Micro/Nanoplastics on Model Freshwater Zooplankton
by Natan Rajtar, Małgorzata Starek, Lorenzo Vincenti, Monika Dąbrowska, Marek Romek, Rosaria Rinaldi, Francesca Lionetto and Mariusz Kepczynski
Polymers 2025, 17(9), 1256; https://doi.org/10.3390/polym17091256 - 5 May 2025
Cited by 1 | Viewed by 564
Abstract
Micro- and nanoplastic pollutants are among the major environmental challenges, and are exacerbated by the continuous degradation of growing amounts of plastic debris in the aquatic environment. The purpose of this study was to investigate the morphology of micro/nanoplastics (M/NPs) formed from polyethylene [...] Read more.
Micro- and nanoplastic pollutants are among the major environmental challenges, and are exacerbated by the continuous degradation of growing amounts of plastic debris in the aquatic environment. The purpose of this study was to investigate the morphology of micro/nanoplastics (M/NPs) formed from polyethylene terephthalate (PET) by mechanical degradation in an aquatic environment, which mimics the processes in the natural environment well, and to determine the impact of these particles on model aquatic organisms. To this end, M/NPs were obtained by ball milling in an aqueous medium and the effect of milling length on particle size and shape was investigated. The particles obtained in an environment simulating natural conditions were irregularly shaped, and those of nanometric size tended to form aggregates of various shapes. The ingestion and toxicity of PET M/NPs to freshwater zooplankton were then assessed. Daphnia magna and Thamnocephalus platyurus were used in a series of acute ecotoxicity tests, by exposure to M/NP dispersions at environmentally realistic concentrations (0.01–1.0 mg/L), as well as at very high concentrations (100–1000 mg/L). A significant uptake of PET particles by both types of invertebrates was observed, and the M/NPs were mainly concentrated in the digestive tracts of the crustaceans. However, they did not cause acute toxicity to the tested organisms or a reduction in their swimming activity, even at concentrations as high as 1000 mg/L. Full article
Show Figures

Graphical abstract

24 pages, 1685 KiB  
Review
Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review
by Nur Nabila Abd Rahim, Patrick Wee Yao Peng, Nurul Farehah Shahrir, Wan Rozita Wan Mahiyuddin, Sharifah Mazrah Sayed Mohamed Zain and Rohaida Ismail
Atmosphere 2025, 16(5), 515; https://doi.org/10.3390/atmos16050515 - 28 Apr 2025
Cited by 1 | Viewed by 1088
Abstract
This scoping review examines the distribution, sources, and characterization of atmospheric microplastics (AMPs) in Southeast Asia (SEA), following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A comprehensive search of Scopus and PubMed identified 58 relevant [...] Read more.
This scoping review examines the distribution, sources, and characterization of atmospheric microplastics (AMPs) in Southeast Asia (SEA), following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A comprehensive search of Scopus and PubMed identified 58 relevant articles, with 16 meeting the inclusion criteria. Findings indicate high microplastic (MP) concentrations in urban centres, notably in Malaysia, Indonesia, and Thailand, a pattern driven by rapid urbanisation, industrial emissions, textile production, and insufficient waste management. Predominant polymer types include polyethylene (PE), polypropylene (PP), and polyester (PET), with fibres and black particles being the most common forms. Black particles, often linked to tire wear and vehicular emissions, underscore traffic pollution’s role in AMP distribution, while PET fibres reflect the influence of SEA’s textile industry. Geographic gaps were observed, with limited studies in countries such as Cambodia and Laos. The review highlights the need for standardised sampling and quantification methods to ensure data comparability and calls for expanded research into rural and coastal regions. Future studies should prioritise longitudinal investigations into the effects of chronic exposure on health; this is particularly relevant for nanoplastics (NPs) because of their greater potential for biological penetration. These insights form a crucial foundation for mitigating AMP pollution in SEA. Full article
(This article belongs to the Special Issue Toxicity of Persistent Organic Pollutants and Microplastics in Air)
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
The Effect of Polyethylene Terephthalate Nanoplastics on Amyloid-β Peptide Fibrillation
by Narmin Bashirova, Franziska Schölzel, Dominik Hornig, Holger A. Scheidt, Martin Krueger, Georgeta Salvan, Daniel Huster, Joerg Matysik and A. Alia
Molecules 2025, 30(7), 1432; https://doi.org/10.3390/molecules30071432 - 24 Mar 2025
Viewed by 1084
Abstract
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross [...] Read more.
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross the blood-brain barrier and cause potential neurotoxicity. It is widely known that aggregation of amyloid beta (Aβ) peptides in the brain is a pathological hallmark of Alzheimer’s disease (AD). While the impact of nanoplastics such as polystyrene (PS) on amyloid aggregation has been studied, the effects of PET NPs remain unexplored. In this study, we examined the effect of PET NPs of different sizes (PET50nm and PET140nm) and concentrations (0, 10, 50, and 100 ppm) on the fibrillation of Aβ1-40. Our results showed that the presence of PET50nm as well as PET140nm decreased the lag phase of the fibrillation processes in a dose- and size-dependent manner from 6.7 ± 0.08 h for Aβ in the absence of PET (Aβcontrol) to 3.1 ± 0.03 h for PET50nm and 3.8 ± 0.06 h for PET140nm. CD spectroscopy showed that PET50nm significantly impacts the structural composition of Aβ aggregates. A significant rise in antiparallel β-sheet content and β-turn structure and a substantial reduction in other structures were observed in the presence of 100 ppm PET50nm. These changes indicate that higher concentrations (100 ppm) of PET50nm promote more rigid and uniform peptide aggregates. Although PET50nm NPs influence the kinetics of aggregation and secondary structure, the overall morphology of the resulting fibrils remains largely unaltered, as seen using transmission electron microscopy. Also, the local cross-β structure of the fibrils was not affected by the presence of PET50nm NPs during fibrillation, as confirmed using 13C solid-state NMR spectroscopy. Overall, these findings show that PET NPs accelerate amyloid fibril formation and alter the secondary structure of Aβ fibrils. These results also indicate that the accumulation of PET-NPs in the brain may facilitate the progression of various neurodegenerative diseases, including Alzheimer’s disease. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

16 pages, 3297 KiB  
Article
Presence of High-Density Polyethylene Nanoplastics (HDPE-NPs) in Soil Can Influence the Growth Parameters of Tomato Plants (Solanum lycopersicum L.) at Various Stages of Development
by Jinxue Hao, Shiv O. Prasher, Ali Mawof, Irene Tovar and Saji George
Sustainability 2025, 17(5), 2071; https://doi.org/10.3390/su17052071 - 27 Feb 2025
Viewed by 1984
Abstract
Contamination of aquatic and terrestrial ecosystems with microplastics (MPs) and nanoplastics (NPs) has raised significant global concerns. While most studies have focused on aquatic contamination, knowledge concerning the effect of MPs and NPs in biosolids on agricultural field crops remains limited, as is [...] Read more.
Contamination of aquatic and terrestrial ecosystems with microplastics (MPs) and nanoplastics (NPs) has raised significant global concerns. While most studies have focused on aquatic contamination, knowledge concerning the effect of MPs and NPs in biosolids on agricultural field crops remains limited, as is the range of polymer types tested. In this study, polyethylene nanoplastics (HDPE-NPs, <500 nm diameter) were produced in the lab, and their effect on tomato plants (Solanum lycopersicum L.) was studied at different growth stages. Physical and chemical characterizations of the HDPE-NPs were performed. Compared to the control group, the presence of 2.8 mg/kg HDPE-NPs in soil increased tomato leaf greenness (p < 0.05), while the presence of 0.5 mg/kg HDPE-NPs in the soil lowered water use efficiency (WUE, p < 0.05) of the plants in the early vegetative stage. Soil CO2 emissions were significantly lower under both the 0.5 mg/kg (p < 0.05) and 2.8 mg/kg HDPE-NPs treatments (p < 0.05). At the early germination stage, HDPE-NPs in the soil resulted in stunted seedlings (p < 0.001). Moreover, the average fruit weight and number of fruits borne by mature plants were adversely affected, possibly because of potential alterations in soil nitrogen content and associated plant uptake pathways. A pattern of hormetic dose response was observed for some measured parameters, including leaf greenness, plant WUE, and soil CO2 emissions, although the underlying mechanisms remain unclear. Overall, the range between 1 and 5 mg/kg concentration of HDPE-NPs in soil was found to have the greatest impact on tomato plants, while other factors may contribute to the observed effects. Full article
(This article belongs to the Special Issue Farmland Soil Pollution Control and Ecological Restoration)
Show Figures

Figure 1

25 pages, 2840 KiB  
Review
Birds as Bioindicators: Revealing the Widespread Impact of Microplastics
by Lara Carrasco, Eva Jiménez-Mora, Maria J. Utrilla, Inés Téllez Pizarro, Marina M. Reglero, Laura Rico-San Román and Barbara Martin-Maldonado
Birds 2025, 6(1), 10; https://doi.org/10.3390/birds6010010 - 11 Feb 2025
Cited by 4 | Viewed by 4874
Abstract
The global crisis of plastic pollution, particularly involving microplastics (MPs) and nanoplastics (NPs), has profound ecological implications. Birds, serving as bioindicators, are especially susceptible to these pollutants. This systematic review synthesizes the current research on the presence, distribution, and impact of MPs and [...] Read more.
The global crisis of plastic pollution, particularly involving microplastics (MPs) and nanoplastics (NPs), has profound ecological implications. Birds, serving as bioindicators, are especially susceptible to these pollutants. This systematic review synthesizes the current research on the presence, distribution, and impact of MPs and NPs on avian species, alongside advancements in detection methodologies. MPs and NPs have been identified in over 200 bird species across 46 families, encompassing several ecosystems, from Antarctica to Labrador, including Australia, China, and South Europe. Seabirds such as penguins, gulls, and shearwaters exhibit a high burden of MPs in tissues and feces due to fishing debris, while terrestrial species face contamination from urban and agricultural sources. Depending on their composition, MPs can cause gastrointestinal damage, oxidative stress, and bioaccumulation of toxic chemicals, particularly polyethylene and polypropylene. However, challenges in detection persist due to methodological inconsistencies, though advances in spectroscopy and flow cytometry offer improved accuracy. Addressing this pollution is vital for bird conservation and ecosystem health, requiring international collaboration and standardized research protocols. Full article
Show Figures

Figure 1

11 pages, 20853 KiB  
Article
Differences in Nanoplastic Formation Behavior Between High-Density Polyethylene and Low-Density Polyethylene
by Hisayuki Nakatani, Teruyuki Yamaguchi, Mika Asano, Suguru Motokucho, Anh Thi Ngoc Dao, Hee-Jin Kim, Mitsuharu Yagi and Yusaku Kyozuka
Molecules 2025, 30(2), 382; https://doi.org/10.3390/molecules30020382 - 17 Jan 2025
Cited by 1 | Viewed by 1010
Abstract
High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part [...] Read more.
High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part at the same time. Some of the lamellae that extend radially to form the spherulite structure were missing during the 30-day degradation. The length of these defects was less than 1 µm. HDPE disintegrated within units of spherulite structure by conformational defects in lamellae, and the size of the fragments obtained had a wide distribution. LDPE was synthesized by radical polymerization, so it contained a cross-linked part. The part was not sufficiently fused, and when it degraded, it delaminated and separated preferentially. The zeta potential reached a minimum value of approximately −20 mV at the degradation time of 21 days, and then increased. This complex dependence on degradation time was due to NP particle aggregation. The addition of 1% Triton(R) X-114 surfactant was effective in stabilizing the NP dispersion. The particle size remained constant at around 20 nm for degradation times of 15–30 days. Full article
Show Figures

Figure 1

36 pages, 1986 KiB  
Review
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Cited by 10 | Viewed by 3966
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation [...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

15 pages, 5440 KiB  
Article
Control of Nanoparticle Size of Intrinsically Fluorescent PET (Polyethylene Terephthalate) Particles Produced Through Nanoprecipitation
by Raffaella Lettieri, Muhammad Mudassir, Fabio Domenici, Andrea Salina, Mariano Venanzi, Cadia D’Ottavi, Elisabetta Di Bartolomeo and Emanuela Gatto
Molecules 2025, 30(2), 282; https://doi.org/10.3390/molecules30020282 - 13 Jan 2025
Viewed by 1303
Abstract
Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of [...] Read more.
Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of nanoplastics presents challenges for their detection and analysis. Furthermore, due to the difficulty of identifying nanoplastics, analytical studies concerning their effect on cells and a comprehensive spectroscopic characterization are still lacking. In this paper, we overcome this obstacle by synthesizing and characterizing, for the first time, PET nanoparticles with specific, stable dimensions through a top-down approach. Using hexafluoroisopropanol-chloroform as a solvent, we prepared PET solutions at various concentrations and analyzed their spectral properties over time. Our results show that PET aggregates into nanoparticles, the quantity of which increases with concentration. These findings provide crucial insights for the detection of nanoplastics in environmental samples through fluorescence measurements and can potentially be used to produce stable PET nanoparticles to evaluate their cytotoxicity. Full article
(This article belongs to the Topic Application of Nanomaterials in Environmental Analysis)
Show Figures

Graphical abstract

Back to TopTop