Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review
Abstract
:1. Introduction
- What is the current state of knowledge on AMPs in SEA?
- What are the key sources of AMPs in the region, and what is their composition?
- What gaps exist in the current literature on AMPs in SEA, and what areas require further research?
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Data Charting and Synthesis of Results
3. Results
3.1. Overview of Included Studies
3.2. Sampling Methods and Data Collection Techniques
3.3. Characteristics of Atmospheric Microplastics
3.3.1. Concentrations of Atmospheric Microplastics
3.3.2. Physical Characteristics: Shape, Size, and Colour
3.3.3. Chemical Composition: Polymer Types
3.4. Geographic Variations
4. Discussion
4.1. Synthesis of Findings
4.1.1. Characteristics of AMP
4.1.2. Geographical Variation
4.1.3. Sources of AMP
4.2. Health Impacts of AMPs
4.3. Strengths and Limitations
4.4. Gaps in the Current Literature and Future Research Directions
4.4.1. Geographic Gaps
4.4.2. Variability in Methodologies
4.4.3. Variability in Study Scales and Time Intervals
4.4.4. Health Impacts and Long-Term Exposure
4.4.5. Source Attribution and Transport Pathways
4.4.6. Indoor Air Quality and AMP
4.5. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMP | Atmospheric microplastics |
Appendix A
Database | Search Strategy | |
---|---|---|
(a) | Pubmed | ((microplastic*[Title/Abstract]) OR (nanoplastic*[Title/Abstract])) AND ((airborne[Title/Abstract]) OR (atmospher*[Title/Abstract]) OR (aerial[Title/Abstract]) OR (air[Title/Abstract] AND pollut*[Title/Abstract])) AND ((Southeast Asia[MeSH Terms]) OR (Malaysia[Title/Abstract]) OR (Singapore[Title/Abstract]) OR (Thailand[Title/Abstract]) OR (Indonesia[Title/Abstract]) OR (Philippines[Title/Abstract]) OR (Vietnam[Title/Abstract]) OR (Brunei[Title/Abstract]) OR (Cambodia[Title/Abstract]) OR (Laos[Title/Abstract]) OR (Myanmar[Title/Abstract]) OR (“Southeast Asia”[Title/Abstract])) |
(b) | Scopus | (TITLE-ABS-KEY(microplastic* OR nanoplastic*)) AND (TITLE-ABS-KEY(airborne OR atmospher* OR aerial OR “air pollution”)) AND (TITLE-ABS-KEY(“Southeast Asia” OR Malaysia OR Singapore OR Thailand OR Indonesia OR Philippines OR Vietnam OR Brunei OR Cambodia OR Laos OR Myanmar)) |
References
- The Organization for Economic Cooperation and Development. Plastics Use by Application. 2022. Available online: https://data-explorer.oecd.org/vis?tenant=archive&df[ds]=DisseminateArchiveDMZ&df[id]=DF_PLASTIC_USE_10&df[ag]=OECD&lom=LASTNPERIODS&lo=5&to[TIME_PERIOD]=false (accessed on 20 December 2024).
- The Organization for Economic Cooperation and Development. Towards Eliminating Plastic Pollution by 2040: A Policy Scenario Analysis (INTERIM FINDINGS). 2023. Available online: https://issuu.com/oecd.publishing/docs/interim-findings-towards-eliminating-plastic-pollu (accessed on 20 December 2024).
- Issac, M.N.; Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ. Sci. Pollut. Res. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S. Addressing the microplastic crisis: A multifaceted approach to removal and regulation. Environ. Adv. 2024, 17, 100579. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, G.; Revell, L.E.; Zhang, J.; Zuo, C.; Wang, D.; Le Ru, E.C.; Wu, G.; Mitrano, D.M. Long-range atmospheric transport of microplastics across the southern hemisphere. Nat. Commun. 2023, 14, 7898. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Jenzri, M.; Pandit, D.; Adikari, D.; Alam, M.W.; Kunda, M. Microplastics occurrence in sea cucumbers and impacts on sea cucumbers & human health: A systematic review. Sci. Total Environ. 2024, 951, 175792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; You, F. Microplastic Human Dietary Uptake from 1990 to 2018 Grew across 109 Major Developing and Industrialized Countries but Can Be Halved by Plastic Debris Removal. Environ. Sci. Technol. 2024, 58, 8709–8723. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Z.; Yu, R.; Yan, C.; Zhou, S.; Xing, B. Tire wear particles: Trends from bibliometric analysis, environmental distribution with meta-analysis, and implications. Environ. Pollut. 2023, 322, 121150. [Google Scholar] [CrossRef] [PubMed]
- Kek, H.Y.; Tan, H.; Othman, M.H.D.; Nyakuma, B.B.; Ho, W.S.; Sheng, D.; Kang, H.S.; Chan, Y.T.; Lim, N.; Leng, P.C.; et al. Critical review on airborne microplastics: An indoor air contaminant of emerging concern. Environ. Res. 2024, 245, 118055. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Jo, H.H.; Nam, J.; Kim, Y.U.; Kim, S. Microplastic: A particulate matter(PM) generated by deterioration of building materials. J. Hazard. Mater. 2022, 437, 129290. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef]
- Limsiriwong, K.; Winijkul, E. Exploring personal exposure to airborne microplastics across various work environments in Pathum Thani Province, Thailand. Int. J. Environ. Res. Public Health 2023, 20, 7162. [Google Scholar] [CrossRef]
- Romarate, R.A.; Ancla, S.M.B.; Patilan, D.M.M.; Inocente, S.A.T.; Pacilan, C.J.M.; Sinco, A.L.; Guihawan, J.Q.; Capangpangan, R.Y.; Lubguban, A.A.; Bacosa, H.P. Breathing plastics in Metro Manila, Philippines: Presence of suspended atmospheric microplastics in ambient air. Environ. Sci. Pollut. Res. 2023, 30, 53662–53673. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; Gordon, M.; Hanson, R.; Jantunen, L.M. Modelling the effect of shape on atmospheric microplastic transport. Atmos. Environ. 2024, 326, 120458. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- The Endnote Team. EndNote; Clarivate: Philadelphia, PA, USA, 2013. [Google Scholar]
- Bahrina, I.; Syafei, A.D.; Satoto, R.; Jiang, J.-J.; Nurasrin, N.R.; Assomadi, A.F.; Boedisantoso, R.; Hermana, J.; Nasir, M. An Occupant-Based Overview of Microplastics in Indoor Environments in the City of Surabaya, Indonesia. J. Ecol. Eng. 2020, 21, 236–242. [Google Scholar] [CrossRef]
- Yukioka, S.; Tanaka, S.; Nabetani, Y.; Suzuki, Y.; Ushijima, T.; Fujii, S.; Takada, H.; Van Tran, Q.; Singh, S. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environ. Pollut. 2020, 256, 113447. [Google Scholar] [CrossRef]
- Purwiyanto, A.I.S.; Prartono, T.; Riani, E.; Naulita, Y.; Cordova, M.R.; Koropitan, A.F. The deposition of atmospheric microplastics in Jakarta-Indonesia: The coastal urban area. Mar. Pollut. Bull. 2022, 174, 113195. [Google Scholar] [CrossRef]
- Syafina, P.R.; Yudison, A.P.; Sembiring, E.; Irsyad, M.; Tomo, H.S. Identification of fibrous suspended atmospheric microplastics in Bandung Metropolitan Area, Indonesia. Chemosphere 2022, 308, 136194. [Google Scholar] [CrossRef]
- Azmi, M.A.D.; Yasin, N.L.N.M.; NorRuwaida, J.; Hasnatul, A.H.; Dewika, M.; Sara, Y.Y. Analysis of suspended atmospheric microplastics size at different elevation in Universiti Teknologi Malaysia, Kuala Lumpur. IOP Conf. Ser. Earth Environ. Sci. 2023, 1144, 012009. [Google Scholar] [CrossRef]
- Hashim, H.A.; Jamian, N.R.; Yusuf, S.Y.; Naidu, D.; Paad, K.M.; Ishak, N.F. Evaluation of deposited atmospheric microplastic characteristic within Malaysia cities Airshed. Chem. Eng. Trans. 2023, 106, 1105–1110. [Google Scholar]
- Hasnatul, A.H.; Azman, N.F.; NorRuwaida, J.; Dewika, M.; Sara, Y.Y. Relationship of Suspended Atmospheric Microplastics and Meteorological Parameters in Universiti Teknologi Malaysia, Kuala Lumpur. IOP Conf. Seri. Earth Environ. Sci. 2023, 1135. [Google Scholar] [CrossRef]
- Hee, Y.Y.; Hanif, N.M.; Weston, K.; Latif, M.T.; Suratman, S.; Rusli, M.U.; Mayes, A.G. Atmospheric microplastic transport and deposition to urban and pristine tropical locations in Southeast Asia. Sci. Total. Environ. 2023, 902, 166153. [Google Scholar] [CrossRef] [PubMed]
- Sarathana, D.; Winijkul, E. Concentrations of airborne microplastics during the dry season at five locations in Bangkok Metropolitan Region, Thailand. Atmosphere 2022, 14, 28. [Google Scholar] [CrossRef]
- Chenappan, N.K.; Ibrahim, Y.S.; Anuar, S.T.; Yusof, K.M.K.K.; Jaafar, M.; Ahamad, F.; Sulaiman, W.Z.W.; Mohamad, N. Quantification and characterization of airborne microplastics in the coastal area of Terengganu, Malaysia. Environ. Monit. Assess. 2024, 196, 1–15. [Google Scholar] [CrossRef]
- Hidayat, N.A.A.; Kitano, K.; Tani, Y.; Lestari, P.; Iriana, W.; Fujii, Y.; Okochi, H.; Niida, Y. Airborne microplastics in Bandung and Osaka: Concentration and characteristics. E3S Web Conf. 2024, 485, 06004. [Google Scholar] [CrossRef]
- Jannah, B.R.; Maharani, H.A.; Rahmawati, S.; Nugroho, A.R.; Abdull, N.B. Occurrence and characteristic of microplastics in suspended particulate, a case study in street of Yogyakarta. E3S Web Conf. 2024, 485, 06008. [Google Scholar] [CrossRef]
- Myat, Y.N.; Kongpran, J.; Vattanasit, U.; Tanaka, S. Airborne microplastics in the roadside and residential areas of Southern Thailand. Case Stud. Chem. Environ. Eng. 2024, 9. [Google Scholar] [CrossRef]
- Winijkul, E.; Latt, K.Z.; Limsiriwong, K.; Pussayanavin, T.; Prapaspongsa, T. Depositions of airborne microplastics during the wet and dry seasons in Pathum Thani, Thailand. Atmospheric Pollut. Res. 2024, 15. [Google Scholar] [CrossRef]
- Wright, S.L.; Gouin, T.; Koelmans, A.A.; Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: Critical review and applicability towards assessing human exposure. Microplastics Nanoplastics 2021, 1, 6. [Google Scholar] [CrossRef]
- Salemi, A.; Schmidt, T.C. Recent Advances and Applications of Passive Sampling Devices. Available online: https://www.chromatographyonline.com/view/recent-advances-and-applications-of-passive-sampling-devices (accessed on 20 December 2024).
- Logvina, Y.; Matas, I.M.; Ribeiro, H.; Pinto da Silva, L.; Rodrigues, P.; Leitão, J.; da Silva, J.E. Micro- and Nanoplastics in the Atmosphere: Methodology for Microplastics Size-Fractionation Sampling. Microplastics 2024, 3, 82–97. [Google Scholar] [CrossRef]
- Azari, A.; Vanoirbeek, J.A.J.; Van Belleghem, F.; Vleeschouwers, B.; Hoet, P.H.M.; Ghosh, M. Sampling strategies and analytical techniques for assessment of airborne micro and nano plastics. Environ. Int. 2023, 174, 107885. [Google Scholar] [CrossRef]
- Galey, L.; Audignon, S.; Brochard, P.; Debia, M.; Lacourt, A.; Lambert, P.; Le Bihan, O.; Martinon, L.; Bau, S.; Witschger, O.; et al. Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations. Saf. Health Work. 2023, 14, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cui, B.; Zhang, W.; Liu, R.; Liu, H.; Zhu, X.; Huang, X.; Liu, M. Microplastics in the atmospheric of the eastern coast of China: Different function areas reflecting various sources and transport. Environ. Geochem. Health 2024, 46, 461. [Google Scholar] [CrossRef] [PubMed]
- Rathinamoorthy, R.; Raja Balasaraswathi, S. Assessing the contribution of sewing threads to microfiber release during domestic laundering. Environ. Pollut. 2024, 362, 124966. [Google Scholar] [CrossRef]
- Prats, R.M.; van Drooge, B.L.; Fernández, P.; Grimalt, J.O. Field comparison of passive polyurethane foam and active air sampling techniques for analysis of gas-phase semi-volatile organic compounds at a remote high-mountain site. Sci. Total Environ. 2022, 803, 149738. [Google Scholar] [CrossRef]
- Ahrens, L.; Harner, T.; Shoeib, M. Temporal Variations of Cyclic and Linear Volatile Methylsiloxanes in the Atmosphere Using Passive Samplers and High-Volume Air Samplers. Environ. Sci. Technol. 2014, 48, 9374–9381. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Wei, C.-H.; Hsu, W.-T.; Proborini, W.D.; Hsiao, T.-C.; Liu, Z.-S.; Chou, H.-C.; Soo, J.-C.; Dong, G.-C.; Chen, J.-K. Impact of seasonal changes and environmental conditions on suspended and inhalable microplastics in urban air. Environ. Pollut. 2024, 362, 124994. [Google Scholar] [CrossRef] [PubMed]
- Jahandari, A. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. Environ. Pollut. 2022, 308, 119707. [Google Scholar] [CrossRef]
- Costa, M.B.D.; Schuab, J.M.; Sad, C.; Ocaris, E.R.Y.; Otegui, M.B.P.; Motta, D.G.; Menezes, K.M.; Caniçali, F.B.; Marins, A.A.L.; Dalbó, G.Z.; et al. Microplastic atmospheric pollution in an urban Southern Brazil region: What can spider webs tell us? J. Hazard. Mater. 2024, 477, 135190. [Google Scholar] [CrossRef]
- Alex, R.K.; Muhammed, T.M.; Kannankai, M.P.; Radhakrishnan, A.; Borah, A.; Reghuvaran, A.; Devipriya, S.P. Microfiber pollution: Assessment, emission estimation, and time-series-based forecast of microfibers from domestic washing machine laundering and mitigation measures. Integr. Environ. Assess. Manag. 2024, 20, 2116–2127. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Xayachak, T.; Haque, N.; Lau, D.; Pramanik, B.K. The missing link: A systematic review of microplastics and its neglected role in life-cycle assessment. Sci. Total Environ. 2024, 954, 176513. [Google Scholar] [CrossRef]
- Munyaneza, J.; Jia, Q.; Qaraah, F.A.; Hossain, M.F.; Wu, C.; Zhen, H.; Xiu, G. A review of atmospheric microplastics pollution: In-depth sighting of sources, analytical methods, physiognomies, transport and risks. Sci. Total Environ. 2022, 822, 153339. [Google Scholar] [CrossRef] [PubMed]
- Utami, D.A.; Reuning, L.; Schwark, L.; Friedrichs, G.; Dittmer, L.; Nurhidayati, A.U.; Al Fauzan, A.; Cahyarini, S.Y. Plastiglomerates from uncontrolled burning of plastic waste on Indonesian beaches contain high contents of organic pollutants. Sci. Rep. 2023, 13, 10383. [Google Scholar] [CrossRef]
- Truong, T.-N.-S.; Strady, E.; Kieu-Le, T.-C.; Tran, Q.-V.; Le, T.-M.-T.; Thuong, Q.-T. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate. Chemosphere 2021, 272, 129874. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Kwak, J.-h.; Kim, H.; Lee, J.; Lee, S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 2013, 458, 273–282. [Google Scholar] [CrossRef]
- Svensson, N.; Engardt, M.; Gustafsson, M.; Andersson-Sköld, Y. Modelled atmospheric concentration of tyre wear in an urban environment. Atmos. Environ. X 2023, 20, 100225. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Wei, N.; Song, C.; Peng, J.; Wu, L.; Mao, H. Identify the contribution of vehicle non-exhaust emissions: A single particle aerosol mass spectrometer test case at typical road environment. Front. Environ. Sci. Eng. 2023, 17, 62. [Google Scholar] [CrossRef]
- Alam, M.S.; Kabir, N. Economic growth and environmental sustainability: Empirical evidence from East and South-East Asia. Int. J. Econ. Financ. 2013, 5, 2. [Google Scholar] [CrossRef]
- Boer, B. Environmental law in Southeast Asia. In Routledge Handbook of the Environment in Southeast Asia; Routledge: London, UK, 2016; pp. 133–150. [Google Scholar]
- Amnuaylojaroen, T. Air Pollution Modeling in Southeast Asia—An Overview. Veg. Fires Pollut. Asia 2023, 531–544. [Google Scholar]
- Cao, J.; Xu, R.; Geng, Y.; Xu, S.; Guo, M. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environ. Pollut. 2023, 320, 121068. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, S.; Liu, Q.; Wei, J.; Jin, Y.; Wang, X.; Zhang, L. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environ. Pollut. 2020, 265 Pt A, 115025. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Q.; Li, Y.; Feng, Y.; Wang, Y.; Cheng, W. Low-dose of polystyrene microplastics induce cardiotoxicity in mice and human-originated cardiac organoids. Environ. Int. 2023, 179, 108171. [Google Scholar] [CrossRef]
- Dong, C.-D.; Chen, C.-W.; Chen, Y.-C.; Chen, H.-H.; Lee, J.-S.; Lin, C.-H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J. Hazard. Mater. 2020, 385, 121575. [Google Scholar] [CrossRef] [PubMed]
- Szewc, K.; Graca, B.; Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Sci. Total Environ. 2021, 761, 143272. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2024. [Google Scholar]
- European Commission, E. Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe. 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng (accessed on 20 December 2024).
- United Nations Environment Program. UNEP’s Work on Plastic Monitoring and Modeling Methodologies Harmonization. 2024. Available online: https://storage.googleapis.com/unep-gpml-public-production/strapi/GPML_Co_P_s_work_on_plastic_modeling_and_monitoring_methodlogies_harmonization_e81afe6da5/GPML_Co_P_s_work_on_plastic_modeling_and_monitoring_methodlogies_harmonization_e81afe6da5.pdf (accessed on 20 December 2024).
- ISO 24187:2023; Principles for the Analysis of Microplastics Present in the Environment. International Organization for Standardization: Geneva, Switzerland, 2023.
- TAUW International. Air Pollution Control Technologies: Fact Sheets. 2022. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.infomil.nl/publish/pages/196013/air-pollution-control-technologies_fact-sheets_april-2022.pdf&ved=2ahUKEwj0yuj984mMAxUQjq8BHSu7E6UQFnoECBoQAQ&usg=AOvVaw2WZXa3pX38bB4tzeFB5ThR (accessed on 20 December 2024).
- European Chemicals Agency. Understanding REACH. 2007. Available online: https://echa.europa.eu/regulations/reach/understanding-reach (accessed on 20 December 2024).
- Ishimura, Y. The effects of the containers and packaging recycling law on the domestic recycling of plastic waste: Evidence from Japan. Ecol. Econ. 2022, 201, 107535. [Google Scholar] [CrossRef]
- Vuk, A.; Szűcs, I.; Bauerné Gáthy, A. Waste management and plastic waste recycling in Japan, China, Singapore and South Korea—What trends can be observed under different regulations. Int. Rev. Appl. Sci. Eng. 2024, 16, 118–131. [Google Scholar] [CrossRef]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Global plastic waste recycling and extended producer responsibility laws. J. Environ. Manag. 2023, 348, 119242. [Google Scholar] [CrossRef]
- Lorang, S.; Yang, Z.; Zhang, H.; Lü, F.; He, P. Achievements and policy trends of extended producer responsibility for plastic packaging waste in Europe. Waste Dispos. Sustain. Energy 2022, 4, 91–103. [Google Scholar] [CrossRef]
- Zuri, G.; Karanasiou, A.; Lacorte, S. Human biomonitoring of microplastics and health implications: A review. Environ. Res. 2023, 237, 116966. [Google Scholar] [CrossRef] [PubMed]
- Jahedi, F.; Jaafarzadeh Haghighi Fard, N.; Turner, A. A systematic review of biomonitoring microplastics in environmental matrices: Emphasis on airborne particles, dry deposits, and comparative analysis with traditional methods. Environ. Adv. 2025, 19, 100609. [Google Scholar] [CrossRef]
- Levy, F. Occupational Exposure to Airborne Substances Harmful to Health; Brookings Institution Press: Washington, DC, USA, 1980. [Google Scholar]
- Muhammad, F. Environmental agreement under the non-interference principle: The case of ASEAN agreement on transboundary haze pollution. Int. Environ. Agreem. Politics Law Econ. 2022, 22, 139–155. [Google Scholar] [CrossRef]
- Wingfield, S.; Lim, M. The United Nations Basel convention’s global plastic waste partnership: History, evolution and progress. Microplastic Environ. Pattern Process 2022, 323–331. [Google Scholar] [CrossRef]
Author, Country (Year) | Study Setting | Sample Type | Collection Method | Concentration | Number of Particles | Shape | Size | Colour | Polymer Type | Main Findings |
---|---|---|---|---|---|---|---|---|---|---|
Bahrina et al., Indonesia (2020) [17] | Indoor | Deposited—settled dust | Vacuum cleaners | Not specified | Offices: 334–351 (weekday), 242–252 (weekend); Schools: 290–321 (weekday), 239–257 (weekend); Apartments: 108–133 (weekday), 95–127 (weekend) | Fibres (85%), fragments, films | 3000–3500 µm (dominant) | Not specified | Not specified | Offices showed the highest MP counts, especially on workdays; apartments had the lowest. Occupant numbers influenced levels. |
Yukioka et al., Vietnam (2020) [18] | Urban | Deposited—surface road dust | Vacuum cleaner with disposal bags | 19.7 ± 13.7 pieces/m2 | 167 | Fragments (73%), sheets/films, lines/fibres, granules | Average: 791 ± 530 µm; Median: 605 µm | Black (21%), Gray (4%), White/Transparent (5%), Yellow (13%), Brown (1%), Red (8%), Blue (21%), Green (26%) | PE, PP, PS, PET, PAK, PVS, EPC, SBR, EPDM, PU | Da Nang had higher MP concentrations than Kusatsu and Kathmandu. Urban activities and waste management impacted levels and types. |
Purwiyanto et al., Indonesia (2022) [19] | Urban | Deposited—rainfall & dry deposition | Rain gauge on rooftop | Average 15 particles/m2/day (range 3–40) | Total of 175 particles over the period (how long?) | Fibres (86.4%), fragments (10.6%), foams (3.0%) | 300–500 µm (88%); range: 358–925 µm | Not specified | PET (81.82%), PB (7.58%), PE (7.58%), PS (3.03%) | Higher MP deposition in Jakarta during rainy season; fibres predominant; PET most common. Positive correlation between rainfall and deposition. |
Syafina et al., Indonesia (2022) [20] | Urban and suburban | Suspended samples | High-volume sampler with fibreglass filters | Urban (where?): 0.3–0.6 particles/m3; Suburban (where?): 0.1–0.3 particles/m3 | Not specified | Fibres | Urban: 1000–1400 µm; Suburban: 600–1000 µm | Black: Urban (77%), Suburban (82%); Other: Green, Red, Brown, Transparent | Not specified | Urban areas had higher MP fibre concentrations and sizes than suburban areas. Wind direction and human activities likely sources. |
Azmi et al., Malaysia (2023) [21] | Urban | Suspended samples | High-volume sampler | 16.39–96.81 µg/m3/day | 97 to 775 particles/m2/day | Fibres | 70–5429 µm; larger at 10 m elevation | Not specified | Not specified | Larger MPs found at higher elevations; higher ingestion risk for children, with elevated estimated daily intake. |
Hashim et al., Malaysia (2023) [22] | Urban and rural | Deposited samples | Dust deposition gauges (wet & dry) | 582 ± 55 particles/m2/day (UTMKL); 983 ± 146 particles/m2/day (Timah Tasoh) | 480 particles across locations | Fibres (>80%), fragments, films | 50–5000 µm | Most abundant: Transparent/White, Black; Other: Red, Blue, Green, Brown, Yellow, Orange | Not specified | Timah Tasoh (rural) had more MPs than Kuala Lumpur, suggesting open spaces and wind patterns aid dispersion. |
Hasnatul et al., Malaysia (2023) [23] | Urban | Suspended samples | High-volume sampler on rooftop | Not specified | Up to 2000 particles/m2/day | Fibres (92%), fragments | 300–5000 µm | >50% Black; Other: White, Red, Blue, Orange, Yellow | Not specified | No significant correlation between MP levels and meteorological data due to low sample numbers. Larger MPs linked to nearby urban development. |
Hee et al., Malaysia (2023) [24] | 2 urban sites and 1 coastal site | Deposited samples | Passive samplers | 114–689 MP/m2/day | Not specified | Fragments (54%), fibres | ≤5–50 µm (92%) | Not specified | Cellulose (51%), polyacrylamide (40%), HDPE (16%), PS (13%) | Long-range MP transport noted; deposition highest during Northeast monsoon, indicating wind speed’s role in distribution. |
Limsiriwong et al., Thailand (2023) [12] | Urban | Personal air samples | Personal air samplers (breathing zone) | Max: 3964 ± 2575 MP/m3 (university waste officers) | 131 to 5460 pieces in 8 h | Fibres, some fragments | Not specified | Not specified | Not specified | Highest exposure for waste-segregation officers; weak correlations with temperature/humidity. Linked to plastic-handling activities. |
Romarate II et al. Philippines (2023) [13] | Urban | Suspended samples | Respirable dust sampler | 0.001–0.023 SAMPs | 155 particles across 17 locations; max 19/site | Fibres (88%), fragments (6%), films (5%), granules (1%) | 159–4807 µm | Black (39%), Blue (25%), Brown (14%), Others <10% | PET (73.53%), polyamide, PP, polyvinyl fluoride | MPs confirmed in Metro Manila air; fibres dominant; polyester most common. Highest SAMPs in Muntinlupa and Mandaluyong. |
Sarathana et al., Thailand (2023) [25] | Urban | Suspended samples | High-volume air sampler | Average: 333.42 ± 142.99 n/m3; Dumpsite: 581.90 ± 28.39 n/m3; Roadside: 349.53 ± 18.53 n/m3; Park: 312.45 ± 50.43 n/m3 | Not specified | Fragments (97.2%), fibres (2.8%) | Fragments: 2.35–196.65 µm, Fibres: 72.89–3586.14 µm | Not specified | PE, PU, PP, PS, Cellophane | Highest AMP concentrations at dumpsites and roadsides; fragments dominant. No correlation with TSP, suggesting varied sources. |
Chenappan et al., Malaysia (2024) [26] | Coastal | Deposited samples | Passive sampling | 5476 ± 3796 particles/m2/day | Up to 15,562 particles/m2/day | >99% fibres | Not specified | Transparent (38%), Blue (25%), Black (20%), Red (13%), Others (4%) | PES, PE, PP | Significant airborne MPs in Terengganu, mostly fibres; heavy metals detected, indicating health risks. |
Hidayat et al., Indonesia (2024) [27] | Urban | Suspended samples | Multi-nozzle cascade impactor | 1.03–14.27 particles/m3 | 563 particles | Fragments (77%), some fibres, granules | 3.14–512 µm | Not specified | PE (97–99%) | Higher SAMP concentrations in Bandung during dry periods; multiple pollution sources like traffic and industry suggested. |
Jannah et al., Indonesia (2024) [28] | Urban | Suspended samples | High-volume air sampler | 0.42–0.86 particles/Nm3 | 4576 particles across 4 sites | Fragments (39%), films (37%), fibres (25%) | Not specified | Black (47%), Brown (20%), Transparent (16%), Yellow (6%), Red (6%), Blue (2%), Purple (1%), Green (1%), Orange (<1%) | Not specified | Black fragmented MPs dominated; fibres and films present. Vehicle activity (e.g., tires) likely major source. |
Myat et al., Thailand (2024) [29] | Mixture of urban and suburban | Suspended samples | High-volume air sampler | Roadside: 0.09–1.54 (0.80 ± 0.43) particles/m3; Residential: 0.20–1.09 (0.62 ± 0.27) particles/m3 | Not specified | Fragments (94.8–99.7%) | 6–4950 µm; most <100 µm | Black (90.8–99.7%), Gray (0.4–7%) | ABS, EP, NY, PES, PET, PMMA, PU | Roadside AMP levels higher than residential; black fragments dominate, likely from tire wear and dust. |
Winijkul et al., Thailand (2024) [30] | Peri-urban | Deposited samples | Automated precipitation sampler (wet & dry) | Wet: 285 particles/m2/day; Dry: 199 particles/m2/day; Total: 325 particles/m2/day | Not specified | Wet: Fibres (93%), fragments (6%), films (1%); Dry: Fibres (94%), fragments (6%) | Wet: 121–4990 µm; Dry: 132–4541 µm | Wet: White (80%), Brown (12%), Blue (5%), Others (1%); Dry: White (84%), Brown (9%), Blue (5%), Others (1%) | PP, PET, PU, Polyethylene acrylate, Poly (ethyl acrylate), Poly (11-bromoundecyl acrylate), Cellophane | Wet deposition had higher MP flux than dry; fibres dominate in both. Wet deposition key for atmospheric MP removal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Rahim, N.N.; Peng, P.W.Y.; Shahrir, N.F.; Wan Mahiyuddin, W.R.; Sayed Mohamed Zain, S.M.; Ismail, R. Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review. Atmosphere 2025, 16, 515. https://doi.org/10.3390/atmos16050515
Abd Rahim NN, Peng PWY, Shahrir NF, Wan Mahiyuddin WR, Sayed Mohamed Zain SM, Ismail R. Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review. Atmosphere. 2025; 16(5):515. https://doi.org/10.3390/atmos16050515
Chicago/Turabian StyleAbd Rahim, Nur Nabila, Patrick Wee Yao Peng, Nurul Farehah Shahrir, Wan Rozita Wan Mahiyuddin, Sharifah Mazrah Sayed Mohamed Zain, and Rohaida Ismail. 2025. "Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review" Atmosphere 16, no. 5: 515. https://doi.org/10.3390/atmos16050515
APA StyleAbd Rahim, N. N., Peng, P. W. Y., Shahrir, N. F., Wan Mahiyuddin, W. R., Sayed Mohamed Zain, S. M., & Ismail, R. (2025). Characteristics, Distribution, and Sources of Atmospheric Microplastics in Southeast Asia: A Scoping Review. Atmosphere, 16(5), 515. https://doi.org/10.3390/atmos16050515