Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (551)

Search Parameters:
Keywords = poly(acrylic-acid)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Viewed by 52
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 285
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 323
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

20 pages, 1556 KiB  
Article
Engineered PAM-SPION Nanoclusters for Enhanced Cancer Therapy: Integrating Magnetic Targeting with pH-Responsive Drug Release
by Dimitra Tzavara, Konstantina Papadia, Argiris Kolokithas-Ntoukas, Sophia G. Antimisiaris and Athanasios Skouras
Molecules 2025, 30(13), 2785; https://doi.org/10.3390/molecules30132785 - 28 Jun 2025
Viewed by 432
Abstract
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved [...] Read more.
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved targeting, while enabling a pH-responsive drug release in tumor microenvironments. Methods: PAM-stabilized SPION clusters were synthesized via arrested precipitation, characterized for physicochemical and magnetic properties, and evaluated for doxorubicin loading and pH-dependent release. A dual targeting approach combining antibody conjugation with magnetic guidance was assessed in cellular models, including a novel alternating magnetic field (AMF) pre-treatment protocol. Results: PAM-SPION clusters demonstrated controlled size distributions (60–100 nm), excellent colloidal stability, and enhanced magnetic properties, particularly for larger crystallites (13 nm). The formulations exhibited a pH-responsive drug release (8.5% at pH 7.4 vs. 14.3% at pH 6.5) and a significant enhancement of AMF-triggered release (17.5%). The dual targeting approach achieved an 8-fold increased cellular uptake compared to non-targeted formulations. Most notably, the novel AMF pre-treatment protocol demonstrated an 87% improved therapeutic efficacy compared to conventional post-treatment applications. Conclusions: The integration of targeting antibodies, magnetic guidance, and a pH-responsive PAM coating creates a versatile theranostic platform with significantly enhanced drug delivery capabilities. The unexpected synergistic effect of the AMF pre-treatment represents a promising new approach for improving the therapeutic efficacy of nanoparticle-based cancer treatments. Full article
Show Figures

Figure 1

19 pages, 13134 KiB  
Article
Improving PFAS Rejection by Ultrafiltration Membranes via Polyelectrolyte Multilayer Coating
by Oruc Kaan Turk, Mehmet Cakmakci, Ismail Hakki Zengin, Dogan Karadag and Ebubekir Yuksel
Membranes 2025, 15(6), 172; https://doi.org/10.3390/membranes15060172 - 7 Jun 2025
Viewed by 1283
Abstract
Per- and polyfluoroalkyl substances (PFASs), used since the 1940s, are persistent and carcinogenic pollutants. Water is a major exposure route; effective removal is essential. While nanofiltration (NF) and reverse osmosis (RO) are effective but costly, ultrafiltration (UF) membranes offer advantages such as lower [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), used since the 1940s, are persistent and carcinogenic pollutants. Water is a major exposure route; effective removal is essential. While nanofiltration (NF) and reverse osmosis (RO) are effective but costly, ultrafiltration (UF) membranes offer advantages such as lower cost and higher flux, but their relatively large pore size makes them ineffective for PFAS compounds like perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Since PFAS removal depends on both pore size and surface properties, this study investigates the effect of polyelectrolyte multilayer coatings using poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on the zeta potential of UF membranes. Pristine UF membranes showed limited performance (UP150: ~2% for both PFOS and PFOA; UP020: 34.4% PFOS, 24.1% PFOA), while coating significantly enhanced removal (coated UP150: 45.3% PFOS, 43.4% PFOA; coated UP020: 77.8% PFOS, 73.3% PFOA). The modified UF membranes achieved PFAS removal efficiencies significantly closer to NF membranes, though still below those of RO (e.g., BW30XLE: up to 91.0% PFOS, 88.3% PFOA; NP030: up to 81.0% PFOS, 79.3% PFOA). Findings emphasize the importance of membrane surface charge and suggest that modified UF membranes offer a promising, low-cost alternative for PFAS removal under low-pressure conditions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Graphical abstract

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 496
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 2776 KiB  
Review
Superabsorbent Core/Shell Composite Materials: A Review on Synthesis, Design and Applications
by Maria Pastrafidou, Evangelia C. Vouvoudi, Vassilios Binas and Ioannis A. Kartsonakis
Polymers 2025, 17(11), 1461; https://doi.org/10.3390/polym17111461 - 24 May 2025
Viewed by 1126
Abstract
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can [...] Read more.
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can be tailored to improve the material’s performance. The core is typically fabricated from superabsorbent polymers such as sodium polyacrylate, poly(acrylic acid) or other hydrophilic materials. The shell can be either inorganic polymers or organic polymers such as poly(methyl methacrylate), biodegradable polymers, polysaccharides or other functionalized materials in order to enhance biodegradability, mechanical strength or responsiveness to stimuli (e.g., temperature, pH). These materials present enormous potential to address issues for versatile applications in various fields, including biomedical applications, hygiene products and agriculture, due to their tailored structure. The common synthesis techniques for these advanced materials are emulsion polymerization, in situ polymerization, suspension polymerization with respect to the core material, layer-by-layer assembly and the sol–gel technique with respect to the shell formation. The techniques that are usually utilized for the characterization of the aforementioned materials and the validation of their functionalities are based on thermal analysis, morphology studies and swelling behavior and water retention and release mechanical properties, respectively. This review offers an in-depth examination of recent advancements in synthesis methods, structural engineering approaches and emerging applications of superabsorbent core/shell composites, highlighting the critical importance of material design in boosting their performance and broadening their practical use. Finally, special attention is devoted to the future perspectives of superabsorbent core/shell composites, exploring potential innovations in material design and multifunctionality. Emerging trends such as stimuli-responsive behavior, sustainability and scalability are discussed as key factors for next-generation applications. The review also outlines challenges and opportunities that could guide future research and industrial implementation. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Polymeric Materials)
Show Figures

Graphical abstract

22 pages, 1086 KiB  
Review
pH-Responsive Hydrogels: Recent Advances in Pharmaceutical Applications
by Georgia Patroklou, Efstathia Triantafyllopoulou, Paraskevi-Evelina Goula, Vasiliki Karali, Maria Chountoulesi, Georgia Valsami, Stergios Pispas and Natassa Pippa
Polymers 2025, 17(11), 1451; https://doi.org/10.3390/polym17111451 - 23 May 2025
Cited by 5 | Viewed by 1836
Abstract
Hydrogels are three-dimensional polymeric systems, being able to accommodate different categories of bioactive agents and act as promising drug delivery systems in many different biomedical applications. Due to their extended 3D network, hydrogels exhibit many advantages, such as extensive loading capacity and controlled [...] Read more.
Hydrogels are three-dimensional polymeric systems, being able to accommodate different categories of bioactive agents and act as promising drug delivery systems in many different biomedical applications. Due to their extended 3D network, hydrogels exhibit many advantages, such as extensive loading capacity and controlled drug release profiles, combined with characteristics such as biocompatibility and biodegradability, due to their constructive polymeric biomaterials. Moreover, hydrogels are capable of being administered via different routes of administration, including systemic and topical ones, due to their tunable characteristics. Stimuli-responsive hydrogels are characterized as smart biomaterials, while environmental stimuli, such as pH, can be employed to trigger on-demand drug release from the hydrogels via the provocation of conformational changes. In the present study, an emphasis on the pH-responsive hydrogels is taking place through various literature cases in drug delivery, wound healing, and some alternative applications, including implantation, oral administration, etc., wherein many different polymeric derivatives have been utilized. Moreover, the role of each used polymer or polymeric combination with other functional biomaterials, their mode of structure formation (for example, crosslinking), and their content release mechanism are highlighted, as well as the therapeutic effect of the hydrogels on different pathological conditions, as promising candidates for pharmaceutical applications. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery Applications)
Show Figures

Figure 1

13 pages, 1146 KiB  
Article
Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior
by Eldar Kopishev, Fatima Jafarova, Lyazat Tolymbekova, Gaini Seitenova and Ruslan Sаfarov
Polymers 2025, 17(10), 1414; https://doi.org/10.3390/polym17101414 - 21 May 2025
Viewed by 501
Abstract
This study examines the surface-dependent formation of interpolymer complexes (IPCs) by the layer-by-layer (LBL) deposition method. The materials used in this analysis are poly(acrylic acid) (PAA) combined with cellulose ethers, namely methyl cellulose (MC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC), and poloxamers [...] Read more.
This study examines the surface-dependent formation of interpolymer complexes (IPCs) by the layer-by-layer (LBL) deposition method. The materials used in this analysis are poly(acrylic acid) (PAA) combined with cellulose ethers, namely methyl cellulose (MC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC), and poloxamers PX188 and PX407. PMMA, PS, and glass surfaces have been used to study the influence of hydrophobicity and hydrophilicity on IPC growth and its properties. Through contact angle measurements, PMMA and PS were found to be hydrophobic and glass hydrophilic. It was revealed by gravimetric analysis that IPC films reveal the highest growth on PMMA substrates, followed by PS and glass. Both the molecular weight of HEC and the hydrophobicity of the surface considerably affected the growth. Hydrogen-bonded complexation was evident by means of FTIR spectroscopy, while changes in some characteristic absorption bands demonstrated the extent of interactions between polymers. Scanning electron microscopy showed that variations in the microstructure of surfaces occur; PAA-MC and poloxamer complex layers were well organized on hydrophobic substrates. Thus, the experimental results showed surface properties, especially hydrophobicity, to be important for IPC growth and structure. These findings contribute to the understanding of IPC behavior on different substrates, thus giving insights into applications in drug delivery, coatings, and functional films. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 5448 KiB  
Article
Disposable Electrochemical Serotonin Biosensor Based on the Nanocomposite of Carbon Nanotubes
by Ryang-Hyeon Kim, Won-Yong Jeon, Tae-Won Seo and Young-Bong Choi
Chemosensors 2025, 13(5), 185; https://doi.org/10.3390/chemosensors13050185 - 16 May 2025
Viewed by 773
Abstract
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with [...] Read more.
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with the amine (-NH3+) groups of serotonin, enabling oxidation and electron transfer for signal detection. Additionally, π-π interactions between vinylimidazole and MWCNT improved dispersion and stability. The hybrid materials enhanced electron transfer efficiency, increasing sensitivity and reliability. Structural and electrochemical properties were characterized using FT-IR, HR-TEM, TGA, Raman spectroscopy, impedance analysis, and differential pulse voltammetry (DPV). Serotonin detection using the fabricated electrode demonstrated high selectivity (LOD 0.077 μM and LOQ 0.26 μM), reproducibility (%RSD 1X PBS condition (4.63%) and human serum condition (4.81%)), and quantitative capability (dynamic range 1.2 μM to 10.07 μM) without interference (potential shift from +0.40 V to −0.15 V) from blood-based substances, confirming its potential for electrochemical biosensing applications. Full article
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
A Poly(Acrylamide-co-Acrylic Acid)-Encapsulated Nitrification Inhibitor with Good Soil-Loosening, Phosphorous-Solubilizing, and Nitrogen Fixation Abilities and High-Temperature Resistance
by Hui Gao, Yuli Fu, Tianyu Wang, Meijia Liu, Jianzhen Mao and Feng Xu
Polymers 2025, 17(9), 1280; https://doi.org/10.3390/polym17091280 - 7 May 2025
Viewed by 338
Abstract
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA- [...] Read more.
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA-co-AM)-e-NI) is synthesized by incorporating linear P(AM-co-AA) macromolecular structures into NI systems. The P(AA-co-AM)-e-NI demonstrates an obvious phase transition from a glassy state to a rubbery state, with a glass transition temperature of ~150 °C. Only 5 wt% of the weight loss occurs at 220 °C, meeting the temperature requirements of the high-tower melt granulation process (≥165 °C). The DMPZ content in P(AA-co-AM)-e-NI is 1.067 wt%, representing a 120% increase compared to our previous products (0.484 wt%). P(AA-co-AM)-e-NI can effectively reduce the abundance of ammonia-oxidizing bacteria and prolong the duration during which nitrogen fertilizers exist in the form of ammonium nitrogen. It can also cooperatively enhance the conversion of insoluble phosphorus into soluble phosphorus in the presence of ammonium nitrogen (NH4+-N). In addition, upon adding P(AA-co-AM)-e-NI into soils, soil bulk density and hardness decrease by 9.2% and 10.5%, respectively, and soil permeability increases by 10.5%, showing that it has a good soil-loosening ability and capacity to regulate the soil environment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 4094 KiB  
Communication
Wound Healing Enhancement and Physical Characterization of Bioadhesive Poly(acrylic acid)/Polyvinylpyrrolidone Complex Gels
by Ayaka Oouchi, Tomoko Ito, Yasuhiro Katahira, Hideaki Hasegawa, Kenichi Nakamura, Izuru Mizoguchi, Takayuki Yoshimoto and Yoshiyuki Koyama
Gels 2025, 11(4), 300; https://doi.org/10.3390/gels11040300 - 19 Apr 2025
Viewed by 571
Abstract
In addition to protection against microorganisms and hemostasis, wound dressings are now expected to actively promote healing. A water-absorbing complex of poly(acrylic acid) (PAA) and polyvinylpyrrolidone (PVP) was developed by mixing the polymers under specific conditions. This complex swells in water and adheres [...] Read more.
In addition to protection against microorganisms and hemostasis, wound dressings are now expected to actively promote healing. A water-absorbing complex of poly(acrylic acid) (PAA) and polyvinylpyrrolidone (PVP) was developed by mixing the polymers under specific conditions. This complex swells in water and adheres strongly to biological tissues. Upon application to a wound, it absorbs blood, swells, and adheres firmly, providing coverage. During this process, blood cells that infiltrate the gel secrete growth factors and other bioactive molecules, which are retained and gradually released toward the wound, promoting healing. In the present study, the mechanical properties of the PAA/PVP complexes were analyzed, and their healing-promoting effects were examined. In a diabetic mouse skin wound model, untreated wounds remained over 95% of their original size after 4 days. In contrast, wounds treated with the PAA/PVP complex shrank to 70–75% of their original size by day 4, and further reduced to 17–23% by day 11. Histological analysis on day 11 showed complete or nearly complete re-epithelialization in PAA/PVP-treated wounds, while untreated wounds exhibited incomplete tissue regeneration. These results suggest that the PAA/PVP complex not only provides physical protection, but also facilitates tissue repair, demonstrating its potential as a next-generation wound dressing. Full article
(This article belongs to the Special Issue Gels for Biomedical Applications)
Show Figures

Graphical abstract

26 pages, 3633 KiB  
Article
A Comparative Study of Two Synthesis Methods for Poly(Acrylic Acid-Co-Acrylamide) Incorporating a Hyperbranched Star-Shaped Monomer
by Ramses S. Meleán Brito, Agustín Iborra, Juan M. Padró, Cristian Villa-Pérez, Miriam C. Strumia, Facundo Mattea, Juan M. Giussi and Juan M. Milanesio
Polymers 2025, 17(7), 964; https://doi.org/10.3390/polym17070964 - 1 Apr 2025
Cited by 1 | Viewed by 793
Abstract
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with [...] Read more.
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with PEGMA500 arms and modified to contain a single vinyl group, was copolymerized with acrylic acid and acrylamide. Comprehensive polymer characterization was performed using FTIR, NMR, and SEC-MALS-dRI techniques. Rheological assessments revealed that copolymers containing the star-shaped monomer exhibited significantly higher viscosities than those lacking the hyperbranched component, a result attributed to the inter- and intrachain interactions facilitated by the PEGMA500 arms. Additionally, purification studies demonstrated that dialysis was necessary to remove short-chain polymers, particularly for samples synthesized in supercritical media, to achieve optimal rheological performance. Polymers synthesized in a supercritical CO2–ethyl acetate mixture exhibited higher viscosities compared to their water-synthesized counterparts. The integration of the novel star-shaped macromonomer into HPAM-like polymers offers substantial potential for enhanced oil recovery applications. Full article
(This article belongs to the Special Issue Recent Advances in the Polymers Field for the Energy Industry)
Show Figures

Figure 1

15 pages, 3144 KiB  
Article
Preparation of pH-Sensitive Poly (N-(2-Hydroxyethyl) Acrylamide-co-acrylic Acid) Hydrogels and Their Performance
by Qiang Liu, Ge Xi, Tao Wu, Peining Li, Peng Zhan, Na Liu and Zhiping Wu
Gels 2025, 11(4), 241; https://doi.org/10.3390/gels11040241 - 25 Mar 2025
Cited by 3 | Viewed by 725
Abstract
Drug-loaded hydrogels are promising for modern medicine due to their physical modifiability. However, most hydrogels suffer from poor swelling, which limits their drug encapsulation and release capabilities. In this study, Poly (N-(2-hydroxyethyl) acrylamide-co-acrylic acid) (Poly (HEAA-co-AA)) hydrogels with high swelling properties are synthesized [...] Read more.
Drug-loaded hydrogels are promising for modern medicine due to their physical modifiability. However, most hydrogels suffer from poor swelling, which limits their drug encapsulation and release capabilities. In this study, Poly (N-(2-hydroxyethyl) acrylamide-co-acrylic acid) (Poly (HEAA-co-AA)) hydrogels with high swelling properties are synthesized via free radical polymerization of neutralized acrylic monomers. The effects of the material ratio and acrylic acid neutralization degree on the swelling properties of hydrogels in water are investigated, and the swelling properties of hydrogels prepared with different monomer ratios in different pH buffer solutions are systematically studied. The results show that the swelling degree is sensitive to the monomer ratio and pH. The maximum equilibrium swelling degree of the hydrogels occurs at an HEAA to AA molar ratio of 2:2, with values of 11.36 g g−1 at pH 1.68 and 112.79 g g−1 at pH 9.18. Finally, the mechanical properties of PHA hydrogels under different HEAA/AA molar ratios are investigated, showing that the mechanical properties of PHA improved compared to those of PAA. The mechanical properties of the hydrogels are best and show good stability in rheological tests when the molar ratio of HEAA to AA is 2:2. This work has major potential applications in drug carrier systems. Full article
Show Figures

Figure 1

15 pages, 2644 KiB  
Article
Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance
by Julieta Chiappero, Gustavo A. Monti, Diego F. Acevedo, Natalia S. Paulucci and Edith I. Yslas
Pharmaceutics 2025, 17(3), 393; https://doi.org/10.3390/pharmaceutics17030393 - 20 Mar 2025
Cited by 1 | Viewed by 714
Abstract
Background/Objectives: In the race to develop new antibiotics to combat multidrug-resistant bacteria, particularly the ESKAPE pathogens which pose a significant threat to public health, silver nanoclusters (AgNCs) have emerged as a promising alternative. This article focuses on the potential of novel silver [...] Read more.
Background/Objectives: In the race to develop new antibiotics to combat multidrug-resistant bacteria, particularly the ESKAPE pathogens which pose a significant threat to public health, silver nanoclusters (AgNCs) have emerged as a promising alternative. This article focuses on the potential of novel silver nanoclusters as an antimicrobial agent against Staphylococcus aureus, a high-priority pathogen known for its ability to cause persistent nosocomial infections and develop protective biofilms. Methods: In this study, we successfully synthesized AgNCs at pH 7 using an eco-friendly photoreduction method with poly acrylic acid (PAA) and poly methacrylic acid (PMAA) as stabilizers. This methodology produced fluorescent AgNCs, demonstrating their stability in aqueous solutions for at least three months and highlighting the effectiveness of PAA and PMAA as stabilizing agents. The AgNCs were incubated with S. aureus suspension, and the antimicrobial capability at different concentrations and times of incubation were determined. Also, the AgNCs hemocompatibility was studied by exposing the clusters to rat blood cells. Results: The in vitro assays revealed that AgNCs capping with PAA or PMAA has antimicrobial activity in low doses (the determination of minimum inhibitory concentration (MIC): 0.2 µg/mL, and the determination of minimum bactericidal concentration (MBC): 2 µg/mL) and without cytotoxicity (hemolysis less than 10%) to rat blood cells until 1 µg/mL. In the presence of both AgNCs (5 µg/mL), bacterial growth was completely inhibited within just 3 h. Conclusions: The findings of this study highlight the potential of silver nanoclusters as effective antimicrobial agents against S. aureus. Their stability, low toxicity, and rapid bactericidal activity make them promising candidates for further development in antimicrobial applications. Full article
Show Figures

Graphical abstract

Back to TopTop