Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ag-PAA NCs and Ag-PMAA NCs
2.2. Ag-PAA NC and Ag-PMAA NC Characterization
2.3. Microorganisms and Treatments
2.4. Determination of Minimum Inhibitory Concentration (MIC) of Ag-PAA NCs and Ag-PMAA NCs
2.5. Determination of Minimum Bactericidal Concentration (MBC) of Ag-PAA NCs and Ag-PMAA NCs
2.6. Cell Growth Inhibitory Assay “In Vitro”
2.7. AgNCs on Bacterial Death Kinetics
2.8. Hemolysis Assay “In Vitro”
2.9. Statistical Analyses
3. Results and Discussion
3.1. Ag-PAA NC and Ag-PMAA NC Characterizations
3.2. Antimicrobial Capacity of Ag-PAA NCs and Ag-PMAA NCs Against Staphylococcus aureus
3.3. Effect of AgNCs on Bacterial Death Kinetics
3.4. Hemocompatibility AgNCs “In Vitro”
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salim, S.A.; Mohan, M.S.; Forgia, N.; Busi, S. Medical Importance of ESKAPE Pathogens. In ESKAPE Pathogens; Busi, S., Prasad, R., Eds.; Springer: Singapore, 2024; pp. 1–32. [Google Scholar] [CrossRef]
- Guo, X.; Cao, B.; Wang, C.; Lu, S.; Hu, X. In Vivo Photothermal Inhibition of Methicillin-Resistant Staphylococcus Aureus Infection by in Situ Templated Formulation of Pathogen-Targeting Phototheranostics. Nanoscale 2020, 12, 7651–7659. [Google Scholar] [CrossRef] [PubMed]
- Doudoulakakis, A.; Spiliopoulou, I.; Giormezis, N.; Syridou, G.; Nika, A.; Bozavoutoglou, E.; Militsopoulou, M.; Kalogeras, G.; Tsolia, M.; Lebessi, E. Methicillin-Resistant Staphylococcus Aureus Transmission and Hospital-Acquired Bacteremia in a Neonatal Intensive Care Unit in Greece. J. Infect. Chemother. 2022, 28, 176–180. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Tran, N.N.; Morrisette, T.; Jorgensen, S.C.J.; Orench-Benvenutti, J.M.; Kebriaei, R. Current Therapies and Challenges for the Treatment of Staphylococcus Aureus Biofilm-Related Infections. Pharmacotherapy 2023, 43, 816–832. [Google Scholar]
- Howden, B.P.; Giulieri, S.G.; Wong Fok Lung, T.; Baines, S.L.; Sharkey, L.K.; Lee, J.Y.H.; Hachani, A.; Monk, I.R.; Stinear, T.P. Staphylococcus Aureus Host Interactions and Adaptation. Nat. Rev. Microbiol. 2023, 21, 380–395. [Google Scholar] [PubMed]
- Chander, S.; Kumari, R.; Wang, H.Y.; Mohammed, Y.N.; Parkash, O.; Lohana, S.; Sorath, F.; Lohana, A.C.; Sadarat, F.; Shiwlani, S. Effect of Low vs. High Vancomycin Trough Level on the Clinical Outcomes of Adult Patients with Sepsis or Gram-Positive Bacterial Infections: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2024, 24, 1114. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Yılmaz, G.E.; Göktürk, I.; Ovezova, M.; Yılmaz, F.; Kılıç, S.; Denizli, A. Antimicrobial Nanomaterials: A Review. Hygiene 2023, 3, 269–290. [Google Scholar] [CrossRef]
- Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic Effects between Silver Nanoparticles and Antibiotics and the Mechanisms Involved. J. Med. Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, K.; Xie, J. Engineering Ultrasmall Water-Soluble Gold and Silver Nanoclusters for Biomedical Applications. Chem. Commun. 2014, 50, 5143–5155. [Google Scholar] [CrossRef]
- Xie, Y.P.; Shen, Y.L.; Duan, G.X.; Han, J.; Zhang, L.P.; Lu, X. Silver Nanoclusters: Synthesis, Structures and Photoluminescence. Mater. Chem. Front. 2020, 4, 2205–2222. [Google Scholar]
- Kshatriya, V.V.; Kumbhare, M.R.; Jadhav, S.V.; Thorat, P.J.; Bhambarge, R.G. Updated Review on Recent Advances in Silver Nanoclusters in Bioanalytical and Biomedical Applications. BIO Integr. 2024, 5, 992. [Google Scholar] [CrossRef]
- Arkaban, H.; Barani, M.; Akbarizadeh, M.R.; Chauhan, N.P.S.; Jadoun, S.; Soltani, M.D.; Zarrintaj, P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Setyawati, M.I.; Leong, D.T.; Xie, J. Ultrasmall Ag+-Rich Nanoclusters as Highly Efficient Nanoreservoirs for Bacterial Killing. Nano Res. 2014, 7, 301–307. [Google Scholar] [CrossRef]
- Jin, J.C.; Wu, X.J.; Xu, J.; Wang, B.B.; Jiang, F.L.; Liu, Y. Ultrasmall Silver Nanoclusters: Highly Efficient Antibacterial Activity and Their Mechanisms. Biomater. Sci. 2017, 5, 247–257. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, L.; Sun, L.; Bai, X.; Zhuang, G.; Cao, B.; Hu, G.; Zheng, N.; Liu, S. Amphiphilic Silver Nanoclusters Show Active Nano–bio Interaction with Compelling Antibacterial Activity against Multidrug-Resistant Bacteria. NPG Asia Mater. 2020, 12, 56. [Google Scholar] [CrossRef]
- Du, J.; Cong, Y.; Wang, X.; Kang, Y.; Zhang, P.; Li, L. Green Synthesis of Antimicrobial Peptide-Protected Silver Nanoclusters with Regulated Antibacterial Behavior. ACS Appl. Bio Mater. 2023, 6, 3919–3926. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.M.; Markham, J.L. A New Method for Determining the Minimum Inhibitory Concentration of Essential Oils. J. Appl. Microbiol. 1998, 84, 538–544. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1601, pp. 1–17. [Google Scholar]
- Rodríguez, C.A.; Vesga, O. Staphylococcus Aureus Resistente a Vancomicina. Biomédica 2005, 25, 575. [Google Scholar] [CrossRef]
- Finelgold, S.; Baron, E.; Braily, S. Diagnostico microbiológico, aislamiento e identificación de microorganismos patógenos. Editor. Médica Panam. Bs 1992, 36, 514–533. [Google Scholar]
- da Silva, R. Técnica de Microgota Para Contagem de Células Bacterianas Viáveis Em Uma Suspensão 1-7; Universidade Federal de Viςosa: Viςosa, Brazil, 1996. [Google Scholar]
- Díez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A.S.; Müller, A.H.E.; Ikkala, O.; Ras, R.H.A. Color Tunability and Electrochemiluminescence of Silver Nanoclusters. Angew. Chemie Int. Ed. 2009, 48, 2122–2125. [Google Scholar] [CrossRef]
- Cao, N.; Xu, J.; Zhou, H.; Zhao, Y.; Xu, J.; Li, J.; Zhang, S. A Fluorescent Sensor Array Based on Silver Nanoclusters for Identifying Heavy Metal Ions. Microchem. J. 2020, 159, 105406. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Bo, F.; Wang, Z.; Shao, H.; Xu, S.; Cui, Y. Microwave-Assisted Synthesis of Fluorescent Ag Nanoclusters in Aqueous Solution. ChemPhysChem 2012, 13, 2097–2101. [Google Scholar] [CrossRef] [PubMed]
- Mulko, L.E.; Rossa, M.; Aranguren-Abrate, J.P.; Pino, G.A. Micropatterning of Fluorescent Silver Nanoclusters in Polymer Films by Laser Interference. Appl. Surf. Sci. 2019, 485, 141–146. [Google Scholar] [CrossRef]
- Taccone, M.I.; Fernández, R.A.; Molina, F.L.; Gustín, I.; Sánchez, C.G.; Dassie, S.A.; Pino, G.A. On the Photophysics of Electrochemically Generated Silver Nanoclusters: Spectroscopic and Theoretical Characterization. Phys. Chem. Chem. Phys. 2020, 22, 16813–16821. [Google Scholar] [CrossRef]
- Santillán, J.M.J.; Muñetón Arboleda, D.; Muraca, D.; Schinca, D.C.; Scaffardi, L.B. Highly Fluorescent Few Atoms Silver Nanoclusters with Strong Photocatalytic Activity Synthesized by Ultrashort Light Pulses. Sci. Rep. 2020, 10, 8217. [Google Scholar] [CrossRef]
- Sólyom, J. Fundamentals of the Physics of Solids (Volume 2). Fundam. Phys. Solids 2009, 2, 1–647. [Google Scholar] [CrossRef]
- Udayabhaskararao, T.; Pradeep, T. New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. J. Phys. Chem. Lett. 2013, 4, 1553–1564. [Google Scholar]
- Yourston, L.E.; Lushnikov, A.Y.; Shevchenko, O.A.; Afonin, K.A.; Krasnoslobodtsev, A.V. First Step towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties. Nanomaterials 2019, 9, 613. [Google Scholar] [CrossRef]
- Nakal-Chidiac, A.; García, O.; García-Fernández, L.; Martín-Saavedra, F.M.; Sánchez-Casanova, S.; Escudero-Duch, C.; San Román, J.; Vilaboa, N.; Aguilar, M.R. Chitosan-Stabilized Silver Nanoclusters with Luminescent, Photothermal and Antibacterial Properties. Carbohydr. Polym. 2020, 250, 116973. [Google Scholar] [CrossRef]
- Tegegne, W.A.; Su, W.N.; Beyene, A.B.; Huang, W.H.; Tsai, M.C.; Hwang, B.J. Flexible Hydrophobic Filter Paper-Based SERS Substrate Using Silver Nanocubes for Sensitive and Rapid Detection of Adenine. Microchem. J. 2021, 168, 106349. [Google Scholar] [CrossRef]
- Pal, N.K.; Kryschi, C. A Facile Synthesis of Highly Stable and Luminescent Ag Clusters: A Steady-State and Time-Resolved Spectroscopy Study. Phys. Chem. Chem. Phys. 2015, 17, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Nagda, R.; Shah, P.; Lee, C.S.; Park, S.; Yang, S.W. Structural Influence on the Post-Clustering Stability of DNA/AgNCs Fluorescence. Nanomaterials 2019, 9, 667. [Google Scholar] [CrossRef]
- Filipczuk, P.; Świtalska, A.; Kosman, J.; Nowaczyk, G.; Dembska, A. Fluorescent AgNCs Formed on Bifunctional DNA Template for Potassium Ion Detection. Chemosensors 2021, 9, 349. [Google Scholar] [CrossRef]
- Lu, R.; Zou, W.; Du, H.; Wang, J.; Zhang, S. Antimicrobial Activity of Ag Nanoclusters Encapsulated in Porous Silica Nanospheres. Ceram. Int. 2014, 40, 3693–3698. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 Nm Using the Same Protocol and Their Antibacterial Efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Darwish, R.M.; Salama, A.H. Study the Effect of Conjugate Novel Ultra-Short Antimicrobial Peptide with Silver Nanoparticles against Methicillin Resistant, S. Aureus and ESBL E. Coli. Antibiotics 2022, 11, 1024. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef]
- Gautam, R.; Singh, R.D.; Sharma, V.P.; Siddhartha, R.; Chand, P.; Kumar, R. Biocompatibility of Polymethylmethacrylate Resins Used in Dentistry. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100 B, 1444–1450. [Google Scholar]
- Guo, Q.; Zhao, Y.; Dai, X.; Zhang, T.; Yu, Y.; Zhang, X.; Li, C. Functional Silver Nanocomposites as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents. ACS Appl. Mater. Interfaces 2017, 9, 16834–16847. [Google Scholar] [CrossRef]
- Salman, H.D. Evaluation and Comparison the Antibacterial Activity of Silver Nano Particles (AgNPs) and Silver Nitrate (AgNO3) on Some Pathogenic Bacteria. J. Glob. Pharma Technol. 2017, 9, 238–248. [Google Scholar]
- Lima, K.O.; Vasconcelos, A.A.; de Sousa Júnior, J.J.V.; Escher, S.K.S.; Nakazato, G.; Taube Júnior, P.S. Green Synthesis of Silver Nanoparticles Using Amazon Fruits. Int. J. Nanosci. Nanotechnol. 2019, 15, 179–188. [Google Scholar]
- Luna-Vázquez-gómez, R.; Arellano-García, M.E.; García-Ramos, J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Bogdanchikova, N.; Pestryakov, A. Hemolysis of Human Erythrocytes by ArgovitTM Agnps from Healthy and Diabetic Donors: An in Vitro Study. Materials 2021, 14, 2792. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappero, J.; Monti, G.A.; Acevedo, D.F.; Paulucci, N.S.; Yslas, E.I. Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance. Pharmaceutics 2025, 17, 393. https://doi.org/10.3390/pharmaceutics17030393
Chiappero J, Monti GA, Acevedo DF, Paulucci NS, Yslas EI. Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance. Pharmaceutics. 2025; 17(3):393. https://doi.org/10.3390/pharmaceutics17030393
Chicago/Turabian StyleChiappero, Julieta, Gustavo A. Monti, Diego F. Acevedo, Natalia S. Paulucci, and Edith I. Yslas. 2025. "Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance" Pharmaceutics 17, no. 3: 393. https://doi.org/10.3390/pharmaceutics17030393
APA StyleChiappero, J., Monti, G. A., Acevedo, D. F., Paulucci, N. S., & Yslas, E. I. (2025). Harnessing Silver Nanoclusters to Combat Staphylococcus aureus in the Era of Antibiotic Resistance. Pharmaceutics, 17(3), 393. https://doi.org/10.3390/pharmaceutics17030393