Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,775)

Search Parameters:
Keywords = pollution pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9268 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 (registering DOI) - 24 Jul 2025
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

19 pages, 3761 KiB  
Article
Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant
by Wenhao Wang, Yutong Liu, Nanxin Ma, Rui Wang, Lifan Fan, Chen Chen, Qiqi Yan, Zhihua Ren, Xia Ning, Shuting Wei and Tingting Ku
Toxics 2025, 13(8), 613; https://doi.org/10.3390/toxics13080613 - 22 Jul 2025
Abstract
Environmental contaminants exhibit heterogeneous neurotoxicity profiles, yet systematic comparisons between legacy neurotoxicants and emerging pollutants remain scarce. To address this gap, we implemented an integrative transcriptome meta-analysis framework that harmonized eight transcriptomic datasets spanning in vivo and in vitro neural models exposed to [...] Read more.
Environmental contaminants exhibit heterogeneous neurotoxicity profiles, yet systematic comparisons between legacy neurotoxicants and emerging pollutants remain scarce. To address this gap, we implemented an integrative transcriptome meta-analysis framework that harmonized eight transcriptomic datasets spanning in vivo and in vitro neural models exposed to two legacy neurotoxicants (bisphenol A [BPA], 2, 2′, 4, 4′-tetrabromodiphenyl ether [BDE-47]) and polystyrene nanoplastics (PSNPs) as an emerging contaminant. Our analysis revealed a substantial overlap (68% consistency) in differentially expressed genes (DEGs) between BPA and PSNPs, with shared enrichment in extracellular matrix disruption pathways (e.g., “fibronectin binding” and “collagen binding”, p < 0.05). Network-based toxicogenomic mapping linked all three contaminants to six neurological disorders, with BPA showing the strongest associations with Hepatolenticular Degeneration. Crucially, a sex-stratified analysis uncovered male-specific transcriptional responses to BPA (e.g., lipid metabolism and immune response dysregulation), whereas female models showed no equivalent enrichment. This highlights the sex-specific transcriptional characteristics of BPA exposure. This study establishes a novel computational toxicology workflow that bridges legacy and emerging contaminant research, providing mechanistic insights for chemical prioritization and gender-specific risk assessment. Full article
Show Figures

Figure 1

27 pages, 1146 KiB  
Review
Biological Modulation of Autophagy by Nanoplastics: A Current Overview
by Francesco Fanghella, Mirko Pesce, Sara Franceschelli, Valeria Panella, Osama Elsallabi, Tiziano Lupi, Benedetta Rizza, Maria Giulia Di Battista, Annalisa Bruno, Patrizia Ballerini, Antonia Patruno and Lorenza Speranza
Int. J. Mol. Sci. 2025, 26(15), 7035; https://doi.org/10.3390/ijms26157035 - 22 Jul 2025
Viewed by 156
Abstract
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. [...] Read more.
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. This review synthesizes current evidence on the interactions between NPs and autophagic pathways across diverse biological systems. Findings indicate that NPs can trigger autophagy as an early cellular response; however, prolonged exposure may lead to autophagic dysfunction, contributing to impaired cell viability and disrupted signaling. Particular attention is given to the physiochemical properties of NPs such as size, surface charge, and polymer type, which influence cellular uptake and intracellular trafficking. We also highlight key mechanistic pathways, including oxidative stress and mTOR modulation. Notably, most available studies focus almost exclusively on polystyrene (PS)-based NPs, with limited data on other types of polymers, and several reports lack comprehensive assessment of autophagic flux or downstream effects. In conclusion, a better understanding of NP–autophagy crosstalk—particularly beyond PS—is crucial to evaluate the real toxic potential of NPs and guide future research in human health and nanotechnology. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Figure 1

32 pages, 1432 KiB  
Article
From Carbon to Capability: How Corporate Green and Low-Carbon Transitions Foster New Quality Productive Forces in China
by Lili Teng, Yukun Luo and Shuwen Wei
Sustainability 2025, 17(15), 6657; https://doi.org/10.3390/su17156657 - 22 Jul 2025
Viewed by 163
Abstract
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces [...] Read more.
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces (NQPF). Firms are central actors in this transformation, prompting the core research question: How does corporate engagement in GLCT contribute to the formation of NQPF? We investigate this relationship using panel data comprising 33,768 firm-year observations for A-share listed companies across diverse industries in China from 2012 to 2022. Corporate GLCT is measured via textual analysis of annual reports, while an NQPF index, incorporating both tangible and intangible dimensions, is constructed using the entropy method. Our empirical analysis relies primarily on fixed-effects regressions, supplemented by various robustness checks and alternative econometric specifications. The results demonstrate a significantly positive relationship: corporate GLCT robustly promotes the development of NQPF, with dynamic lag structures suggesting delayed productivity realization. Mechanism analysis reveals that this effect operates through three primary channels: improved access to financing, stimulated collaborative innovation and enhanced resource-allocation efficiency. Heterogeneity analysis indicates that the positive impact of GLCT on NQPF is more pronounced for state-owned enterprises (SOEs), firms operating in high-emission sectors, those in energy-efficient or environmentally friendly industries, technology-intensive sectors, non-heavily polluting industries and companies situated in China’s eastern regions. Overall, our findings suggest that corporate GLCT enhances NQPF by improving resource-utilization efficiency and fostering innovation, with these effects amplified by specific regional advantages and firm characteristics. This study offers implications for corporate strategy, highlighting how aligning GLCT initiatives with core business objectives can drive NQPF, and provides evidence relevant for policymakers aiming to optimize environmental governance and foster sustainable economic pathways. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

26 pages, 27369 KiB  
Article
Comprehensive Impact of Different Urban Form Indices on Land Surface Temperature and PM2.5 Pollution in Summer and Winter, Based on Urban Functional Zones: A Case Study of Taiyuan City
by Wenyu Zhao, Le Xuan, Wenru Li, Wei Wang and Xuhui Wang
Sustainability 2025, 17(14), 6618; https://doi.org/10.3390/su17146618 - 20 Jul 2025
Viewed by 269
Abstract
Urban form plays a crucial role in regulating urban thermal environments and air pollution patterns. However, the indirect mechanisms through which urban form influences PM2.5 concentrations via land surface temperature (LST) remain poorly understood. This study investigates these pathways by analyzing representative two- [...] Read more.
Urban form plays a crucial role in regulating urban thermal environments and air pollution patterns. However, the indirect mechanisms through which urban form influences PM2.5 concentrations via land surface temperature (LST) remain poorly understood. This study investigates these pathways by analyzing representative two- and three-dimensional urban form indices (UFIs) in the central urban area of Taiyuan, China. Multiple log-linear regression and mediation analysis were applied to evaluate the combined effects of urban form on LST and PM2.5. The results indicate that UFIs significantly influence both LST and PM2.5. The frontal area index (FAI) and sky view factor (SVF) emerged as key variables, with LST playing a significant mediating role. The indirect pathways affecting PM2.5 via LST, along with the direct LST-PM2.5 correlation, exhibit pronounced seasonal differences in direction and intensity. Moreover, different urban functional zones exhibit heterogeneous responses to the same form indices, highlighting the spatial variability of these linkages. These findings underscore the importance of incorporating seasonal and spatial differences into urban design. Accordingly, this study proposes targeted urban form optimization strategies to improve air quality and thermal comfort, offering theoretical insights and practical guidance for sustainable urban planning. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

23 pages, 862 KiB  
Article
How Do Housing Quality and Environmental Pollution Affect Older Adults’ Self-Rated Health? The Mediating Effect of Depression and Social Capital
by Jinhui Song, Wen Zuo, Xuefang Zhuang and Rong Wu
Buildings 2025, 15(14), 2536; https://doi.org/10.3390/buildings15142536 - 18 Jul 2025
Viewed by 178
Abstract
With accelerated population aging, the importance of older adults’ self-rated health is constantly increasing. Self-rated health is influenced by complex relationships between the built environment and psychosocial factors. Therefore, this study constructs a pathway framework of “material (housing quality and environmental pollution)–psychological (depression [...] Read more.
With accelerated population aging, the importance of older adults’ self-rated health is constantly increasing. Self-rated health is influenced by complex relationships between the built environment and psychosocial factors. Therefore, this study constructs a pathway framework of “material (housing quality and environmental pollution)–psychological (depression and social capital)–self-rated health” elements to explore the influencing mechanism of older adults’ self-rated health. This study utilized the 2018 China Labor Force Dynamics Survey Database to explore the relationship between built environment factors (housing quality and environmental pollution), depression, social capital, and older adults’ self-rated health, using structural equation modeling. The heterogeneity between urban and rural areas is also analyzed. Better housing quality and less environmental pollution were found to be related to higher levels of self-rated health. Depression and social capital were important mediators in the relationship between housing quality, environmental pollution, and self-rated health. Regarding urban–rural heterogeneity, the direct impact of environmental pollution on self-rated health was only significant among urban older adults. Secondly, the multiple mediating roles of social capital were only reflected among rural older adults. The government and relevant entities should promote improvements in housing quality and reduce environmental pollution to achieve a healthy and livable environment. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 1268 KiB  
Review
Perspectives on the Presence of Environmentally Persistent Free Radicals (EPFRs) in Ambient Particulate Matters and Their Potential Implications for Health Risk
by Senlin Lu, Jiakuan Lu, Xudong Wang, Kai Xiao, Jingying Niuhe, Xinchun Liu and Shinichi Yonemochi
Atmosphere 2025, 16(7), 876; https://doi.org/10.3390/atmos16070876 - 17 Jul 2025
Viewed by 130
Abstract
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. [...] Read more.
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. This review critically synthesizes recent advancements in understanding EPFR formation mechanisms, analytical detection methodologies, environmental distribution patterns, and toxicological impacts. While progress has been made in characterization techniques, challenges persist—particularly in overcoming limitations of electron paramagnetic resonance (EPR) spectroscopy and spin-trapping methods in complex environmental matrices. Key knowledge gaps remain, including molecular-level dynamics of EPFR formation, long-term environmental fate under varying geochemical conditions, and quantitative relationships between chronic EPFR exposure and health outcomes. Future research priorities could focus on: (1) atomic-scale mechanistic investigations using advanced computational modeling to resolve formation pathways; (2) development of next-generation detection tools to improve sensitivity and spatial resolution; and (3) integration of EPFR data into region-specific air-quality indices to enhance risk assessment and inform mitigation strategies. Addressing these gaps will advance our capacity to mitigate EPFR persistence and safeguard environmental and public health. Full article
Show Figures

Figure 1

30 pages, 12104 KiB  
Article
Efficacy, Kinetics, and Mechanism of Tetracycline Degradation in Water by O3/PMS/FeMoBC Process
by Xuemei Li, Qingpo Li, Xinglin Chen, Bojiao Yan, Shengnan Li, Huan Deng and Hai Lu
Nanomaterials 2025, 15(14), 1108; https://doi.org/10.3390/nano15141108 - 17 Jul 2025
Viewed by 250
Abstract
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, [...] Read more.
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, for the degradation of tetracycline (TC) in water. An FeMoBC sample was synthesized by the impregnation–pyrolysis method. The XRD results showed that the material loaded on BC was an iron molybdates composite, in which Fe2Mo3O8 and FeMoO4 accounted for 26.3% and 73.7% of the composite, respectively. The experiments showed that, for the O3/PMS/FeMoBC process, the optimum conditions were obtained at pH 6.8 ± 0.1, an initial concentration of TC of 0.03 mM, an FeMoBC dosage set at 200 mg/L, a gaseous O3 concentration set at 3.6 mg/L, and a PMS concentration set at 30 μM. Under these reaction conditions, the degradation rate of TC in 8 min and 14 min reached 94.3% and 98.6%, respectively, and the TC could be reduced below the detection limit (10 μg/L) after 20 min of reaction. After recycling for five times, the degradation rate of TC could still reach about 40%. The introduction of FeMoBC into the O3/PMS system significantly improved the TC degradation efficacy and resistance to inorganic anion interference. Meanwhile, it enhanced the generation of hydroxyl radicals (OH) and sulfate radicals (SO4•−), thus improving the oxidizing efficiency of TC in water. Material characterization analysis showed that FeMoBC has a well-developed porous structure and abundant active sites, which is beneficial for the degradation of pollutants. The reaction mechanism of the O3/PMS/FeMoBC system was speculated by the EPR technique and quenching experiments. The results showed that FeMoBC efficiently catalyzed the O3/PMS process to generate a variety of reactive oxygen species, leading to the efficient degradation of TC. There are four active oxidants in O3/PMS/FeMoBC system, namely OH, SO4•−, 1O2, and •O2. The order of their contribution importance was OH, 1O2, SO4•−, and •O2. This study provides an effective technological pathway for the removal of refractory organic matter in the aquatic environment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 259
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

22 pages, 5335 KiB  
Article
An Italian Study of PM0.5 Toxicity: In Vitro Investigation of Cytotoxicity, Oxidative Stress, Intercellular Communication, and Extracellular Matrix Metalloproteases
by Nathalie Steimberg, Giovanna Mazzoleni, Jennifer Boniotti, Milena Villarini, Massimo Moretti, Annalaura Carducci, Marco Verani, Tiziana Grassi, Francesca Serio, Sara Bonetta, Elisabetta Carraro, Alberto Bonetti, Silvia Bonizzoni, Umberto Gelatti and the MAPEC_LIFE Study Group
Int. J. Mol. Sci. 2025, 26(14), 6769; https://doi.org/10.3390/ijms26146769 - 15 Jul 2025
Viewed by 141
Abstract
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in [...] Read more.
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in vitro toxicological endpoints (cytotoxicity and cell growth) in human bronchial and alveolar epithelial cell lines mimicking the two pulmonary target tissues. Air samples were collected in five Italian cities (Brescia, Lecce, Perugia, Pisa, Turin) during winter and spring. To better decipher the PM0.5 effects on pulmonary cells, a further winter sampling was performed in Brescia, and studies were extended to assess tumour promotion, oxidative stress, and the activity of Matrix metalloproteases (MMP). The results confirmed that the effect of air pollution is linked to the seasons (winter is usually more cytotoxic than spring) and is correlated with the peculiar characteristics of the cities studied (meteoclimatic conditions, economic/anthropogenic activities). Alveolar cells were often less sensitive than bronchial cells. All PM samples from Brescia inhibited intercellular communication mediated by gap junctions (GJIC), increased the total content in glutathione, and decreased the reduced form of glutathione, whereas the Reactive Oxygen Species (ROS) content was almost constant. Long-term treatments at higher doses of PM decreased MMP2 and MMP9 activity. Taken together, the results confirmed that PM is cytotoxic and can potentially act as tumour promoters, but the mechanisms involved in oxidative stress and lung homeostasis are dose- and time-dependent and quite complex. Full article
(This article belongs to the Special Issue The Influence of Environmental Factors on Disease and Health Outcomes)
Show Figures

Figure 1

19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 540
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

15 pages, 665 KiB  
Review
Ferroptosis in Toxicology: Present and Future
by Birandra K. Sinha
Int. J. Mol. Sci. 2025, 26(14), 6658; https://doi.org/10.3390/ijms26146658 - 11 Jul 2025
Viewed by 196
Abstract
Ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal mechanism in understanding the toxicological effects of various environmental pollutants. This short review delves into the intricate pathways of ferroptosis, its induction by diverse environmental toxicants, [...] Read more.
Ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal mechanism in understanding the toxicological effects of various environmental pollutants. This short review delves into the intricate pathways of ferroptosis, its induction by diverse environmental toxicants, and the subsequent implications for human health. By elucidating and understanding pathways involved in environmental exposures and ferroptosis, we aim to shed light on potential therapeutic interventions and preventive strategies. Furthermore, identifications of biomarkers of ferroptosis will aid in monitoring ferroptosis-induced diseases/tissue damage, promoting the development of targeted therapies. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop