Hydroxyl Radical Generation in Heterogeneous Fenton Reaction and Its Interaction with Nanoplastics as Potential Advanced Oxidation Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Strategy
2.2. Materials
2.3. Nanoparticles Preparation
2.4. Characterization of Nanoparticles
2.5. Hydroxyl Radical Quantification
2.6. Evaluation of Nanoplastics Degradation
3. Results
3.1. Dispersion and Size of Magnetite Nanoparticles and PET Nanoplastics
3.2. Hydroxyl Radical Generation During Fenton-like Reaction
3.3. Interaction Between PET-NPs and MNPs During Fenton-like Reaction
4. Discussion
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MNP | Magnetite Nanoparticles |
| PET-NP | Polyethilene Terephtalate Nanoplastics |
| NP | Nanoparticles |
| SEM | Scanning electron microscope |
| EDS | Energy Dispersive Spectroscopy |
| ZP | Zeta Potential |
References
- WHO Dietary and Inhalation Exposure to Nano- and Microplastic Particles and Potential Implications for Human Health. Available online: https://www.who.int/publications/i/item/9789240054608 (accessed on 23 June 2025).
- Osuna-Laveaga, D.R.; Ojeda-Castillo, V.; Flores-Payán, V.; Gutiérrez-Becerra, A.; Moreno-Medrano, E.D. Micro- and Nanoplastics Current Status: Legislation, Gaps, Limitations and Socio-Economic Prospects for Future. Front. Environ. Sci. 2023, 11, 1241939. [Google Scholar] [CrossRef]
- Kim, S.; Sin, A.; Nam, H.; Park, Y.; Lee, H.; Han, C. Advanced Oxidation Processes for Microplastics Degradation: A Recent Trend. Chem. Eng. J. Adv. 2022, 9, 100213. [Google Scholar] [CrossRef]
- Beltran, F.J. Ozone Reaction Kinetics for Water and Wastewater Systems; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Li, X.; Zhang, J.; Fang, J.; Guan, Y.; Xie, P. Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles. Environ. Sci. Technol. 2011, 45, 3925–3930. [Google Scholar] [CrossRef]
- Ghime, D.; Ghosh, P.; Ghime, D.; Ghosh, P. Advanced Oxidation Processes: A Powerful Treatment Option for the Removal of Recalcitrant Organic Compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Pastrana-Martínez, L.M.; Pereira, N.; Lima, R.; Faria, J.L.; Gomes, H.T.; Silva, A.M.T. Degradation of Diphenhydramine by Photo-Fenton Using Magnetically Recoverable Iron Oxide Nanoparticles as Catalyst. Chem. Eng. J. 2015, 261, 45–52. [Google Scholar] [CrossRef]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation A Review. Appl. Catal. B 2015, 176–177, 249–265. [Google Scholar] [CrossRef]
- Matta, R.; Hanna, K.; Chiron, S. Fenton-like Oxidation of 2,4,6-Trinitrotoluene Using Different Iron Minerals. Sci. Total Environ. 2007, 385, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.; Kone, T.; Medjahdi, G. Synthesis of the Mixed Oxides of Iron and Quartz and Their Catalytic Activities for the Fenton-like Oxidation. Catal. Commun. 2008, 9, 955–959. [Google Scholar] [CrossRef]
- Pérez-Poyatos, L.T.; Morales-Torres, S.; Maldonado-Hódar, F.J.; Pastrana-Martínez, L.M. Magnetite Nanoparticles as Solar Photo-Fenton Catalysts for the Degradation of the 5-Fluorouracil Cytostatic Drug. Nanomaterials 2022, 12, 4438. [Google Scholar] [CrossRef]
- Moreno-Medrano, E.D. Emerging Contaminants Removed by Electro-Fenton Heterogeneous Using Porous Material of Chitosan and Magnetite Nanoparticles. ECS Trans. 2021, 101, 101. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Characterisation of Nanoplastics during the Degradation of Polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Allé, P.H.; Garcia-Muñoz, P.; Adouby, K.; Keller, N.; Robert, D. Efficient Photocatalytic Mineralization of Polymethylmethacrylate and Polystyrene Nanoplastics by TiO2/β-SiC Alveolar Foams. Environ. Chem. Lett. 2021, 19, 1803–1808. [Google Scholar] [CrossRef]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of Primary Nanoplastics by Photocatalysis Using Different Anodized TiO2 Structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Ouarda, Y.; Drogui, P.; Tyagi, R.D. Electrochemical Degradation of Nanoplastics in Water: Analysis of the Role of Reactive Oxygen Species. Sci. Total Environ. 2022, 808, 151897. [Google Scholar] [CrossRef]
- Wang, S.; Tan, X.; Wu, Y.; Zhang, J.; Tian, Z.; Ma, J. Isolating Micro/Nanoplastics from Organic-Rich Wastewater: Co/PMS Outweighs Fenton System. J. Hazard. Mater. 2024, 463, 132840. [Google Scholar] [CrossRef]
- Ishibashi, K.I.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of Active Oxidative Species in TiO2 Photocatalysis Using the Fluorescence Technique. Electrochem. Commun. 2000, 2, 207–210. [Google Scholar] [CrossRef]
- Luo, H.; Xiang, Y.; Li, Y.; Zhao, Y.; Pan, X. Photocatalytic Aging Process of Nano-TiO2 Coated Polypropylene Microplastics: Combining Atomic Force Microscopy and Infrared Spectroscopy (AFM-IR) for Nanoscale Chemical Characterization. J. Hazard. Mater. 2021, 404, 124159. [Google Scholar] [CrossRef]
- Wafi, A.; Szabó-Bárdos, E.; Horváth, O.; Makó, É.; Jakab, M.; Zsirka, B. Coumarin-Based Quantification of Hydroxyl Radicals and Other Reactive Species Generated on Excited Nitrogen-Doped TiO2. J. Photochem. Photobiol. A Chem. 2021, 404, 112913. [Google Scholar] [CrossRef]
- Fang, Z.; Sallach, J.B.; Hodson, M.E. Ethanol, Not Water, Should Be Used as the Dispersant When Measuring Microplastic Particle diameter Distribution by Laser Diffraction. Sci. Total Environ. 2023, 902, 166129. [Google Scholar] [CrossRef]
- Reynaud, S.; Aynard, A.; Grassl, B.; Gigault, J. Nanoplastics: From Model Materials to Colloidal Fate. Curr. Opin. Colloid Interface Sci. 2022, 57, 101528. [Google Scholar] [CrossRef]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 2022, 12, 1298. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. In Characterization of Nanoparticles Intended for Drug Delivery; McNeil, S.E., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 63–70. ISBN 978-1-60327-198-1. [Google Scholar]
- Yang, S.C.; Paik, S.Y.R.; Ryu, J.; Choi, K.O.; Kang, T.S.; Lee, J.K.; Song, C.W.; Ko, S. Dynamic Light Scattering-Based Method to Determine Primary Particle diameter of Iron Oxide Nanoparticles in Simulated Gastrointestinal Fluid. Food Chem. 2014, 161, 185–191. [Google Scholar] [CrossRef]
- Patel, V.; Agrawal, Y. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2, 81. [Google Scholar] [CrossRef]
- Djapovic, M.; Apostolovic, D.; Postic, V.; Lujic, T.; Jovanovic, V.; Stanic-Vucinic, D.; van Hage, M.; Maslak, V.; Cirkovic Velickovic, T. Characterization of Nanoprecipitated PET Nanoplastics by 1H NMR and Impact of Residual Ionic Surfactant on Viability of Human Primary Mononuclear Cells and Hemolysis of Erythrocytes. Polymers 2023, 15, 4703. [Google Scholar] [CrossRef]
- Ducoli, S.; Federici, S.; Cocca, M.; Gentile, G.; Zendrini, A.; Bergese, P.; Depero, L.E. Characterization of Polyethylene Terephthalate (PET) and Polyamide (PA) True-to-Life Nanoplastics and Their Biological Interactions. Environ. Pollut. 2024, 343, 123150. [Google Scholar] [CrossRef]
- Gaß, H.; Kloos, T.M.; Höfling, A.; Müller, L.; Rockmann, L.; Schubert, D.W.; Halik, M. Magnetic Removal of Micro- and Nanoplastics from Water—From 100 Nm to 100 Μm Debris Size. Small 2024, 20, 2305467. [Google Scholar] [CrossRef] [PubMed]
- Oriekhova, O.; Stoll, S. Heteroaggregation of Nanoplastic Particles in the Presence of Inorganic Colloids and Natural Organic Matter. Environ. Sci Nano 2018, 5, 792–799. [Google Scholar] [CrossRef]
- Zhou, L.; Shao, Y.; Liu, J.; Ye, Z.; Zhang, H.; Ma, J.; Jia, Y.; Gao, W.; Li, Y. Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction. ACS Appl. Mater. Interfaces 2014, 6, 7275–7285. [Google Scholar] [CrossRef] [PubMed]
- Filinkova, M.S.; Bakhteeva, Y.A.; Medvedeva, I.V.; Byzov, I.V.; Minin, A.S.; Kurmachev, I.A. Aggregation and Magnetic Separation of Polyethylene Microparticles from Aqueous Solutions. Colloid J. 2024, 86, 967–979. [Google Scholar] [CrossRef]
- Bakhteeva, I.A.; Filinkova, M.S.; Medvedeva, I.V.; Podvalnaya, N.V.; Byzov, I.V.; Zhakov, S.V.; Uimin, M.A.; Kurmachev, I.A. Design and Application of Environmentally Friendly Composite Magnetic Particles for Microplastic Extraction from Water Media. J. Environ. Chem. Eng. 2024, 12, 113287. [Google Scholar] [CrossRef]
- Martin, L.M.A.; Sheng, J.; Zimba, P.V.; Zhu, L.; Fadare, O.O.; Haley, C.; Wang, M.; Phillips, T.D.; Conkle, J.; Xu, W. Testing an Iron Oxide Nanoparticle-Based Method for Magnetic Separation of Nanoplastics and Microplastics from Water. Nanomaterials 2022, 12, 2348. [Google Scholar] [CrossRef]
- Sarcletti, M.; Park, H.; Wirth, J.; Englisch, S.; Eigen, A.; Drobek, D.; Vivod, D.; Friedrich, B.; Tietze, R.; Alexiou, C.; et al. The Remediation of Nano-/Microplastics from Water. Mater. Today 2021, 48, 38–46. [Google Scholar] [CrossRef]
- Sun, S.P.; Li, C.J.; Sun, J.H.; Shi, S.H.; Fan, M.H.; Zhou, Q. Decolorization of an Azo Dye Orange G in Aqueous Solution by Fenton Oxidation Process: Effect of System Parameters and Kinetic Study. J. Hazard. Mater. 2009, 161, 1052–1057. [Google Scholar] [CrossRef]
- Utset, B.; Garcia, J.; Casado, J.; Domènech, X.; Peral, J. Replacement of H2O2 by O2 in Fenton and Photo-Fenton Reactions. Chemosphere 2000, 41, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit Rev Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Xia, M.; Long, M.; Yang, Y.; Chen, C.; Cai, W.; Zhou, B. A Highly Active Bimetallic Oxides Catalyst Supported on Al-Containing MCM-41 for Fenton Oxidation of Phenol Solution. Appl. Catal. B 2011, 110, 118–125. [Google Scholar] [CrossRef]
- Qian, X.; Fuku, K.; Kuwahara, Y.; Kamegawa, T.; Mori, K.; Yamashita, H. Design and Functionalization of Photocatalytic Systems within Mesoporous Silica. ChemSusChem 2014, 7, 1528–1536. [Google Scholar] [CrossRef]
- Philippe, A.; Schaumann, G.E. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environ. Sci. Technol. 2014, 48, 8946–8962. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Gao, R.; Abdurahman, A.; Dai, J.; Zeng, F. Aggregation Kinetics of Microplastics in Aquatic Environment: Complex Roles of Electrolytes, PH, and Natural Organic Matter. Environ. Pollut. 2018, 237, 126–132. [Google Scholar] [CrossRef]
- Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Korolkov, I.V.; Mashentseva, A.A.; Güven, O.; Zdorovets, M.V.; Taltenov, A.A. Enhancing Hydrophilicity and Water Permeability of PET Track-Etched Membranes by Advanced Oxidation Process. Nucl. Instrum. Methods Phys. Res. B 2015, 365, 651–655. [Google Scholar] [CrossRef]
- Singh, V.; Park, S.Y.; Kim, C.G. Hybrid Oxidation of Microplastics with Fenton and Hydrothermal Reactions. ACS EST Water 2024, 4, 1688–1700. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, X.; Ke, X.; Zhao, J. A novel route for microplastic mineralization: Visible-light-driven heterogeneous photocatalysis and photothermal Fenton-like reaction. Environ. Sci. Nano 2024, 11, 113–122. [Google Scholar] [CrossRef]
- Gao, W.; Tian, T.; Cheng, X.; Zhu, D.; Yuan, L. Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation. Sustainability 2025, 17, 3559. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.K.; Motlochová, M.; Bavol, D.; Vykydalová, A.; Kupčík, J.; Navrátil, M.; Kirakci, K.; Pližingrová, E.; Dvoranováb, D.; Šubrt, J. Insights in photocatalytic/Fenton-based degradation of microplastics using iron-modified titanium dioxide aerogel powders. Environ. Sci. Nano. 2025, 12, 1515–1530. [Google Scholar] [CrossRef]







| ANOVA for MNP Hydrodynamic Diameters | |||||
| Source of variation | Sum of squares | DF | Mean squares | F value | p value |
| pH | 29,331.7 | 2 | 14,665.9 | 6285.37 | 0.0000 |
| Residual error | 28.0 | 12 | 2.33333 | ||
| Total | 29,359.7 | 14 | |||
| ANOVA for PET-NP Hydrodynamic Diameters | |||||
| Source of variation | Sum of squares | DF | Mean squares | F value | p value |
| pH | 204,432 | 2 | 102,216 | 20,719.50 | 0.0000 |
| Residual error | 59.2 | 12 | 4.93333 | ||
| Total | 204,492 | 14 | |||
| ANOVA for ●OH | |||||
| Source of variation | Sum of squares | DF | Mean squares | F value | p value |
| H2O2 | 0.228829 | 4 | 0.0572072 | 35.48 | 0.0000 |
| pH | 0.232355 | 2 | 0.116177 | 72.05 | 0.0000 |
| Interaction | 0.0399341 | 8 | 0.00499176 | 3.10 | 0.0114 |
| Residual error | 0.0483734 | 30 | 0.00161245 | ||
| Total | 0.549491 | 44 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuna-Laveaga, D.R.; Silva-Téllez, A.M.; Espinola-Portilla, F.E.; Moreno-Medrano, E.D.; del Real-Olvera, J. Hydroxyl Radical Generation in Heterogeneous Fenton Reaction and Its Interaction with Nanoplastics as Potential Advanced Oxidation Process. Processes 2025, 13, 3447. https://doi.org/10.3390/pr13113447
Osuna-Laveaga DR, Silva-Téllez AM, Espinola-Portilla FE, Moreno-Medrano ED, del Real-Olvera J. Hydroxyl Radical Generation in Heterogeneous Fenton Reaction and Its Interaction with Nanoplastics as Potential Advanced Oxidation Process. Processes. 2025; 13(11):3447. https://doi.org/10.3390/pr13113447
Chicago/Turabian StyleOsuna-Laveaga, Daryl Rafael, Alondra Micaela Silva-Téllez, Fernando Enrique Espinola-Portilla, Edgar David Moreno-Medrano, and Jorge del Real-Olvera. 2025. "Hydroxyl Radical Generation in Heterogeneous Fenton Reaction and Its Interaction with Nanoplastics as Potential Advanced Oxidation Process" Processes 13, no. 11: 3447. https://doi.org/10.3390/pr13113447
APA StyleOsuna-Laveaga, D. R., Silva-Téllez, A. M., Espinola-Portilla, F. E., Moreno-Medrano, E. D., & del Real-Olvera, J. (2025). Hydroxyl Radical Generation in Heterogeneous Fenton Reaction and Its Interaction with Nanoplastics as Potential Advanced Oxidation Process. Processes, 13(11), 3447. https://doi.org/10.3390/pr13113447

