Evaluation of Agricultural Soil Quality and Associated Human Health Risks Following Plastic Fire Incidents: Insights from a Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Fire Location and Climatic Condition
2.2. Soil Classification and Agricultural Practices in the Investigated Area
2.3. Soil Sampling
2.4. Laboratory Analysis
2.5. Soil Pollution and Health Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. Post-Fire Soil Contamination Profile: Status of Organic and Inorganic Pollutants in Soil
3.2. Ecological Risk Assessment of Heavy Metal Content in Soil Before and After the Fire Incident
3.3. Health Risk Assessment of Heavy Metal Content in Soil Before and After the Fire Incident
4. Discussion
4.1. Post-Fire Soil Contamination Profile: Status of Organic and Inorganic Pollutants in Soil
4.2. Ecological Risk Assessment of Heavy Metal Content in Soil Before and After the Fire Incident
4.3. Health Risk Assessment of Heavy Metal Content in Soil Before and After the Fire Incident
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| CF | 0–10 km Radius | 10–20 km Radius | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ant 1 | Ant 2 | Ant 3 | Ant 4 | Ant 5 | Ant 6 | Ant 7 | Ant 8 | Ern 1 | Ern 2 | Ern 3 | Ern 4 | Ern 5 | Ern 6 | Ern 7 | Ern 8 | Ern 9 | Ern 10 | |
| Cr | 0.54 | 0.54 | 0.59 | 0.65 | 0.65 | 0.63 | 0.52 | 0.50 | 0.64 | 0.57 | 0.61 | 0.56 | 0.56 | 0.58 | 0.54 | 0.63 | 0.58 | 0.54 |
| Cu | 2.98 | 2.52 | 1.84 | 2.40 | 2.14 | 2.47 | 1.93 | 2.12 | 1.54 | 2.45 | 2.38 | 2.19 | 2.03 | 1.68 | 2.10 | 1.66 | 2.07 | 2.17 |
| Zn | 0.85 | 0.94 | 0.60 | 0.74 | 0.81 | 0.77 | 0.64 | 0.69 | 0.72 | 0.79 | 0.75 | 0.79 | 0.81 | 0.60 | 0.84 | 0.65 | 0.67 | 0.73 |
| Ni | 1.80 | 1.71 | 1.38 | 1.65 | 1.68 | 1.56 | 1.53 | 1.56 | 1.32 | 1.65 | 1.63 | 1.68 | 1.36 | 1.34 | 1.53 | 1.29 | 1.78 | 1.52 |
| Pb | 0.72 | 0.77 | 0.86 | 0.90 | 0.87 | 0.77 | 0.73 | 0.68 | 0.77 | 1.11 | 0.82 | 0.77 | 0.84 | 0.75 | 0.83 | 0.83 | 0.80 | 0.83 |
| Cd | 1.27 | 1.67 | 1.24 | 2.13 | 1.81 | 1.72 | 1.41 | 1.32 | 1.50 | 1.75 | 1.70 | 1.65 | 1.84 | 1.88 | 1.74 | 1.43 | 2.00 | 1.91 |
| As | 0.91 | 0.91 | 0.84 | 1.02 | 0.89 | 0.76 | 0.91 | 0.89 | 0.93 | 0.87 | 0.76 | 0.73 | 0.80 | 0.84 | 0.82 | 0.78 | 0.78 | 0.76 |
| CF | 0–10 km Radius | 10–20 km Radius | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ant I | Ant II | Ant II | Ant IV | Ant V | Ant VI | Ant VII | Ant VIII | Ant IX | Ant X | Ern I | Ern II | Ern III | Ern IV | Ivan I | Ivan II | Tenja I | Tenja II | |
| Cr | 0.41 | 0.45 | 0.43 | 0.34 | 0.29 | 0.34 | 0.36 | 0.33 | 0.36 | 0.36 | 0.90 | 0.82 | 0.81 | 0.86 | 0.63 | 0.62 | 0.70 | 0.82 |
| Cu | 2.08 | 1.92 | 1.92 | 2.00 | 1.69 | 1.46 | 1.69 | 1.54 | 1.62 | 1.62 | 2.23 | 2.08 | 2.08 | 2.00 | 2.15 | 2.00 | 2.23 | 2.46 |
| Zn | 0.76 | 0.67 | 0.70 | 0.77 | 0.48 | 0.55 | 0.68 | 0.63 | 0.55 | 0.65 | 0.93 | 0.88 | 0.98 | 0.98 | 0.59 | 0.67 | 0.64 | 0.89 |
| Ni | 1.52 | 1.39 | 1.52 | 1.52 | 1.13 | 1.13 | 1.43 | 1.30 | 1.26 | 1.26 | 1.65 | 1.60 | 1.47 | 1.65 | 1.34 | 1.43 | 1.43 | 1.39 |
| Pb | 0.95 | 0.91 | 1.00 | 0.95 | 1.00 | 1.08 | 0.83 | 0.75 | 0.95 | 0.79 | 1.04 | 0.75 | 1.00 | 0.87 | 0.87 | 0.75 | 0.46 | 0.66 |
| Cd | 1.63 | 1.25 | 1.75 | 1.50 | 1.38 | 1.38 | 1.50 | 1.38 | 1.25 | 1.25 | 1.88 | 1.75 | 1.75 | 1.88 | 1.13 | 1.25 | 1.13 | 1.38 |
| As | 0.67 | 0.92 | 0.67 | 0.75 | 0.67 | 0.83 | 0.83 | 0.67 | 0.83 | 0.75 | 0.83 | 1.08 | 0.50 | 0.92 | 0.83 | 0.75 | 0.50 | 0.67 |
| EF | 0–10 km Radius | 10–20 km Radius | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ant 1 | Ant 2 | Ant 3 | Ant 4 | Ant 5 | Ant 6 | Ant 7 | Ant 8 | Ern 1 | Ern 2 | Ern 3 | Ern 4 | Ern 5 | Ern 6 | Ern 7 | Ern 8 | Ern 9 | Ern 10 | |
| Cr | 0.55 | 1.09 | 1.04 | 1.11 | 1.02 | 0.97 | 0.82 | 0.97 | 1.24 | 0.94 | 1.08 | 0.89 | 1.04 | 1.02 | 0.92 | 1.22 | 0.85 | 1.01 |
| Cu | 3.02 | 0.92 | 0.70 | 1.31 | 0.91 | 1.15 | 0.77 | 1.11 | 0.70 | 1.67 | 0.98 | 0.89 | 0.96 | 0.82 | 1.23 | 0.84 | 1.15 | 1.13 |
| Zn | 0.85 | 1.22 | 0.61 | 1.24 | 1.11 | 0.95 | 0.82 | 1.10 | 1.00 | 1.16 | 0.96 | 1.01 | 1.06 | 0.73 | 1.38 | 0.82 | 0.95 | 1.18 |
| Ni | 1.82 | 1.04 | 0.77 | 1.21 | 1.04 | 0.93 | 0.97 | 1.03 | 0.82 | 1.31 | 0.99 | 0.99 | 0.85 | 0.97 | 1.13 | 0.89 | 1.27 | 0.92 |
| Pb | 0.73 | 1.18 | 1.06 | 1.05 | 0.99 | 0.89 | 0.93 | 0.94 | 1.11 | 1.50 | 0.75 | 0.91 | 1.13 | 0.87 | 1.09 | 1.06 | 0.89 | 1.12 |
| Cd | 1.29 | 1.43 | 0.71 | 1.72 | 0.86 | 0.95 | 0.81 | 0.96 | 1.10 | 1.22 | 0.98 | 0.93 | 1.16 | 1.01 | 0.91 | 0.87 | 1.29 | 1.03 |
| As | 0.92 | 1.09 | 0.89 | 1.22 | 0.89 | 0.85 | 1.19 | 0.99 | 1.02 | 0.98 | 0.88 | 0.93 | 1.13 | 1.04 | 0.96 | 1.00 | 0.92 | 1.05 |
| EF | 0–10 km Radius | 10–20 km Radius | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ant I | Ant II | Ant II | Ant IV | Ant V | Ant VI | Ant VII | Ant VIII | Ant IX | Ant X | Ern I | Ern II | Ern III | Ern IV | Ivan I | Ivan II | Tenja I | Tenja II | |
| Cr | 0.45 | 1.06 | 0.97 | 0.80 | 0.77 | 1.20 | 0.98 | 0.90 | 1.20 | 1.01 | 0.95 | 0.90 | 1.08 | 1.08 | 2.09 | 0.95 | 1.15 | 1.16 |
| Cu | 0.97 | 0.90 | 1.01 | 1.04 | 0.77 | 0.88 | 1.08 | 0.90 | 1.14 | 1.01 | 2.36 | 0.92 | 1.09 | 0.98 | 1.58 | 0.91 | 1.13 | 1.10 |
| Zn | 0.73 | 0.86 | 1.06 | 1.10 | 0.56 | 1.16 | 1.17 | 0.91 | 0.95 | 1.20 | 0.98 | 0.93 | 1.22 | 1.01 | 1.08 | 1.11 | 0.96 | 1.38 |
| Ni | 0.86 | 0.89 | 1.11 | 1.00 | 0.67 | 1.02 | 1.18 | 0.90 | 1.05 | 1.01 | 1.74 | 0.96 | 1.00 | 1.13 | 1.27 | 1.04 | 1.01 | 0.96 |
| Pb | 1.03 | 0.93 | 1.10 | 0.96 | 0.95 | 1.10 | 0.72 | 0.89 | 1.39 | 0.83 | 1.10 | 0.71 | 1.46 | 0.89 | 1.31 | 0.84 | 0.62 | 1.45 |
| Cd | 0.62 | 0.65 | 1.01 | 1.00 | 0.91 | 1.02 | 0.93 | 1.49 | 0.73 | 1.01 | 2.45 | 1.10 | 0.99 | 0.98 | 0.87 | 1.23 | 1.08 | 1.07 |
| As | 0.68 | 1.34 | 0.74 | 1.13 | 0.81 | 1.27 | 0.93 | 0.80 | 1.36 | 0.91 | 0.88 | 1.29 | 0.50 | 1.86 | 1.32 | 0.88 | 0.67 | 1.33 |
| Location | Adults | Children | ||||
|---|---|---|---|---|---|---|
| Ingestion | Inhalation | Dermal | Ingestion | Inhalation | Dermal | |
| 0–10 km radius from the fire site | ||||||
| Ant 1 | 1.53 × 10−5 | 1.06 × 10−7 | 3.62 × 10−6 | 3.56 × 10−5 | 4.71 × 10−8 | 7.27 × 10−7 |
| Ant 2 | 1.52 × 10−5 | 1.06 × 10−7 | 3.60 × 10−6 | 3.55 × 10−5 | 4.68 × 10−8 | 7.22 × 10−7 |
| Ant 3 | 1.53 × 10−5 | 1.12 × 10−7 | 3.87 × 10−6 | 3.57 × 10−5 | 4.96 × 10−8 | 7.76 × 10−7 |
| Ant 4 | 1.76 × 10−5 | 1.25 × 10−7 | 4.29 × 10−6 | 4.11 × 10−5 | 5.53 × 10−8 | 8.61 × 10−7 |
| Ant 5 | 1.65 × 10−5 | 1.24 × 10−7 | 4.28 × 10−6 | 3.86 × 10−5 | 5.49 × 10−8 | 8.59 × 10−7 |
| Ant 6 | 1.51 × 10−5 | 1.18 × 10−7 | 4.10 × 10−6 | 3.52 × 10−5 | 5.23 × 10−8 | 8.23 × 10−7 |
| Ant 7 | 1.49 × 10−5 | 1.02 × 10−7 | 3.48 × 10−6 | 3.49 × 10−5 | 4.52 × 10−8 | 6.97 × 10−7 |
| Ant 8 | 1.44 × 10−5 | 9.76 × 10−8 | 3.32 × 10−6 | 3.37 × 10−5 | 4.33 × 10−8 | 6.67 × 10−7 |
| 10–20 km radius from the fire site | ||||||
| Ern 1 | 1.67 × 10−5 | 1.22 × 10−7 | 4.21 × 10−6 | 3.90 × 10−5 | 5.39 × 10−8 | 8.44 × 10−7 |
| Ern 2 | 1.52 × 10−5 | 1.09 × 10−7 | 3.76 × 10−6 | 3.56 × 10−5 | 4.85 × 10−8 | 7.54 × 10−7 |
| Ern 3 | 1.48 × 10−5 | 1.15 × 10−7 | 3.98 × 10−6 | 3.45 × 10−5 | 5.08 × 10−8 | 7.97 × 10−7 |
| Ern 4 | 1.40 × 10−5 | 1.07 × 10−7 | 3.71 × 10−6 | 3.28 × 10−5 | 4.75 × 10−8 | 7.44 × 10−7 |
| Ern 5 | 1.46 × 10−5 | 1.07 × 10−7 | 3.71 × 10−6 | 3.40 × 10−5 | 4.76 × 10−8 | 7.45 × 10−7 |
| Ern 6 | 1.53 × 10−5 | 1.12 × 10−7 | 3.86 × 10−6 | 3.56 × 10−5 | 4.95 × 10−8 | 7.74 × 10−7 |
| Ern 7 | 1.45 × 10−5 | 1.05 × 10−7 | 3.60 × 10−6 | 3.39 × 10−5 | 4.64 × 10−8 | 7.22 × 10−7 |
| Ern 8 | 1.53 × 10−5 | 1.18 × 10−7 | 4.11 × 10−6 | 3.56 × 10−5 | 5.22 × 10−8 | 8.24 × 10−7 |
| Ern 9 | 1.47 × 10−5 | 1.11 × 10−7 | 3.83 × 10−6 | 3.42 × 10−5 | 4.92 × 10−8 | 7.69 × 10−7 |
| Ern 10 | 1.39 × 10−5 | 1.04 × 10−7 | 3.58 × 10−6 | 3.25 × 10−5 | 4.59 × 10−8 | 7.17 × 10−7 |
| Location | Adults | Children | ||||
|---|---|---|---|---|---|---|
| Ingestion | Inhalation | Dermal | Ingestion | Inhalation | Dermal | |
| 0–10 km radius from the fire site | ||||||
| Ant I | 1.14 × 10−5 | 8.02 × 10−8 | 2.73 × 10−6 | 2.66 × 10−5 | 3.56 × 10−8 | 5.48 × 10−7 |
| Ant II | 1.40 × 10−5 | 8.90 × 10−8 | 3.01 × 10−6 | 3.26 × 10−5 | 3.95 × 10−8 | 6.03 × 10−7 |
| Ant II | 1.16 × 10−5 | 8.31 × 10−8 | 2.84 × 10−6 | 2.71 × 10−5 | 3.69 × 10−8 | 5.70 × 10−7 |
| Ant IV | 1.12 × 10−5 | 6.96 × 10−8 | 2.32 × 10−6 | 2.60 × 10−5 | 3.09 × 10−8 | 4.66 × 10−7 |
| Ant V | 9.74 × 10−6 | 5.94 × 10−8 | 1.98 × 10−6 | 2.27 × 10−5 | 2.63 × 10−8 | 3.97 × 10−7 |
| Ant VI | 1.19 × 10−5 | 7.02 × 10−8 | 2.34 × 10−6 | 2.77 × 10−5 | 3.11 × 10−8 | 4.70 × 10−7 |
| Ant VII | 1.21 × 10−5 | 7.35 × 10−8 | 2.45 × 10−6 | 2.82 × 10−5 | 3.26 × 10−8 | 4.91 × 10−7 |
| Ant VIII | 1.02 × 10−5 | 6.54 × 10−8 | 2.20 × 10−6 | 2.38 × 10−5 | 2.90 × 10−8 | 4.40 × 10−7 |
| Ant IX | 1.21 × 10−5 | 7.32 × 10−8 | 2.45 × 10−6 | 2.82 × 10−5 | 3.25 × 10−8 | 4.91 × 10−7 |
| Ant X | 1.14 × 10−5 | 7.22 × 10−8 | 2.43 × 10−6 | 2.65 × 10−5 | 3.20 × 10−8 | 4.87 × 10−7 |
| 10–20 km radius from the fire site | ||||||
| Ern I | 1.95 × 10−5 | 1.65 × 10−7 | 5.83 × 10−6 | 4.55 × 10−5 | 7.33 × 10−8 | 1.17 × 10−6 |
| Ern II | 2.05 × 10−5 | 1.55 × 10−7 | 5.38 × 10−6 | 4.78 × 10−5 | 6.86 × 10−8 | 1.08 × 10−6 |
| Ern III | 1.55 × 10−5 | 1.46 × 10−7 | 5.19 × 10−6 | 3.61 × 10−5 | 6.46 × 10−8 | 1.04 × 10−6 |
| Ern IV | 1.97 × 10−5 | 1.60 × 10−7 | 5.60 × 10−6 | 4.59 × 10−5 | 7.08 × 10−8 | 1.12 × 10−6 |
| Ivan I | 1.58 × 10−5 | 1.20 × 10−7 | 4.17 × 10−6 | 3.70 × 10−5 | 5.31 × 10−8 | 8.36 × 10−7 |
| Ivan II | 1.49 × 10−5 | 1.16 × 10−7 | 4.04 × 10−6 | 3.48 × 10−5 | 5.14 × 10−8 | 8.10 × 10−7 |
| Tenja I | 1.39 × 10−5 | 1.27 × 10−7 | 4.52 × 10−6 | 3.25 × 10−5 | 5.65 × 10−8 | 9.06 × 10−7 |
| Tenja II | 1.70 × 10−5 | 1.50 × 10−7 | 5.31 × 10−6 | 3.97 × 10−5 | 6.64 × 10−8 | 1.06 × 10−6 |
References
- de Vries, F.T.; Thébault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjørnlund, L.; Bardgett, R.D. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 110, 14296–14301. [Google Scholar] [CrossRef]
- Hartemink, A.E. The definition of soil since the early 1800s. Adv. Agron. 2016, 137, 73–126. [Google Scholar]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef]
- Kisić, I.; Zgorelec, Ž.; Perčin, A. Soil treatment engineering. In Environmental Engineering—Basic Principles, 1st ed.; Tomašić, V., Zelić, B., Eds.; De Gruyter: Vienna, Austria, 2018; pp. 277–316. [Google Scholar]
- Kisić, I. Textbooks of the University of Zagreb. In Urban Agriculture, 1st ed.; Faculty of Agriculture: Zagreb, Croatia, 2018; pp. 1–311. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Brussaard, L. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Cachada, A.; Rocha-Santos, T.; Duarte, A.C. Soil and pollution: An introduction to the main issues. In Soil Pollution from Monitoring to Remediation; Duarte, A.C., Cachada, A., Rocha-Santos, T., Eds.; Elsevier-Academic Press: London, UK, 2018; pp. 1–28. [Google Scholar]
- Soares, J.; Miguel, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Public views on plastic pollution: Knowledge, perceived impacts, and pro-environmental behaviours. J. Hazard. Mater. 2021, 412, 125227. [Google Scholar] [CrossRef] [PubMed]
- d’Ambrières, W. Plastics recycling worldwide: Current overview and desirable changes. Field Actions Sci. Rep. 2019, 19, 12–21. [Google Scholar]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N. Recycling of European plastic is a pathway for plastic debris in the ocean. Environ. Int. 2020, 142, 105893. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, Q.; Shang, X.; Liang, Y.; Ding, X.; Sun, H.; Chen, J. Commodity plastic burning as a source of inhaled toxic aerosols. J. Hazard. Mater. 2021, 416, 125820. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Chen, W.Q.; Zhu, B.; Qu, S.; Xu, M. Critical review of global plastics stock and flow data. J. Ind. Ecol. 2021, 25, 1300–1317. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; De Bruyn, J.M.; Schaeffer, S.M.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Pathak, G.; Nichter, M.; Hardon, A.; Moyer, E.; Latkar, A.; Simbaya, J.; Pakasi, D.; Taqueban, E.; Love, J. Plastic pollution and the open burning of plastic wastes. Glob. Environ. Change 2023, 80, 102648. [Google Scholar] [CrossRef]
- Jakhar, R.; Samek, L.; Styszko, K. A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability 2023, 15, 14241. [Google Scholar] [CrossRef]
- Wainkwa Chia, R.; Lee, J.-Y.; Jang, J.; Kim, H.; Kwon, K.D. Soil health and microplastics: A review of the impacts of microplastic contamination on soil properties. J. Soils Sediments 2022, 22, 2690–2705. [Google Scholar] [CrossRef]
- Ulus, Y.; Wang, S.; Tsz-Ki Tsui, M.; Landau, N.; Lekki, O.; Bayazıt, T.; Uzun, H.; Aslan, F.; Kavgacı, A. Post-fire forest management effects on soil metal dynamics in Mediterranean forests. Front. Environ. Sci. 2025, 13, 1661652. [Google Scholar] [CrossRef]
- Rao, J.K.; Parsai, T. Heavy metal(loid) contamination in forest fire affected soil and surface water: Pollution indices and human health risk assessment. Environ. Monit. Assess. 2025, 197, 378. [Google Scholar] [CrossRef]
- Kantemiris, G.; Xenogiannopoulou, E.; Vollas, A.; Oikonomou, P. Classification of soil contamination by heavy metals (Cr, Ni, Pb, Zn) in wildfire-affected areas using laser-induced breakdown spectroscopy and machine learning. Environ. Sci. Pollut. Res. 2025, 32, 2359–2373. [Google Scholar] [CrossRef]
- Al Mamun, A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, S.; Xu, W.; Liang, C.; Li, J.; Zhang, H.; Wang, K. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis. J. Hazard. Mater. 2022, 435, 129065. [Google Scholar] [CrossRef]
- Panico, S.C.; Santorufo, L.; Memoli, V.; Esposito, F.; Santini, G.; Di Natale, G.; Trifuoggi, M.; Barile, R.; Maisto, G. Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas. Environments 2023, 10, 146. [Google Scholar] [CrossRef]
- Sarigiannis, D.A. Assessing the impact of hazardous waste on children’s health: The exposome paradigm. Environ. Res 2017, 158, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Perković, S.; Paul, C.; Vasić, F.; Helming, K. Human health and soil health risks from heavy metals, micro (nano) plastics, and antibiotic resistant bacteria in agricultural soils. Agronomy 2022, 12, 2945. [Google Scholar] [CrossRef]
- Moranda, A.; Paladino, O. Controlled Combustion and Pyrolysis of Waste Plastics: A Comparison Based on Human Health Risk Assessment. Recycling 2023, 8, 38. [Google Scholar] [CrossRef]
- IUSS Working Group WRB 2022. World Reference Base for Soil Resources 2022—International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022; pp. 1–284. [Google Scholar]
- ISO 11464; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. Technical Committee ISO/TC 190/SC 3; International Organization for Standardization: Geneva, Switzerland, 2006; pp. 1–12.
- ISO 10390; Soil, Treated Biowaste and Sludge—Determination of pH. Technical Committee ISO/TC 190/SC 3; International Organization for Standardization: Geneva, Switzerland, 2021; pp. 1–8.
- ISO 14235; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. Technical Committee ISO/TC 190/SC 3; International Organization for Standardization: Geneva, Switzerland, 1998; pp. 1–5.
- Takahashi, G. Sample preparation for X-rax fluorescence analysis. Tech. Artic. Rigaku J. 2015, 31, 26–30. [Google Scholar]
- ISO 13196; Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-ray Fluorescence Spectrometry Using a Handheld or Portable Instrument. Technical Committee ISO/TC 190; International Organization for Standardization: Geneva, Switzerland, 2015; pp. 1–12.
- ISO 11047; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc—Flame and Electrothermal Atomic Absorption Spectrometric Methods. Technical Committee ISO/TC 190; International Organization for Standardization: Geneva, Switzerland, 1998; pp. 1–18.
- HRN ISO 11466; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. Technical Committee ISO/TC 190/SC 3; International Organization for Standardization: Geneva, Switzerland, 1995; pp. 1–6.
- World Health Organization (WHO). WHO Expert Consultation on Toxic Equivalency Factors for Dioxin-Like Compounds. Lisbon, Portugal. 2005. Available online: https://www.who.int/news/item/15-03-2024-who-expert-consultation-on-updating-the-2005-toxic-equivalency-factors-for-dioxin-like-compounds-including-some-polychlorinated-biphenyls (accessed on 12 June 2025).
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Halamić, J.; Miko, S.; Peh, Z.; Prohaska, T.; Bujan, M.; Sudar, M. Geochemical Atlas of the Republic of Croatia; Croatian Geological Survey: Zagreb, Croatia, 2009; pp. 1–87.
- USEPA. Exposure Factors Handbook; EPA/600/8-89/043; Office of Health and Environmental Assessment, U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Miletić, A.; Lučić, M.; Onjia, A. Exposure Factors in Health Risk Assessment of Heavy Metal(loid)s in Soil and Sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Karimian, S.; Shekoohiyan, S.; Moussavi, G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Adv. 2021, 11, 8080. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Regulation on the Protection of Agricultural Land from Pollution; Official Gazette 70/2019; Ministry of Agriculture: Zagreb, Croatia, 2019. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1507.html (accessed on 15 May 2025). (In Croatian)
- Verbruggen, E.M.J. Environmental Risk Limits for Polycyclic Aromatic Hydrocarbons (PAHs): For Direct Aquatic, Benthic, and Terrestrial Toxicity; RIVM Report 607711007/2012; National Institute for Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2012; pp. 1–337.
- Nhung, N.T.H.; Nguyen, X.-T.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtseva, A.D.; Mir-Kadyrova, E.Y.; Kalinkevich, G.A.; Brodskii, E.S. Dioxin Soil Contamination near Former Landfills. Eurasian Soil Sci. 2021, 54, 1241–1251. [Google Scholar] [CrossRef]
- Høisæter, A.; Pfaff, A.; Breedveld, G.D. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J. Contam. Hydrol. 2019, 222, 112–122. [Google Scholar] [CrossRef]
- Perez-Maldonado, I.N.; Salazar, R.C.; Ilizaliturri-Hernandez, C.A.; Espinosa-Reyes, G.; Perez-Vazquez, F.J.; Fernandez-Macias, J.C. Assessment of the polychlorinated biphenyls (PCBs) levels in soil samples near an electric capacitor manufacturing industry in Morelos, Mexico. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2014, 49, 1244–1250. [Google Scholar] [CrossRef]
- Andreoni, V.; Cavalca, L.; Rao, M.A.; Nocerino, G.; Bernasconi, S.; Dell’Amico, E.; Colombo, M.; Gianfreda, L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 2004, 57, 401–412. [Google Scholar] [CrossRef]
- Gao, M.; Zheng, G.; Lei, C.; Cui, R.; Chen, J.; Lou, J.; Sun, L.; Lu, T.; Qian, H. Machine learning models reveal how polycyclic aromatic hydrocarbons influence environmental bacterial communities. Sci. Total Environ. 2024, 955, 177032. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules 2020, 25, 2470. [Google Scholar] [CrossRef]
- Ozgeldinova, Z.; Mukayev, Z.; Ulykpanova, M.; Zhanguzhina, A.; Aidarkhanova, G. Impact of forest fire on the heavy metal content in the soil cover of the Amankaragay pine forest, Kostanay Region. J. Ecol. Eng. 2025, 26, 350–364. [Google Scholar] [CrossRef]
- Valavanidisa, A.; Iliopoulosa, N.; Gotsisb, G.; Fiotakisa, F. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. J. Hazard. Mater. 2008, 156, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Haga, K.; Altansukh, B.; Shibayama, A. Volatilization of Arsenic and Antimony from Tennantite/Tetrahedrite Ore by a Roasting Process. Mater. Trans. 2018, 59, 1396–1403. [Google Scholar] [CrossRef]
- Prostakova, V.; Shishin, D.; Jak, E. Thermodynamic optimization of the Cu–As–S system. Calpha 2021, 72, 102247. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Zarei, I.; Pourkhabbaz, A.; Khuzestani, R.B. An Assessment of Metal Contamination Risk in Sediments of Hara Biosphere Reserve, Southern Iran with a Focus on Application of Pollution Indicators. Environ. Monit. Assess. 2014, 186, 6047–6060. [Google Scholar] [CrossRef]
- Chiudioni, F.; Marcheggiani, S.; Puccinelli, C.; Trabace, T.; Mancini, L. Heavy metals in tributaries of Tiber River in the urban area of Rome (Italy). Heliyon 2024, 10, e33964. [Google Scholar] [CrossRef]
- Zoidou, M.; Sylaios, G. Ecological risk assessment of heavy metals in the sediments of a Mediterranean lagoon complex. J. Environ. Health Sci. Eng. 2021, 19, 1835–1849. [Google Scholar] [CrossRef]
- Perčin, A.; Zgorelec, Ž.; Karažija, T.; Kisić, I.; Župan, N.; Šestak, I. Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence. Agronomy 2023, 13, 2282. [Google Scholar] [CrossRef]
- Azzi, V.; Kazpard, V.; Lartiges, B.; Kobeissi, A.; Kanso, A.; El Samrani, A.G. Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries. Clean—Soil Air Water 2017, 45. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential Driving Forces and Probabilistic Health Risks of Heavy Metal Accumulation in the Soils from an E-Waste Area, Southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Z. Contamination and health risk assessment of heavy metals in soil surrounding an electroplating factory in JiaXing, China. Sci. Rep. 2024, 14, 4097. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Chavez, E.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Guzmán-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic Multi-Pathway Human Health Risk Assessment Due to Heavy Metal(Loid)s in a Traditional Gold Mining Area in Ecuador. Ecotoxicol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef] [PubMed]







| Al | As | Cr | Cu | Ni | Pb | Zn | Co |
|---|---|---|---|---|---|---|---|
| 60,000 | 12.1 | 54.8 | 13.0 | 23.1 | 24.1 | 88.0 | 8.0 |
| Heavy Metal | SF (kg day/mg) | ||
|---|---|---|---|
| Ingestion (SFing) | Inhalation (SFinh) | Dermal (SFderm) | |
| As | 1.5 | 15.1 | 3.66 |
| Cr | 0.5 | 42 | 20 |
| Ni | - | 0.84 | - |
| Pb | 0.0085 | 0.042 | - |
| Parameter | Abbrev. | Units | Children | Adults |
|---|---|---|---|---|
| Metals concentration in soil | Csoil | mg/kg | In the soil after the fire | |
| Ingestion rate | IngRsoil | mg/day | 200 | 100 |
| Inhalation rate | InhR | m3/day | 7.6 | 20 |
| Exposure frequency | EF | days/year | 350 | 350 |
| Exposure duration | ED | years | 6 | 24 |
| Particulate emission factor | PEF | m3/kg | 1.36 × 109 | 1.36 × 109 |
| Skin surface area | SA | cm2 | 2800 | 5700 |
| Adherence factor | AFsoil | mg/cm2/day | 0.2 | 0.07 |
| Dermal absorption factor | ABS | - | 0.001 | 0.001 |
| Body weight | BW | kg | 15 | 70 |
| Average carcinogenic time | AT | day | 25,500 | 25,500 |
| Conversion factor | CF | kg/mg | 10−6 | 10−6 |
| Contamination Factor (CF) | |
| CF < 1 | Low contamination |
| 1 ≤ CF < 3 | Moderate contamination |
| 3 ≤ CF < 6 | Considerable contamination |
| CF ≥ 6 | Very high contamination |
| Pollution load index (PLI) | |
| PLI < 1 | Unpolluted |
| PLI > 1 | Polluted |
| Enrichment factor (EF) | |
| EF ≤ 1 | No enrichment |
| 1 ≤ EF ≤ 2 | Slight enrichment |
| 2 ≤ EF ≤ 5 | Moderate enrichment |
| 5 ≤ EF ≤ 20 | Significant enrichment |
| The incremental lifetime cancer risk (ILCR) and carcinogenic risks (CRi) | |
| CRi/ILCR ≤ 1 × 10−6 | Negligible cancerogenic risk |
| 1 × 10−6 ≤ CRi/ILCR ≤ 1 × 10−4 | Acceptable cancerogenic risk |
| CRi/ILCR > 1 × 10−4 | Harmful cancerogenic risk |
| Location | Sum of Dioxins TEQ LB | Sum of Dioxins TEQ UB | Perfluoro-Alkyl Substances PFAS-s | Sum of Dioxins and Dioxin-Like PCB-a TEQ LB | Sum of Dioxins and Dioxin-Like PCB-a TEQ UB | Sum of Non-Dioxin-Like LB | Sum of Non-Dioxin-Like UB | MPC | |
|---|---|---|---|---|---|---|---|---|---|
| mg/kg dry soil | |||||||||
| 0–10 km radius from the fire site | |||||||||
| Ant I Ant II | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0032 0.0047 | 0.5 | |
| Ant III Ant IV | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0044 0.0023 | ||
| Ant V Ant VI | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0034 0.0031 | ||
| Ant VII Ant VIII | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0037 0.0032 | ||
| Ant IX Ant X | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0038 0.0039 | ||
| 10–20 km radius from the fire site | |||||||||
| Ern I Ern II | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0028 0.0022 | ||
| Ern III Ern IV | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0018 0.0024 | ||
| Ivan I Ivan II | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0033 0.0025 | ||
| Tenja I Tenja II | 0 0 | 4.0 × 10−6 4.0 × 10−6 | <0.0005 <0.0005 | 0 0 | 5.0 × 10−6 5.0 × 10−6 | 0 0 | 0.0024 0.0017 | ||
| pH (1:5, KCl) | SOM | Cr | Co | Ni | Cu | Zn | As | Pb | K | Ca | P | Mg | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| % | mg/kg | ||||||||||||
| Before the fire incident (n = 18) | |||||||||||||
| Min. | 4.92 | 1.10 | 29.0 | 9.9 | 29.7 | 20.2 | 52.4 | 8.8 | 16.3 | 14.0 | 4.3 | 22.1 | 9.1 |
| Max. | 7.50 | 4.50 | 37.9 | 17.0 | 41.5 | 38.8 | 83.1 | 12.3 | 26.7 | 17.7 | 344 | 1097 | 28.4 |
| SD | 0.64 | 0.78 | 2.6 | 2.0 | 3.7 | 4.6 | 8.1 | 0.9 | 2.2 | 0.9 | 46.3 | 283.4 | 3.1 |
| Mean | 6.82 | 2.73 | 33.8 | 13.3 | 35.9 | 27.9 | 65.6 | 10.1 | 19.6 | 15.7 | 16.7 | 451.4 | 11.2 |
| CV, % | 9.44 | 28.7 | 7.7 | 15.3 | 10.2 | 16.5 | 12.3 | 9.3 | 11.3 | 5.8 | 277.3 | 62.8 | 27.2 |
| After the fire incident (n = 18) | |||||||||||||
| Min. | 6.08 | 1.10 | 17.0 | 9.0 | 26.0 | 19.2 | 42.0 | 6.3 | 11.0 | 14.4 | 5.6 | 274 | 5.6 |
| Max. | 7.41 | 4.20 | 52.5 | 15.0 | 38.1 | 32.0 | 86.0 | 13.2 | 26.4 | 19.7 | 38.8 | 1115 | 23.1 |
| SD | 0.34 | 0.96 | 12.8 | 2.0 | 3.6 | 3.9 | 13.5 | 1.7 | 3.7 | 1.38 | 10.4 | 252.0 | 2.96 |
| Mean | 6.93 | 2.58 | 31.9 | 11.7 | 32.6 | 25.1 | 63.4 | 9.1 | 20.9 | 16.9 | 14.0 | 602.1 | 9.04 |
| CV, % | 4.91 | 37.1 | 40.3 | 17.0 | 11.1 | 15.5 | 21.2 | 19.2 | 17.9 | 8.19 | 74.4 | 41.8 | 32.7 |
| ANOVA results | |||||||||||||
| p-value | 0.528 | 0.607 | 0.533 | 0.023 | 0.009 | 0.048 | 0.570 | 0.035 | 0.082 | <0001 | 0.686 | 0.004 | 0.0002 |
| LSD | 0.339 | 0.577 | 6.28 | 1.36 | 2.46 | 2.79 | 7.52 | 0.95 | 2.08 | 0.448 | 12.8 | 102.3 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perčin, A.; Hefer, H.; Zgorelec, Ž.; Galić, M.; Rašić, D.; Kisić, I. Evaluation of Agricultural Soil Quality and Associated Human Health Risks Following Plastic Fire Incidents: Insights from a Case Study. Land 2025, 14, 2137. https://doi.org/10.3390/land14112137
Perčin A, Hefer H, Zgorelec Ž, Galić M, Rašić D, Kisić I. Evaluation of Agricultural Soil Quality and Associated Human Health Risks Following Plastic Fire Incidents: Insights from a Case Study. Land. 2025; 14(11):2137. https://doi.org/10.3390/land14112137
Chicago/Turabian StylePerčin, Aleksandra, Hrvoje Hefer, Željka Zgorelec, Marija Galić, Danijel Rašić, and Ivica Kisić. 2025. "Evaluation of Agricultural Soil Quality and Associated Human Health Risks Following Plastic Fire Incidents: Insights from a Case Study" Land 14, no. 11: 2137. https://doi.org/10.3390/land14112137
APA StylePerčin, A., Hefer, H., Zgorelec, Ž., Galić, M., Rašić, D., & Kisić, I. (2025). Evaluation of Agricultural Soil Quality and Associated Human Health Risks Following Plastic Fire Incidents: Insights from a Case Study. Land, 14(11), 2137. https://doi.org/10.3390/land14112137

